
PROCEEDINGS OF

RTAutoSec 2025

Second Workshop on

Real-Time Autonomous Systems Security

July 8th, 2025 in Brussels, Belgium

in conjunction with

The 37th Euromicro Conference on Real-Time Systems

July 8–11, 2025, Brussels, Belgium

Editors:
Monowar Hasan
Mohammad Hamad

https://www.ecrts.org/2025/

Contents

Message from the Chairs 3

Keynote Talk 5

Invited Talk 1 19

Invited Talk 2 43

Session: RT-AutoSec Technical Session 57
Defending Event-Triggered Systems against Out-of-Envelope Environments

Marcus Völp, Mohammad Ibrahim Alkoudsi, Azin Bayrami Asl,Kristin Kruger, Julio Mendonc,
Gerhard Fohler . 57

The copyright of the individual articles remains with their authors.

Message from the Chairs

Welcome to RT-AutoSec25, the second Workshop on Real-Time Autonomous Systems Security. We invite you to
join us for engaging discussions and the exchange of ideas on system-level challenges in real-time and embedded
autonomous systems. This year, RT-AutoSec is being held as a half-day workshop. We are excited to feature
four presentations, including a keynote talk from Dr. Friedrich Wiemer of Robert Bosch GmbH, representing the
perspective of industry on this critical topic.

We would like to extend our heartfelt thanks to you—the audience—for your participation. Your thoughtful
questions and enthusiastic engagement are what continue to shape and strengthen RT-AutoSec. We hope you enjoy
the workshop!

The Workshop Chairs,

Monowar Hasan
Washington State University, USA

Mohammad Hamad
Technical University of Munich, Germany

3

Keynote Talk

Foundational Security for Your Real-Time Autonomous System Networks

Dr. Friedrich Wiemer
Senior Security Expert, Robert Bosch GmbH

Real-time autonomous systems, ranging from vehicles to robots and industrial control systems, rely on robust and
secure communication networks. This keynote explores current trends in securing these networks at the foundational
Layer 2, addressing both modern and legacy protocols. We discuss the application of MACsec for Automotive
Ethernet and introduce CANsec, a novel security solution designed for CAN XL with potential for adaptation
to CAN FD. While these advances offer significant improvements, challenges remain, particularly in developing
efficient group key agreement and authentication protocols suitable for resource-constrained real-time systems. This
presentation highlights these open problems and motivates future research towards building robust, secure, and
real-time capable communication networks for the next generation of autonomous systems.

Dr. Friedrich Wiemer is a Senior Security Expert at Bosch, specializing in secure communication for in-vehicle
networks. His work focuses on driving pre-development activities, architectural design, and innovation in cross-
domain ECUs. He contributes to several standardization efforts, including IEEE 802.1AE, OA TC17, and CiA 613-2.
Friedrich holds a PhD in Mathematics from Ruhr-Universität Bochum, where his research focused on symmetric
cryptography. He is also the CEO and co-founder of cryptosolutions GmbH and has published numerous papers on
cryptography and security at leading conferences and journals.

5

RTAutoSec

Foundational Security for Your Real-Time

Autonomous System Network
Friedrich Wiemer

Robert Bosch GmbH

XC-CE/ECS1

July 8th, 2025

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Disadvantages

▪ Vehicle consists of weakly coupled subsystems (domains)

▪ Deterministic communications between systems only

exceptional with extra effort

▪ Specific individual solutions and software partitioning

▪ Limited systematic communication network design

ECU

ECU

ECU

ECU

ECU

Domain ECU

Domain ECU

Domain ECU

Advantages

▪ One unified network with common time zone

▪ Synchronous actions in multiple ECUs with

accuracy < 200 ns at vehicle level

▪ Systematic communication network design

with simulation and validation

In-Vehicle Architectures
Introduction

Zonal-based Architecture

Ethernet CAN LIN Ethernet TSN/SDN CAN LIN

Domain-based Architecture

Ethernet

TSN/SDN

VC

VC

Zone

ZoneZone

TSN Time Sensitive Network, SDN Software Defined Network, VC Vehicle Computer

2

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Foundational requirements for Real-Time Autonomous Systems
Introduction

3

Hard real-time behavior Safety critical Immediate start up Updateability

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Introduction
Why protect communication

4

▪ Attackers exploit most accessible parts

▪ Exploit chain:

− Insufficient separation on architectural & network level

− Insufficient authentication of messages

▪ Allows attacker to inject & spoof messages

→ start engine / open doors → steal car

▪ Holistic security concept should

− Separate communication with firewalls

− Authenticate messages with security protocol

− and more

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Introduction
How to protect communication

▪ Mechanisms for secure in-vehicle communication:

− SecOC (CAN, FR, ETH),

− (D)TLS (ETH) for TCP (UDP)

− IPsec (ETH) for IP,

− MACsec (ETH) for MAC / LLC

− CANsec (CAN) on Layer 2

5

Security protocols implemented in HW (PHY or MAC) gives us additional crypto performance.

TLS

(D)TLS (TCP / UDP)

IPsec (IP)

MACsec (MAC)

Standardized / Custom Implementations

Confidentiality / Authenticity

Communication and security protocols

SecOC

CANsec (DLL)

App.

Transport

Network

Link

Physical

CAN

world

ETH

world

▪ Security protocols typically consists of:

− Authentication

− Key Agreement

− Data protection

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Introduction
Communication Architecture

6

Three consecutive phases

▪ Authentication of peers

▪ Session key negotiation between peers

▪ Secure communication

Control plane

Data plane

Alice Bob

Data plane Data plane

Control plane Control plane

Key Agreement

Authentication

MACsec / CANsec

ti
m

e

Long-Term KeyLong-Term Key

Session KeySession Key

Connectivity Association

Alice
CharlieBob

David
Long

Term

Key 1

Long Term Key 2

Connectivity Associations

MACsec

Data plane Data plane

Key Agreement

Authentication

MACsec

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

High-Level View
MACsec

8

MACsec SecY

Secure DataSecTag ICVDestination Address Source Address

Data FieldEtherTypeDestination AddressInput

Output

authenticated authenticated, optionally encrypted

Source Address

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Automotive MACsec relevant standards
MACsec

IEEE 802.1AE IEEE 802.1AEbw IEEE 802.1AE OA TC17 AUTOSAR

Initial MACsec

standard

Extension adding 64bit

packet numbers (XPN

modes)

Updated MACsec

standard, incorporating

previous extensions

Automotive profile

for MKA finalized,

published begin 2025

Updates to MACsec

and MKA

components

IEEE 802.1AEbn IEEE 802.1AEcg AUTOSAR R22-11 OA TC17 OA TC17

Extension adding

256bit crypto

Extension adding

Ethernet Data

Encryption devices

Requirements on

MACsec &

Specification of MKA

Automotive profile for

MKA on shared media

2006 2011 2013 2017 2018 2022 2024 2025
2026

(?)

