Towards Efficient and Safe ML in Real-Time Cyber-Physical Systems

Zhishan Guo

Associate Professor, Computer Science, NC State University rguo32@ncsu.edu

ML-RT-Agenda 2025 @Brussels

Cyber-Physical Systems (CPS)

- Engineered systems that are built from, and depend upon, the seamless integration of computation and physical components.
- Real-Time Systems
 - both logical and temporal Correctness
 - Predictability: Provably guaranteed responses within strict time constraints (deadlines)

Efficient Computing & Automation

Real-Time Scheduling & Control

Wireless Networking

Cyber

Physical

Systems =

Sensing

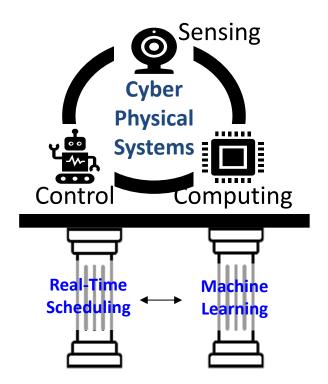
Computing

Wireless Sensing

Formal Methods

Constrain-Aware Security & Privacy

Control



Towards Efficient and Safe ML in Real-Time CPS

- Key Challenges in RT-CPS Design and Analysis
 - System Uncertainty & Reliability/Safety
 Application 1: F1-Tenth Autonomous Racing
 - Resource and Energy EfficiencyApplication 2: Cardiovascular Monitoring
 - Scalability and Curse of Dimensionality
 Application 3: Gait Kinematics Estimation

C:H

Mode switch

Static Analysis;

Pessimistic

Mixed Criticality Real-Time OS

[RTCSA'21] Reserving Processors by Precise Scheduling of Mixed-Criticality Tasks.

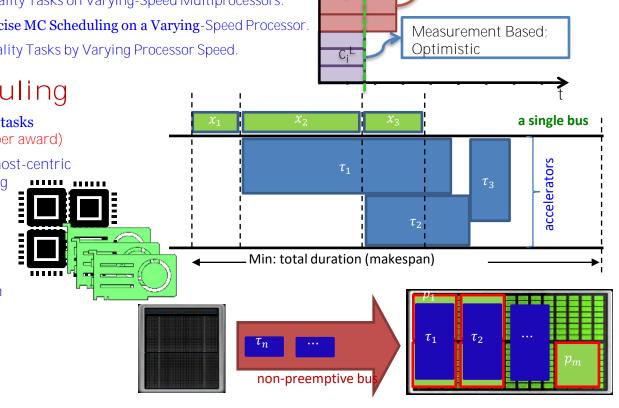
[RTNS'21] Precise Scheduling of Mixed-Criticality Tasks on Varying-Speed Multiprocessors.

[ICCAD'20] F2VD: Fluid Rates to VDs for Precise MC Scheduling on a Varying-Speed Processor.

[RTSS'18] Precise Scheduling of Mixed-Criticality Tasks by Varying Processor Speed.

CPU-GPU Co-Scheduling

[RTSS'19, TIME'21] MC scheduling of Gang tasks (Outstanding paper award, Best student paper award)


[RTAS 2020] Real-time scheduling upon a host-centric

acceleration architecture with data offloading

IDK-Cascades

[RTS 2024] Scheduling IDK classifiers with arbitrary dependences to minimize the expected time to successful classification

