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Sensmg

Cyber-Physical Systems (CPS)

* Engineered systems that are built from, and depend upon, the Cyber

seamless integration of computation and physical components. Physical

Systems =

* Real-Time Systems
— both logical and temporal Correctness Controlqo

mputing
— Predictability: Provably guaranteed responses within strict time constraints (deadlines)
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Towards Efficient and Safe ML in Real-Time CPS

Sensmg « Key Challenges in RT-CPS Design and Analysis

Cyber \ . s
rPhysmaI — System Uncertainty & Reliability/Safety

Application 1: F1-Tenth Autonomous Racing

Systems
Control Eomputmg — Resource and Energy Efficiency
E 5 Application 2: Cardiovascular Monitoring
RealfTime Machine

Scheduling * ™  Learhing — Scalability and Curse of Dimensionality
E E Application 3: Gait Kinematics Estimation
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Mixed Criticality Real-Time OS A Mode switch

1
[RTCSA’21] Reserving Processors by Precise Scheduling of Mixed-Criticality Tasks. - Static Analysis;
Pessimistic
[RTNS’21] Precise Scheduling of Mixed-Criticality Tasks on Varying-Speed Multiprocessors. j
[ICCAD’20] F2VD: Fluid Rates to VDs for Precise MC Scheduling on a Varying-Speed Processor. Measurement Based:
[RTSS’18] Precise Scheduling of Mixed-Criticality Tasks by Varying Processor Speed. cr j Optimistic

CPU-GPU Co-Scheduling

[RTSS’19, TIME’21] MC scheduling of Gang tasks
(Outstanding paper award, Best student paper award)

[RTAS 2020] Real-time scheduling upon a host-centric
acceleration architecture with data offloading

IDK-Cascades

Y
accelerators

[RTS 2024] Scheduling IDK classifiers
with arbitrary dependences to minimize
the expected time to successful classification

[ECRTS’25] Optimizing IDK Cascades for
Time-Series Input Streams

non-preemptive bu




« Application 1: F1-Tenth Autonomous Racing

Image Source: linklab-uva



ROS2 3-layer architecture: Software/Run-Time/RTOS -
P ReEET _“mous Racing

[RTAS’25] Physics-Informed MC Scheduling for F1Tenth Cars with
Preemptable ROS 2 Executors

[HSCC’25] SOTERIA: A Formal Digital-Twin Framework for Safety-
Assurance of Latency-Aware Safety-Critical CPS

[TCAD 2024] Dynamic Priority Scheduling of Multithreaded ROS 2
Executor With Shared Resources

[RTSS’23] SEAM: An Optimal Message Synchronizer in ROS with
Well-Bounded Time Disparity (Best Paper Award)

[RTAS 23] Real-Time Scheduling of Autonomous Driving System
with Guaranteed Timing Correctness

[DAC’22] Response-Time Analysis for D’line-Based Scheduling of ROS2

[RTSS’21-Industry] Toward Real-Time Guaranteed Scheduling for
Autonomous Driving Systems (Best Solution Award)

U I-J I_JAA I_ Image Source: linklab-uva



« Application 1: F1-Tenth Autonomous Racing



« DAG/Graph-Based Task

o ) IntersTask/
 Energy-efficient scheduling of DAG tasks Inter-Cofe Merging

[ECRTS’17, TECS’18] Multi-core processors

Decompasition and Frame Adjustment ntra-Task Mergin j/
e

[RTAS’19, TPDS’20] Clustered multi-core processors

 Response time and feasibility analysis
[RTSS’21] Calculating Worst-Case Response Time Bound for OpenMP Programs with Loop Structures.
[EMSOFT’20] Efficient Feasibility Analysis for Graph-based Real-Time Task Systems (Best paper award)
[DAC’20] On Computing Exact WCRT for DAG Task



« Application 2: Real-time Cardiovascular
Disease Detection on Embedded Devices

RQ1: How to balance the accuracy and inference speed, while preserving the memory usage?

/[RTCSA’25] Adaptive Model Selection for Real-Time Cardiovascular Disease \
Detection on Embedded Systems

[ISNN’24] CardiacRT-NN: Real-Time Detection of Cardiovascular Disease

Using Self-attention CNN-LSTM for Embedded Systems

[IPSN’24] Real-Time cardiovascular disease detection via abnormal
electrocardiogram cycles on embedded systems Heart Rate: Heart Rate: Heart Rate:
QICCPS’15] Uniprocessor EDF scheduling of AVR task systems / Low Mid High




« Application 2: Real-time Cardiovascular Disease Detection

RQ2: How to design highly accurate DL models for abnormality detection?
RQ3: How to design a framework to handle varying heart rate conditions?

Self-Attention CNN-LSTM



« LDA: Inverse covariance matrix ??? [ICDM’17] AWDA: An Adaptive Wishart Discriminant Analysis
[IJCAT’18] De-Biasing Covariance-Regularized LDA

(S parse reg u Iarl zatl On/ de'b I ased) [TNNLS’20] DBSDA: Lowering the Bound of Misclassification
° Dataset Generation Rate for Sparse LDA via Model Debiasing
« Latent space explore for high quality sample generation [AAAT'19] SpHMC: Spectral
« Estimated kernel density distribution Hamiltonian Monte Carlo

« Explainable solution with strong control on space search

Kernel Density Estimation
sgHVC
A
.

Y A
Convolutional Operator New Sample Deconvolutional Operator




« Application 3: Gait Kinematics Estimation
« Kinematics/joint angle

 Disease progression
Kinesiological health

Pathologic

&
Amputated
Gait

3 Axes
Accelerations

3 Axes

Angular Velocity ~$10

Compact Size

Light Weight



« Application 3: Gait Kinematics Estimation

___________________
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~ Joint moment
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Application 3: Gait Kinematics Estimation

ﬁIICSS’24] Predicting Lower Extremity Joint Kinematics Using \
Multi-Modal Data in the Lab and Outdoor Environment
[JBHI12023] Wearable Motion Capture: Reconstructing and
Predicting 3D Human Poses from Wearable Sensors
—wme | [JBHI2023] Estimation of Lower Extremity Joint Moments and 3D
= Ground Reaction Forces Using IMU Sensors in Multiple Walking
Conditions: A Deep Learning approach
[JBHI2023] DeepBBWAE-Net: A CNN-RNN Based Deep Super
Learner for Estimating Lower Extremity Sagittal Plane Joint
Kinematics Using Shoe-Mounted IMU Sensors in Daily Living
\[Chase’22] Estimation of Hip, Knee, and Ankle Joint Moment Usinj

a Single IMU Sensor on Foot Via Deep Learning
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