9

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Open Alliance TC17 Automotive Profile for MACsec
MACsec

Kick Off TC17 Kick Off MKA Questionnaire v1

AutoMKA Spec

Release AutoMACsec Spec v2

First meeting of new

TC17

Work of MKA subgroup

started

Voted on results of first

questionnaire

MKA specification v1.0

released on 26.2.2025

AutoMACsec for shared

medium draft

MACsec Plug fest MKA Plug fest Spec Draft MKA

AutoMACsec Spec

Release

AutoMKA Spec

Draft 10B-T1S

At AEC in Munich,

demonstrating “interop”

At AEC in Munich,

demonstrating “AutoMKA”

Automotive profile for

“AutoMKA” for switched

networks

AutoMACsec

specification v1.0 on

100BASE-T1 and higher

speed links released on

16.5.2025

Automotive profile for

MKA on shared media

Oct.

2022

Mar

2023

Sep

2023

Mar

2024

May

2024

Oct

2024

Feb

2025

May

2025

Dec

2025
2026 Educated Guess

10

CANsec

Data plane Data plane

Key Agreement

Authentication

CANsec

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Timeline
CANsec

CAN in Automation

(CiA)
CiA CiA Bosch

CiA and

industry partners

First CANsec meeting,

starting TF to specify

CANsec in CiA 613-2.

Lead by RB

Started discussion on

key agreement

Discussed many

improvements over

MACsec

Restarted focused work

“back to the roots” w/

new strategy

FDAL

Enabling CANsec and

tunneling any protocol

on CAN FD

CANsec plug fest and

specification validation

CiA CiA CiA & OA TC17 Autosar CiA

Initial work with longer

breaks.

Establish basic strategy:

mimic MACsec

Got traction due to

increased RB & IFX

involvement

Liaison with OA for joint

solution “AutoMKA on

Shared Medium”

Kicked-off AR concept

for CANsec, concept-

owner @ ETAS

Plan: have draft concept

ready by end of the year

Target: finish CiA 613-2

CANsec spec until end

of the year

2020 2022till 2022 2023 2024 2025
2025

2026

Supporters

for new strategy: Reuse MACsec

Bosch and Vector

will implement a

CANsec PoC

ETAS will

implement CANsec

as a SW product

At least one big

COEM will

introduce CAN XL

12

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

High-Level View
MACsec

13

Source Address

MACsec SecY

Secure DataSecTag ICVDestination Address Source Address

Data FieldEtherTypeDestination AddressInput

Output

authenticated authenticated, optionally encrypted

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

High-Level View
CANsec

14

CAN Data Field

Secure DataCANsec PCI ICV

CAN Data Field

CAN LLC fields

CAN LLC fields

Source Address

MACsec SecY

Secure DataSecTag ICV

Data FieldEtherTypeDestination Address

update DLC (data field length)

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

C
A

N
s

e
c

 S
e

c
Y

High-Level View
CANsec

15

CAN Data Field

Secure DataCANsec PCI ICV

CAN Data Field

CAN LLC fields

CAN LLC fields

Source Address

MACsec SecY

Secure DataSecTag ICV

Data FieldEtherType

v
ir
tu

a
l
E

T
H

 f
ra

m
eDestination Address

Mapping2()update DLC (data field length)

Mapping1()

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

CANsec for FD
FD Adaptation Layer (FDAL)

16

Existing: CAN XL solution

CiA 613-2

CANsec

CiA 613-3

Fragment.

anything

L
a

y
e

r
2

CiA 611-1

Tunneling

CiA 613-2

CANsec

CiA 613-3

Fragment.

anything

CiA 611-1

Tunneling

L
a

y
e

r
x anything

anythingXL

XL LLC

XL MAC

XL LLC

XL MAC

L
a

y
e

r
1

Physical

Layer

Physical

Layer

anyXL thi ngXL XL

anyXL thi ngXL XL

FD CANsec

FDAL:

Fragment.

anything

L
a

y
e

r
2

FDAL:

Tunneling

FD CANsec

FDAL:

Fragment.

anything

FDAL:

Tunneling

L
a

y
e

r
x anything

anythingFDAL

any thi ng

FD LLC

FD MAC

FD LLC

FD MAC

L
a

y
e

r
1

Physical

Layer

Physical

Layer

any thi ng

Key property: Unified/Similar FD and XL solution

− FDAL Tunneling is like CiA 611-1 (CAN XL Tunneling)

− FDAL Fragment. is like CiA 613-3 (CAN XL Fragment.)