[ECRTS'25] Optimizing IDK Cascades for Time-Series Input Streams

Application 1: F1-Tenth Autonomous Racing

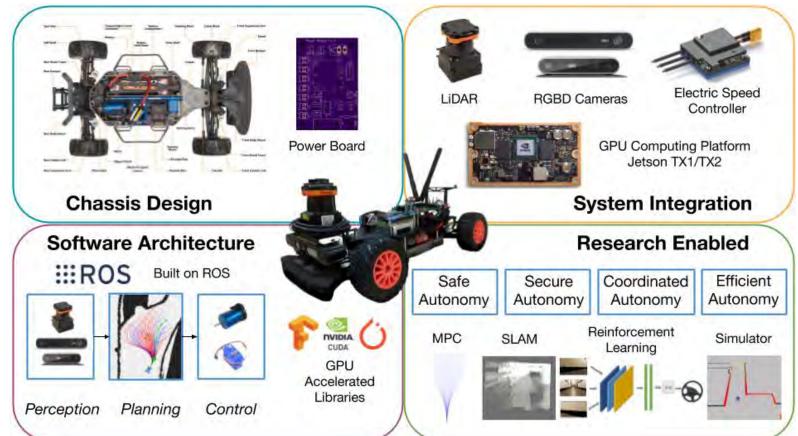


Image Source: linklab-uva

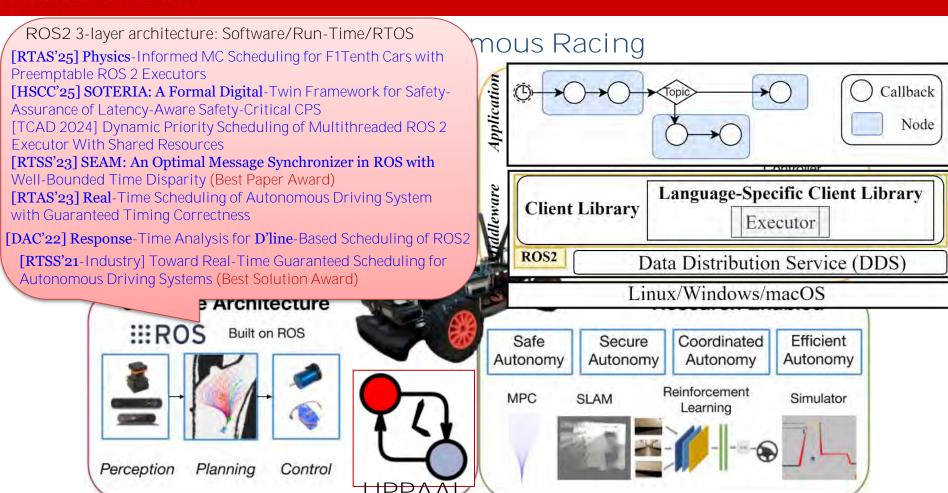
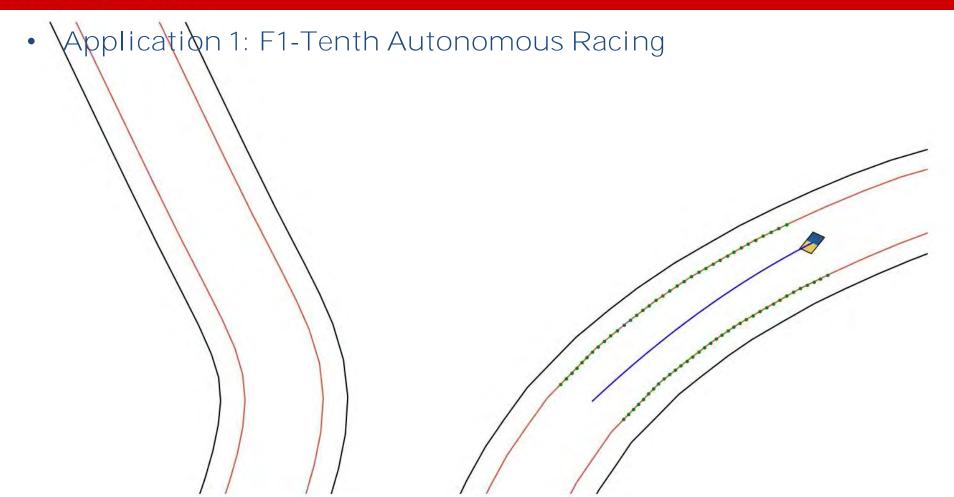
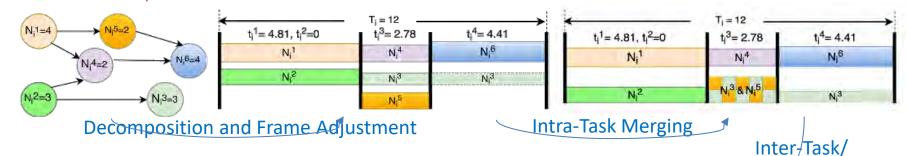
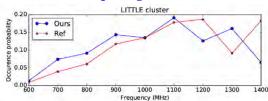