− FD CANsec is like CiA 613-2 (CAN XL CANsec)

New: enable “anything over FD”

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

FDAL Example: FD tunneling
CANsec for FD

17

FD 64 byte

FD 64 byteeID eDLCeLSDU eSDT

LLC

MAC

Higher

Layer

L
a
y
e
r

2
L
a
y
e
r

X

CANsec

(optional)

FDAL

Tunneling

FD 64 byteeID eDLCeSDT SecPCI ICVeLSDU

FDAL

Fragmentation
ID DLCLSDU FData (frag1)FragPCI

ID DLCLSDU FragPCI

eData Field
eCS

eCS

FD + CANsec

FData (frag2)

Data Field

ID

Field Name Description

eSDT
Extended

SDU Type
The payload type

eCS
Extended

CANsec
Whether CANsec was applied

First

Frame
First Frame

If this is the first fragment of an

extended LSDU

Last

Frame
Last Frame

If this is the last fragment of an

extended LSDU

V Version FDAL version

VDB
Valid Data

Bytes

To detect padding bytes in the

CAN frame

FCNT
Fragment

Counter
Detects missing frames

FData
Fragment

Data

The actual fragmented

payload

Byte 0

eSDT

e
C

S

F
F

L
F V VDB

res. FCNT

FData

FDAL Frag. PDU

Byte 1

Key Agreement for MACsec & CANsec

Control plane Control plane

Key Agreement

Authentication

Session KeySession Key

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

MACsec Key Agreement (MKA)
Overview

19

BobAlice

Member Identifier Message Number

42 1
Potential Peer List

1337; 1

Member Identifier Message Number

1337 2
Live Peer List

42; 1

Member Identifier Message Number

42 2
Live Peer List

1337; 2

Member Identifier Message Number

1
Key Server Key Server Priority

true 200

1337

Key Server Key Server Priority

true 100

Key Server Key Server Priority

false 200

Distributed SAK SAK Use

…

Member Identifier Message Number

1337 3
Live Peer List

42; 2
SAK Use

…

MI = 42MI = 1337

L
iv

e
lin

e
s
s
 D

e
te

rm
in

a
tio

n
K

e
y
 S

e
v
e
r

E
le

c
ti
o
n

S
A

K
 D

is
tr

ib
u
ti
o
n

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

MACsec Key Agreement (MKA)
Automotive MKA for switched Ethernet

20

Pre-Selected Key Server

Immediate Responses

and Reset Detection

Hello Time Ramp Up

https://opensig.org/wp-content/uploads/2025/

03/OA_MACsec_Automotive-MKA-v1.pdf

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

MACsec Key Agreement (MKA)
Automotive MKA for shared medium

▪ Open Alliance TC17 works on proposals for MKAv4

− Optimized for shared medium / groups

▪ Already supported by MKA, but

− AutoMKA optimizations lead to high bus load for

bigger groups

− Time-to-Key-Agreement (TTKA) is not good enough

▪ Currently two suggestions in discussion

▪ Timeline: submit to IEEE in July or November

21

▪ Proposal 1: Nonce Spaces

− Extends Peer List Parameter Set

− Key Server manages nodes nonce space

− Nonce space is included in IV derivation

Nonce Space

Nonce Space

Authentication

Control plane Control plane

Key Agreement

Authentication Long Term KeyLong Term Key

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Extensible Authentication Protocol
Authentication

23

Supplicant Authenticator
Authentication

Server

RadiusEAPoL

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Authentication

EAP-TLS

▪ Best security properties

▪ Complex

▪ Slow

▪ Additional nodes (authentication server)

▪ Additional crypto (asymmetric & certificates)

Pre-Shared-Keys

▪ Requires trusted environment for setup

▪ Most simple solution

▪ OEMs have proprietary solutions in place for

key distribution in field (from SecOC)

▪ No additional crypto required

▪ Replacing ECUs is not straight forward

▪ No standardized way for pre-sharing-keys

24

Pre-shared keys look like 80’s techn. – but IVNs are engineered networks and thus much simpler than complex, dynamic IT networks.

• Meet very tight timing constraints for TTKA

• Efficiently implementable

• Simple state-machine for HW-only impl.

• based on symmetric crypto

Efficient Group Key Agreements

• Efficiently implementable in constrained devices

• Optimized for engineered networks

• Less dynamic

• More known static configuration

Efficient Authentication Protocols

• Efficiently inject keys in SW-less devices

• Example: MACsec on SW-less edge node

• How to get keys in there?

• Standardized approach?

Efficient Key Injection Methods

Open Problems

XC-CE/ECS1 | 25.06.2025

© Robert Bosch GmbH 2025. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Questions?
Wrap up

“Secure, or not secure,

that is the question”
—freely adapted from Hamlet

26

Invited Talk

Dynamic access rights management via trust of mutable attributes in realtime systems

Prof. Andrea Saracino
Scuola Superiore Sant’Anna Pisa

Abstract: This talk will discuss an application of the usage control paradigm to real time autonomous systems,
discussing the relevance of real time scheduling for access control decision, and the effect on real time systems of
delay introduced by policy evaluation procedures. This issue is exacerbated when decision depends from attributes
whose attribute managers are not reliable, or might be unavailable at times. The talk will present a use case on a
V2V application, discussing distributed trust and attribute freshness as probabilistic components of the risk of taking
a decision when attribute values cannot be retrieved at real time.

19

Dynamic access
rights management
via trust of mutable
attributes in real-
time systems
Andrea Saracino, Scuola Superiore
Sant’Anna Pisa

RTAutoSec, 8 July 2025,
Brussels, Belgium

Autonomous Systems and Access Rights

V2X communication

• Possibility to control remotily car
functionalities.

• Management of priorities for
commands coming from
different entities

Controlling Access Rights

• Using formal methods to assess if a subject can/cannot access a
resource given a specific context.

Subject Admin

Policy

Resource

Wants to access

Defines

Protects

Controlling Access Rights

• Using formal methods to assess if a subject can/cannot access a
resource given a specific context.

Subject Admin

Policy

Resource

Request access

Defines

Access Control
System

Evaluates

Grant/Deny access

Attacker model

• Honest but curious

• If the system allows subject to get more privileges, he will take them

Subject

Attribute Based Access Control

• Several Access Control models
• What is used to take the PERMIT/DENY decision?

• Attribute Based Access Control (ABAC)
• Attributes:

• Subject
• Role
• Age
• Reputation

• Resource
• Recorded accesses
• Owner

• Context
• Temperature
• Time

RBAC

BLP
IBAC/ACL

ABAC

Relevance of real time to
access control
• Decision on access has to be taken before specific

deadlines
• Degradation of user experience (overhead)
• Decision arrives when not useful anymore

• Missed deadline

• Decision time:
• Time needed to assess a subject request against a

policy and take a decision.
• Might not be feasible depending on real time

requirements of the system

Access Control

• Once the Access to a resource is
granted it cannot be revoked.

• Resource is released to the
subject until he voluntarily close
the access session.

• Designed for instant operations
• Open a lock
• Money transfer
• Braking

Lasting Operations
• Turning on the A/C

• Streaming a content

• Staying logged in a terminal

• Allowing fuel engine transmission (full hybrid car)

• What if access conditions change?

Mutable Attributes

• Attributes whose value changes over time
• Temperature
• Geolocation
• Number of people in room
• Number of cars in a lane
• …

• What if decision was PERMIT under a certain condition and the
access session is still open when mutable attributes change their
value?

Usage Control

• Introduces the possibility to REVOKE a
granted access when a session evaluated to
PERMIT has a re-evaluation to DENY

• Continuous re-evaluation as mutable
attribute change their value

• Retaining control on the resource

The Usage Control Framework
• Policy Enforcement Point [PEP]: Manages

the access to the resource being able to
grant access and block access to it

• Policy Decision Point [PDP]: Evaluates
policy VS request and make decision

• Attribute Manager [AM]: External source of
attribute values.

• Policy Information Point [PIP]:
Retrieves/updates attribute values on Ams

• Policy Administration Point [PAP/PS]:
Stores and retrieves policies

• Session Manager [SM]: keeps track of
active access sessions.

• Context Handler [CH]: Switches messages
among other components.

PEP CH PIP PAP SM PDP

TryAccess(Request, ID)
Request

Policy

Attribute request

Attribute values

Full Request

Decision and Context

Decision and Context

PEP CH PIP PAP SM PDP

TryAccess(Request, ID)
Request

Policy

Attribute request

Attribute values

Full Request

PERMIT

PERMIT, 𝑆𝑖𝑑

𝑆𝑖𝑑

Request,Policy, Decision

PEP CH PIP PAP SM PDP

StartAccess()

Policy, Request

Attributes subscribe

Attribute values

Full Request

PERMIT

𝑆𝑖𝑑

Decision

𝑆𝑖𝑑

PEP CH PIP PAP SM PDP

Attribute changed

Attribute updated value

Policies, Requests ,𝑆𝑖𝑑

Attribute request

Attribute values

Full Request

Decision

PEP CH PIP PAP SM PDP

Attribute changed

Attribute updated value

Policies, Requests ,𝑆𝑖𝑑

Attribute request

Attribute values

Full Request

DENY

RevokeAccess(), 𝑆𝑖𝑑

𝑆𝑖𝑑

Decision,𝑆𝑖𝑑

EndAccess(𝑆𝑖𝑑)
𝑆𝑖𝑑,END

Reliability of mutable attributes value

• Lack of subscription possibility
• Polling interval delay
• Attribute Manager not available

• Missing connection
• Excessive workload
• DoS attacks

• What happens if attribute value cannot be retrieved?
• Evaluation is Indeterminate:

• Request cannot be evaluated

Measuring Performance
of Access Control
• Delay introduced by the access request evaluation: Overhead

• Different factors:
• Policy evaluation
• Attribute retrieval
• Network time
• Request composition

• Effect on user experience:
• Access Delay: Time where the client had the right to access

the resource but is denied access to it because of needed
evaluation.

Access Request Access Granted

Overhead

Accessible Time

End Access

Access Time

Measuring Performance
of Usage Control
• Inconsistency Time: amount of time in which the client

would have not the right to access a specific resource,
but he is still accessing it.

• Await for revocation.

• Delay introduced by different elements:
• Attribute notification time
• Policy reevaluation time
• Session retrieval time
• Network communication

Access Request Access Granted

Overhead

Accessible Time
Access Time

Attribute
Change Revoke

Inconsistency Time

Handling missing attribute values

• Using last available value to take the decision
• Caching

• Reliability depending from freshness of the attribute
• More time passed since last caching, higher the probability the value changed.

• Defining a threshold for expected freshness depending from the
use case

Probability that value changed

Expected Freshness

How to increase freshness?

• Last caching time: last evaluation on attribute done by UCS
• Periodic polling

• Consumes resources
• Does not work if AM not reachable

• Relying on more agents to cache attribute values and their
freshness.

Proposed Approach

• Collaborative, distributed and decentralized
model where different Usage Control
systems cooperate to increase the
availability of attributes provided by faulty
Attribute Managers

• Maps well IoT Systems

• Does not require a centralized root of trust

• Can be used in multi-stakeholder scenarios
• Could be used to map V2X systems

Reference
Scenario
• Fuel engine should be

activated only if pollution
level is below a threshold

• Each car has his own UCS
instance

• Company 1 and 2 are
competitors

• Fuel engine is considered
more convenient for the
company (less refilling
time)

Reference
Scenario
• Communication

happens via mesh
network among cars –
V2V

• Car can read pollution
sensor via Bluetooth if in
range

• Car of Company 1 and
Company 2 cache
attribute values

Workflow [1]

Workflow [2]

Workflow [3]

Malicious Reports

Malicious Reports

• Maliciously postponing the usage of fuel engine
• Causing a misbehavior because of a false report

• Reputation tampering

• Getting unfair competitive advantage

Solutions

• Majority voting
• Using more than one report

• Root of trust
• Not present in distributed systems

• Distributed trust mechanism
• Does not need a root of trust
• Pairs well with majority voting

Dynamic Reputation

• Belief: The communicated reading from an agent has been verified
as correct

• Disbelief: The communicated reading from an agent has been
verified as non-correct

• Uncertainty: The communicated reading from an agent cannot be
verified

Reputation Update

Reputation value
storage and retrieval
• Peer to Peer Distributed Hash Table

infrastructure

• Each agent can provide value for a specific
pollution reading based on location

• Verified with readings of other agents with
similar location

• Majority voting

• Reputation update
• Agents cannot provide reading if reputation is below

threshold

Risk

Reading Reputation Reading Freshness

Usage Risk

Validity

Experimental Evaluation

Simulation testbed
with 100 agents.