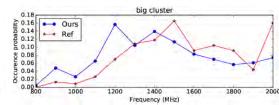
Image Source: linklab-uva

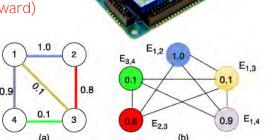
DAG/Graph-Based Task

Energy-efficient scheduling of DAG tasks

[ECRTS'17, TECS'18] Multi-core processors

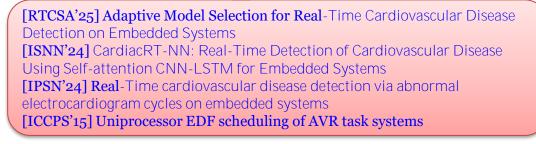

[RTAS'19, TPDS'20] Clustered multi-core processors


Response time and feasibility analysis


[RTSS'21] Calculating Worst-Case Response Time Bound for OpenMP Programs with Loop Structures.

[EMSOFT'20] Efficient Feasibility Analysis for Graph-based Real-Time Task Systems (Best paper award)

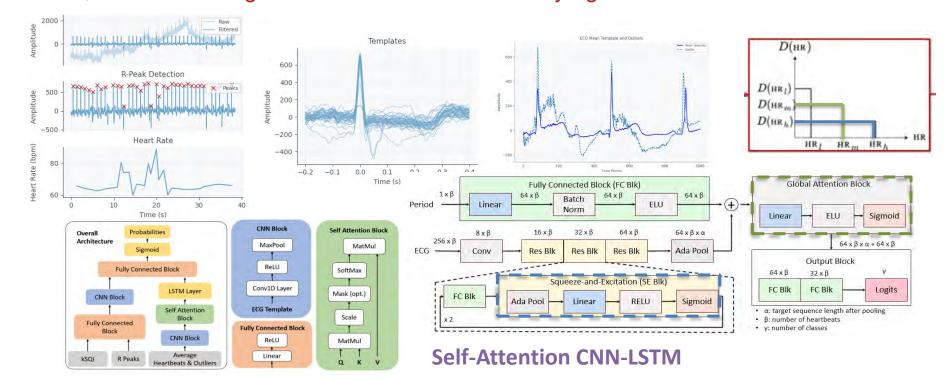
[DAC'20] On Computing Exact WCRT for DAG Task



Inter-Core Merging

Application 2: Real-time Cardiovascular Disease Detection on Embedded Devices Time Window R peaks Detection End users D(HR)Low Heart Rate (HR1) D(HR) D(HR. R-R Intervals Mid Heart Rate (HRm) $D(HR_h)$ Disease Classification HR HR Shift the time Model Abnormal Normal window based on last R peak for next High Heart Rate (HRh) Adaptively Adjust the Model iteration. Complexity based on heart rate (HR) **Decision Making**

RQ1: How to balance the accuracy and inference speed, while preserving the memory usage?


Heart Rate:

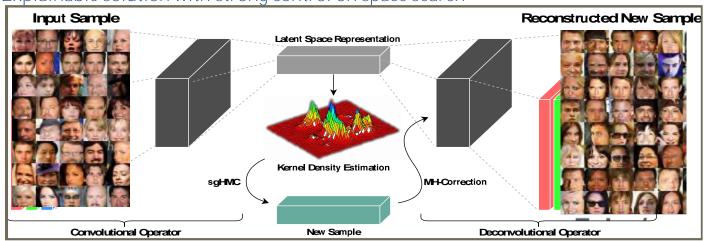
Heart Rate: Mid

Heart Rate: High

Application 2: Real-time Cardiovascular Disease Detection

RQ2: How to design highly accurate DL models for abnormality detection? **RQ3:** How to design a framework to handle varying heart rate conditions?