Varying percentage
of malicious users

providing fake
readings

Hypothesis of
colluding

malicious users

Experimental Evaluation

Experimental Evaluation

Conclusion

Discussed
application of

usage control in
distributed

systems with
distributed
reputation

Discussed
concept of

freshness and risk
of decision

Presented model
based on

distributed
dynamic

reputation for
managing

malicious users

Demonstrated
effectiveness

through
experimental

results

Thank You for Your Attention

andrea.saracino@santannapisa.it

Acknowledgement

• This presentation is considered part of
the dissemination activities for the
Horizon Europe MEDIATE project GA
101168465

Invited Talk

Secure Time Synchronization in Packet-Switched Networks

M. Sc. Andreas Finkenzeller
Technical University of Munich

Abstract: Time synchronization in packet-switched networks has become essential for many modern applications
and technologies, including Smart Grids, Time-Sensitive Networking (TSN), and 5G networks. Along with the
required microsecond-level accuracy, reliability and security are of ever greater concern. While the Precision Time
Protocol (PTP) can satisfy the accuracy requirement in trusted environments, it becomes unreliable in the presence
of specific cyberattacks. The vulnerability arises from the protocol’s susceptibility to time delay attacks, which
deliberately introduce packet delays for critical PTP event messages. This enables attackers to manipulate targeted
clocks without detection. Various presented attack strategies and a related reference implementation with additional
evaluation on a hardware testbed demonstrate the attack feasibility. While several mitigation approaches exist, they
are not optimal and cannot sufficiently mitigate sophisticated delay attacks. A newly presented method to detect and
counteract delay attacks against PTP is based on cyclic path asymmetry measurements over redundant paths. In
addition to the underlying theoretical concepts, the talk presents the PTPsec protocol as an extension of the latest
IEEE 1588-2019 standard to secure the conventional PTP protocol. A complementary implementation and related
evaluation results emphasize the effectiveness of the proposed solution. The talk concludes with a perspective on
open research topics to further improve secure time synchronization over packet-switched networks.

43

Professorship for Embedded Systems and Internet of Things
TUM School of Computation, Information and Technology
Technical University of Munich

Secure Time Synchronization in Packet-Switched Networks

M. Sc. Andreas Finkenzeller

Brussels, 8th July 2025

Motivation

Smart Grid

Finance

Industry 4.0

TSN

5G Networks

Time Synchronization

3Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

Time Synchronization

4Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

Precision Time Protocol (IEEE 1588)

5Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

▪ Four timestamps: �1, �2, �3, �4

▪ Assumption: �𝑀𝑆 = �𝑆𝑀

▪ Clock offset

𝜃 =
�2 − �1 − �4 − �3

2

▪ Path delay

� =
�2 − �1 + �4 − �3

2

Time Delay Attack

6Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

▪ Assumption: �𝑀𝑆 = �𝑆𝑀

▪ With 𝜖1 ≠ 𝜖2, assumption breaks

▪ Clock offset

𝜃 =
�2 − �1 − �4 − �3

2
−

ϵ1 − ϵ2

2

▪ Path delay

� =
�2 − �1 + �4 − �3

2
−

ϵ1 + ϵ2

2

F
lo

o
d

in
g

L
in

k
 S

p
e
e
d

M
it

M

C
o

rr
e

c
ti

o
n

 F
ie

ld

Attack Strategies

7Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

[1] “Feasible Time Delay Attacks Against the Precision Time Protocol”, Finkenzeller et al., Globecom 2022

Attack Implementation

8Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

[1] “Feasible Time Delay Attacks Against the Precision Time Protocol”, Finkenzeller et al., Globecom 2022

Attack Evaluation

9Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

Flooding Link Speed MitM

[1] “Feasible Time Delay Attacks Against the Precision Time Protocol”, Finkenzeller et al., Globecom 2022

F
lo

o
d

in
g

L
in

k
 S

p
e
e
d

M
it

M

C
o

rr
e

c
ti

o
n

 F
ie

ld
Attack Strategies

10Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

High Risk Medium Risk Very High Risk Medium Risk

[1] “Feasible Time Delay Attacks Against the Precision Time Protocol”, Finkenzeller et al., Globecom 2022

T
h

re
s
h

o
ld ▪Decision Metric

▪Continuous

Monitoring

▪Static or Dynamic

G
u

a
rd ▪Special Device

▪Monitor PTP

messages

▪Compare to

reference clock

R
e
d

u
n

d
a

n
c
y ▪Alternative Paths

▪Fastest Message

▪Random Selection

Mitigation Techniques

11Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

Simple

Threshold Choice

Dynamic Solution

Selective Attacks

Effective

Not well explored

▪ One link is not sufficient

▪ 𝛼𝑒0
= 𝑅𝑇𝑇𝑒0,𝑒1

− 𝑅𝑇𝑇𝑒1,𝑒0
= (�0

++�1
−) − (�0

−+�1
+)

= (�0
+ − �0

−) if �1
− = �1

+

▪ At least two links for unidirectional delay

▪ Redundant link must have symmetric link delay

At least one symmetric link

required for analysis

Asymmetry Analysis

12Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

M S
�0

𝑅𝑇𝑇𝑒0,𝑒0

𝑅𝑇𝑇𝑒1,𝑒0

�0

�1

𝑅𝑇𝑇𝑒0,𝑒1

M S

[2] “PTPsec: Securing the Precision Time Protocol Against Time Delay Attacks Using Cyclic Path Asymmetry Analysis”, Finkenzeller et al., Infocom 2024

▪ 𝛼𝑃0

(1)
= 𝑅𝑇𝑇𝑃0,𝑃1

− 𝑅𝑇𝑇𝑃1,𝑃0
= (𝑃0

++𝑃1
−) − (𝑃0

−+𝑃1
+)

Asymmetry Analysis

13Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

𝑃0

𝑅𝑇𝑇𝑃1,𝑃0

𝑃1

𝑃2

M

S

[2] “PTPsec: Securing the Precision Time Protocol Against Time Delay Attacks Using Cyclic Path Asymmetry Analysis”, Finkenzeller et al., Infocom 2024

▪ 𝛼𝑃0

(1)
= 𝑅𝑇𝑇𝑃0,𝑃1

− 𝑅𝑇𝑇𝑃1,𝑃0
= (𝑃0

++𝑃1
−) − (𝑃0

−+𝑃1
+)

▪ 𝛼𝑃0

(2)
= 𝑅𝑇𝑇𝑃0,𝑃2

− 𝑅𝑇𝑇𝑃2,𝑃0
= (𝑃0

++𝑃2
−) − (𝑃0

−+𝑃2
+)

▪ 𝛼𝑃0
= 𝛼𝑃0

(1)
= 𝛼𝑃0

(2)

All symmetric paths lead to similar

estimates for 𝜶𝑷𝟎

Asymmetry Analysis

14Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

𝑃0

𝑃1

𝑃2

M

S

𝑅𝑇𝑇𝑃2,𝑃0

[2] “PTPsec: Securing the Precision Time Protocol Against Time Delay Attacks Using Cyclic Path Asymmetry Analysis”, Finkenzeller et al., Infocom 2024

Attack Detection & Mitigation

15Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

▪ Attack Detection

���𝑎𝑦_𝑎��𝑎𝑐𝑘 ← ቊ𝑇𝑟��, ∃𝛼 𝑖 ≠ 0, 𝑖 ∈ 1, 𝑛
𝐹𝑎���, ��ℎ�𝑟𝑤𝑖��

▪ Attack Mitigation

𝜃𝑟𝑒𝑐𝑡 = 𝜃𝑟𝑒𝑝 −
𝛼𝑃0

2

𝜃𝑟𝑒𝑝 reported clock offset

𝜃𝑟𝑒𝑐𝑡 rectified clock offset

𝑃0

𝑃1

𝑃2

M

S

𝛼(1) = 𝑅𝑇𝑇𝑃0,𝑃1
− 𝑅𝑇𝑇𝑃1,𝑃0

𝛼(2) = 𝑅𝑇𝑇𝑃0,𝑃2
− 𝑅𝑇𝑇𝑃2,𝑃0

𝛼𝑃0
= 𝛼(1) = 𝛼(2)

[2] “PTPsec: Securing the Precision Time Protocol Against Time Delay Attacks Using Cyclic Path Asymmetry Analysis”, Finkenzeller et al., Infocom 2024

PTPsec

16Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

Meas

𝑃0

𝑃1

M

TC

S

�1 �2

�𝑚1
�𝑚2

Sync

▪ Two new packet types (Meas, Meas_Fup)

▪ Measurements entangled with PTP

𝑅𝑇𝑇𝑃0,𝑃𝑖
= (�𝑚2

−�1) − (�𝑚1
−�2)

𝑅𝑇𝑇𝑃𝑖,𝑃0
= (�𝑚4

−�3) − (�𝑚3
−�4)

𝜶𝑷𝟎
= 𝑹𝑻𝑻𝑷𝟎,𝑷𝒊

− 𝑹𝑻𝑻𝑷𝒊,𝑷𝟎

[2] “PTPsec: Securing the Precision Time Protocol Against Time Delay Attacks Using Cyclic Path Asymmetry Analysis”, Finkenzeller et al., Infocom 2024

PTPsec Implementation

17Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

[3] “PTPsec: Securing the Precision Time Protocol with SDN-enabled Cyclic Path Asymmetry Analysis”, Finkenzeller et al., ACM TCPS 2025

PTPsec Evaluation

18Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

[3] “PTPsec: Securing the Precision Time Protocol with SDN-enabled Cyclic Path Asymmetry Analysis”, Finkenzeller et al., ACM TCPS 2025

PTPsec Evaluation

19Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

[3] “PTPsec: Securing the Precision Time Protocol with SDN-enabled Cyclic Path Asymmetry Analysis”, Finkenzeller et al., ACM TCPS 2025

PTPsec Evaluation

20Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

[3] “PTPsec: Securing the Precision Time Protocol with SDN-enabled Cyclic Path Asymmetry Analysis”, Finkenzeller et al., ACM TCPS 2025

T
e
s
ti

n
g ▪ Large-scale Tests

▪Complex Attacks

A
p

p
li

c
a
ti

o
n

s
▪Understand Impact

▪Sensor Fusion

Security:

W
ir

e
le

s
s ▪Transfer

Attack/Defense

▪Explore new

possibilities

What’s next?

21Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

Take Away

Time Synchronization

is important

Delay Attacks are

real threats

PTP is insecure

▪ [1] Finkenzeller, A., Wakim, T., Hamad, M., & Steinhorst, S. (2022, December). Feasible time delay

attacks against the precision time protocol. In GLOBECOM 2022-2022 IEEE Global Communications

Conference (pp. 3375-3380). IEEE.

▪ [2] Finkenzeller, A., Butowski, O., Regnath, E., Hamad, M., & Steinhorst, S. (2024, May). PTPsec:

Securing the Precision Time Protocol Against Time Delay Attacks Using Cyclic Path Asymmetry Analysis.

In IEEE INFOCOM 2024-IEEE Conference on Computer Communications (pp. 461-470). IEEE.

▪ [3] Finkenzeller, A., Fucks, A., Regnath, E., Hamad, M., & Steinhorst, S. (2025). Securing the Precision

Time Protocol with SDN-enabled Cyclic Path Asymmetry Analysis. ACM Transactions on Cyber-Physical

Systems.

▪ Icons (sl. 7, 10, 20): www.fontawesome.com, www.flaticon.com

▪ Image (sl. 2, 21): AI-generated with Canva

References

23Andreas Finkenzeller | 08.07.2025 | Secure Time Synchronization in Packet-Switched Networks

Defending Event-Triggered Systems against
Out-of-Envelope Environments
Marcus Völp1, Mohammad Ibrahim Alkoudsi2, Azin Bayrami Asl1,

Kristin Krüger2 Júlio Mendonça1, Gerhard Fohler2
1Interdisciplinary Centre for Security Reliability and Trust (SnT), University of Luxembourg

e-mails: marcus.voelp@uni.lu, azin.bayramiasl@uni.lu, julio.mendonca@uni.lu
2Rheinland-Pfälzische Technische Universität Kaiserslautern - Landau

e-mails: alkoudsi@rptu.de, kristin.krueger@rptu.de, gerhard.fohler@rptu.de

Abstract—The design of real-time systems is based on assump-
tions about environmental conditions in which they will operate.
We call this their safe operational envelope. Violation of these
assumptions, i.e., out-of-envelope environments, can jeopardize
timeliness and safety of real-time systems, e.g., by overwhelming
them with interrupt storms. A long-lasting debate has been going
on over which design paradigm, the time- or event-triggered, is
more robust against such behavior.