High Dimension and Low Sample Size (HDLSS) Settings

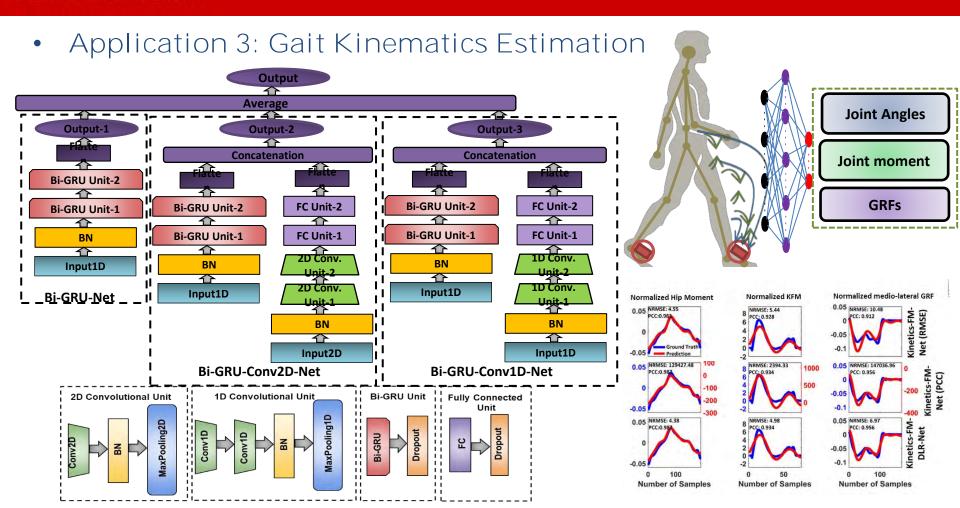

When the number of training samples is less than the dimension size of training sample, it can be treated as HDLSS settings.

- LDA: inverse covariance matrix ???
 (sparse regularization/ de-biased)
- Dataset Generation
 - Latent space explore for high quality sample generation
 - Estimated kernel density distribution
 - Explainable solution with strong control on space search

[ICDM'17] AWDA: An Adaptive Wishart Discriminant Analysis [IJCAI'18] De-Biasing Covariance-Regularized LDA [TNNLS'20] DRSDA: Lowering the Bound of Misclassification

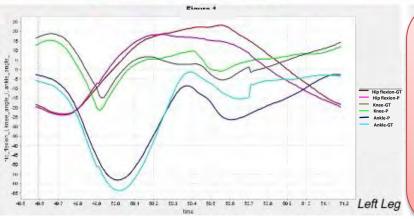
[TNNLS'20] DBSDA: Lowering the Bound of Misclassification Rate for Sparse LDA via Model Debiasing

[AAAI'19] SpHMC: Spectral Hamiltonian Monte Carlo



- Application 3: Gait Kinematics Estimation
 - Kinematics/joint angle
 - Disease progression Kinesiological health

Pathologic


3 Axes Accelerations 3 Axes **Angular Velocity**

Application 3: Gait Kinematics Estimation

[HICSS'24] Predicting Lower Extremity Joint Kinematics Using Multi-Modal Data in the Lab and Outdoor Environment [JBHI2023] Wearable Motion Capture: Reconstructing and Predicting 3D Human Poses from Wearable Sensors [JBHI2023] Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning approach [JBHI2023] DeepBBWAE-Net: A CNN-RNN Based Deep Super Learner for Estimating Lower Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors in Daily Living [Chase'22] Estimation of Hip, Knee, and Ankle Joint Moment Using a Single IMU Sensor on Foot Via Deep Learning

Thank You!

PhD Students and Postdocs

Dr. Jiang Bian, Baidu Research

Prof. Ashik Ahmed Bhuiyan, West Chester U

Prof. Federico Reghenzani, Politecnico di Milano

Dr. Sudharsan Vaidhun, Cummins

Dr. Seyed Iman Taheri, University of Memphis

Dr. Ashkan Farhangi

Dr. Md Sanzid Bin Hossain

Abdullah Al Arafat

Kurt Wilson

Yixin (Eason) Li

Yuhan Zhao

Collaborators

Kunal Agrawal, WUSTL Amro Awad, NC State U John Baugh, NC State U Sanjoy Baruah, WUSTL Hwan Choi, MAE, UCF Sajal Das, Missouri S&T Anil Gehi, UNC-CH Nan Guan, City U at HK Xin Han, Dalian U Tech Liting Hu, UCSC Nan Hua, Rosen, UCF

Arthur Huang, Rosen, UCF Denise Kay, Med., UCF Jing Li, NJIT Luca Santinelli, Airbus/BMW Abu Saifullah, Iowa State U Jinghao Sun, Dalian U Tech Haoyi Xiong, Baidu Research Wei Wang, UCLA Jun Wang, ECE, UCF Don Wunsch, Missouri S&T Kecheng Yang, Texas State U

Sponsors