In this work, we investigate the claim that time-triggered
systems are immune against out-of-envelope behavior and how
event-triggered systems can be constructed to defend against be-
ing overwhelmed by interrupt showers. We introduce importance
(independently of priority and criticality) as a means to express
which tasks should still be scheduled in case environmental design
assumptions cease to hold, draw parallels to mixed-criticality
scheduling, and demonstrate how event-triggered systems can
defend against out-of-envelope behavior.

Index Terms—time-triggered systems, event-triggered systems,
out-of-envelope behavior

I. INTRODUCTION

Real-time computer systems are typically designed to func-
tion within an operational envelope that dictates all possible
behaviors of the environment that encloses them. The spec-
ification of an operational envelope allows for design-time
assurance that the real-time system will behave in a timely
manner if it operates within this envelope [1].

A common argument in the decade-old debate between
the time- and event-triggered paradigms’ experts is the ques-
tion how to cope with out-of-envelope behavior. On one
side, Kopetz’s tremendous achievement of predictable, fault-
tolerant, composable, and modularly certifiable systems, en-
abled by the time-triggered architecture [2], and on the other
side, there have been various attempts [3]–[5] towards achiev-
ing similar properties in event-triggered systems.

In the time-triggered architecture (TTA), all system com-
ponents share a globally synchronized sparse-time base [2],
[6]. All important events and activities, e.g., sampling the
environment and exerting control over it, are internalized to
periodically occurring time points and intervals on this time
base. Intermediate control algorithms are also set to execute
and communicate their results within predetermined intervals

This research was funded by the Luxembourg National Research Fund
(FNR) and by the German Research Council DFG through the FNR-Core-
Inter grant ReSAC (C21/IS/15741419).

of sparse time (time-slots), where each task or message gets
a single or multiple exclusive time-slots on the respective
resource. This temporal isolation rules out interference from
other tasks or messages executing in different time-slots.

Therefore, as long as the environment matches the regime
dictated by the specified sparse time-slots, and as long as the
globally maintained time base remains immune to faults and
attacks, we obtain the above properties and the elegance and
beauty of the TTA. However, once the environment moves
beyond this envelope, the situation becomes more complicated.

Event-triggered systems internalize events immediately
when the sensors and devices at the periphery of the system
observe them. Sensors, network interfaces, and other devices
are connected to interrupt lines, which, when raised, signal
the processor to interrupt its current control flow and activate
a corresponding service routine. Such routines in turn handle
the interruption, internalize the event (e.g., by associating it
with a timestamp) and release tasks that are triggered by this
event. The routines then invoke the scheduler to see whether
the released tasks can be scheduled immediately or if their
execution needs to be deferred (e.g. because a higher priority
task is currently running or because resource locking protocols
(such as stack-based ceiling [7]) demand deferred execution).

Immediate internalization makes event-triggered systems
vulnerable to interrupt storms, triggered by faulty sensors
and devices, and to unanticipated events, when environmental
situations are in violation of the assumed operational envelope.
Designers of event-triggered systems typically equate both
situations as undesirable behavior and construct their systems
to avoid both by ignoring events that occur in addition to those
anticipated. This risks missing important deviations from the
norm and taking appropriate actions to keep the system safe,
even when normal operation can no longer be guaranteed.

In this work, we take a different approach and survey what
it takes in event-triggered systems to defend against out-of-
envelope behavior. Our goal is to design a system that will
ultimately be able to respond in a timely and predictable
manner to unforeseen situations while being equipped to
carefully trade-off less important tasks, and to defend itself
against error situations that would overwhelm the system.

We start in Section II, by giving concrete examples, to
highlight what we mean by out-of-envelope behavior and

57

discuss how contemporary time- and event-triggered systems
respond to such behavior. We then introduce in Section III a
new feasibility criterion, inspired by mixed-criticality schedul-
ing [8], [9], to ensure systems continue to respond to important
events, even if they can no longer sustain all of their normal be-
havior. We will also discuss why one might want to introduce
importance separate from criticality. Section IV illustrates how
event-triggered systems can defend against being overwhelmed
by out-of-envelope behavior.

Of course, we are not the first aiming to design defensive
event-triggered systems and aspects will have to remain as
open questions, which is why, in Section V and Section VI,
we discuss limitations and open questions and we relate our
work to the works of others, before concluding our work in
Section VII.

II. OUT-OF-ENVELOPE BEHAVIOR

Real-time computer systems interact with their environment
by sensing environmental conditions together with the ob-
servable states of the machines they control. They receive
alarms from specific sensors and influence the environment by
actuating parts of these machines. Failure to do so in a correct
and timely manner often has severe consequences and puts at
risk the safety of the controlled machines, of the people in
their proximity, or of the environment in which they operate.

When designing real-time systems, developers define an
operational envelope, in which they characterize their assump-
tions about the environment and specifically what events they
expect and how frequently and with which separation they
expect them to occur [3]. For example, when controlling
a nuclear plant, sensors reveal whether valves are open or
closed. Other sensors read out the pressure and water level
in the pressurizer and, more generally, dynamic processes are
observed with at least double the frequency of the highest
signal frequency that is to be expected.

In this work, we are primarily interested in external events,
happening at the system’s periphery, such as reactor pressure
levels exceeding a certain threshold, which is observed by
a sensor at an appropriate location. While pressure remains
within certain bounds (i.e., within the envelope), the sensor-
measured pressure values change only rarely and in a contin-
uous manner. Beyond these bounds however, bubbles in the
cooling water may cause fast alterations between low- and
high-pressure situations at the same sensor, indicating a serious
and unexpected situation, which in the case of Three-Mile
Island has already led to a serious incident [10].

Time-triggered systems internalize these signals at pre-
defined and, thanks to the globally synchronized sparse time
base, globally known events. Let Tsample be the pre-defined
sampling period of an observed real-time entity, e.g., a valve
in the nuclear plant. Let tvalve and t′valve denote the time at
which the observed valve changes state to open and closed,
respectively. If the duration t′valve − tvalve is smaller than
Tsample , then the time-triggered system will not be able to
recognize and internalize the opening event of the valve tvalve .
The operational envelope defines that developers do not expect

more frequent events and designing systems according to that
envelope implies that such a behavior will not be considered
by the developed system.

In event-triggered systems, in addition to the possibility of
sampling events, changes are communicated almost immedi-
ately from the sensor to the computer system by means of
raising interrupts at the latter. Interrupts are hardware signals
(delivered over dedicated lines or as PCI and then memory bus
messages) to one of the processors’ interrupt controllers, which
in turn causes the processor to preempt its current task and
enter the operating system’s top-half interrupt service routine.
Once interrupt occurrence is recorded and, for level-triggered
interrupts, the source is masked, the operating system (OS)
decides whether it processes the interrupt immediately or re-
turns to the preempted task for deferred handling in a so-called
bottom half. The critique put forward is that this recording
and masking in the top half together with the kernel entry,
already interferes enough with the scheduled tasks to reduce
predictability and hinder independent certification. In practice,
however, as long as the environment behaves as depicted
in the operational envelope, preemptions can be anticipated
and accounted for in the tasks’ worst-case execution times
(WCETs), in particular if the handling of the remaining part
of the interrupt (the bottom half) can be deferred and scheduled
like regular jobs.

Out-of-envelope behavior happens when unexpected events
occur. Event-triggered systems will then have more interrupts
raised than anticipated or combinations of interrupts that were
not considered. We have already seen that time-triggered
systems are immune to such occasions, since they will not
internalize out-of-envelope behavior, and will proceed as if
none of the missed events have happened. This is where event-
triggered systems have the potential for a more attenuated
response, by continuing to respond also to unforeseen events
and specifically to alarms. It will even be possible to plan for
responses to unlikely event combinations, without reserving
time for these responses in the regular schedule.

Unfortunately, by responding to out-of-envelope behavior,
event-triggered systems also make themselves vulnerable to
increased interference, in case multiple events happen close
together, and specifically to interrupt storms. In fact, naive
implementations, will simply crash event-triggered systems in
such situations due to the kernel stack overflowing when push-
ing interrupted state in an uncontrolled manner. The execution
of high-priority tasks may be delayed when executing the top-
halves of a storm of interrupts pertaining to the execution
of low-priority tasks, leading to deadline misses and risking
safety. Of course there are several works that address this con-
cern albeit within the assumed environmental envelope [11]–
[16]. For instance, Parmer and West [16] schedule bottom
halves in deferable servers to limit the budget bottom halves
may consume within a given amount of time. However, they
dimension the budget to consider only events that have been
anticipated in the system’s operational envelope.

In this work, we also consider out-of-envelope behavior
with the goal of equipping systems with the possibility to

58

respond to important events, specifically alarms, even if they
happen more frequently than anticipated. At the same time,
our goal is to defend systems against faulty sensors raising
alarms continuously and, in turn, overwhelming the system.

III. OUT-OF-ENVELOPE FEASIBILITY

Our goal is to allow event-triggered systems to remain re-
sponsive to out-of-envelope behavior, while defending against
being overwhelmed. In normal situations, when the environ-
ment behaves as in the assumed envelope, all events should be
internalized, and corresponding tasks released and scheduled,
including the events’ bottom-half handlers in case part of the
immediate event response can be deferred. Once important
events occur more frequently than anticipated, but still within
certain bounds, the system should obtain the possibility to
trade off the handling of less important events and their
corresponding tasks and still inform operators about triggered
alarms and still take the actions that are required to keep the
system safe. However, when exceeding these bounds, sensors
must be considered faulty and should be suppressed to these
bounds, while indicating that more events occurred than could
be internalized.

Since we specifically consider alarms, we assume a classical
mix of sporadic and periodic tasks, as captured in the sporadic
task model. Events (including alarms or the timers firing at
specific points in time) release jobs τi,j of tasks τi in the task
set Γ. Each task is characterized by the tuple (Ci, Di, Ti, Ii),
where for simplicity we assume relative deadlines Di are
implicitly defined by the task’s minimum inter-arrival time Ti

(i.e., Di = Ti). Tasks are feasible if all jobs receive Ci time
between their release ri,j and their absolute deadline ri,j+Di.

In order to characterize the importance of an event, and
hence of the jobs it releases, we introduce an importance
value Ii, which we use to create a total order of importance
for each task. In mixed-criticality systems, importance can
be mapped to criticalities (e.g., by assigning low-criticality
tasks an importance up to a certain level l — tasks with
importance Ii ∈ [0, l) are LO — and high-criticality tasks
a higher value) and Ci and other task parameters may be
criticality-level dependent (e.g., Ci may be a vector Ci(li)
where li is the criticality level of the task). In addition,
importance may be mapped to priorities unless this interferes
with priority assignment (e.g., tasks with a larger period Ti

may be more important than those with a smaller period,
while rate-monotonic scheduling would assign them lower
priorities, which we would like to allow). However, there are
also cases where importance should be handled independently
of criticality and priority. Criticality is commonly used to grant
additional resources to those tasks that are more critical to
maintain the safety of the system. It does not distinguish
internal and external failure modes as to why such a task
would need additional resources. In our work, we are primarily
concerned with internalizing and allowing the handling of
external events, such as the frequent change of pressure levels
when bubbles rise in the cooling water, to then take appropriate
actions. In that sense, events arriving outside the anticipated

envelope may trigger a criticality change, but not necessarily
vice versa. Therefore, in the above model, in normal situations,
all events should be internalized and all tasks be scheduled,
irrespective of their importance.

To capture out-of-envelope behavior, we introduce as addi-
tional parameters for the task-releasing events the number ni

of events and a time-window length Wi in the sense that the
system should still respond to up to ni such events within any
sliding window of length Wi in case the environment leaves
the assumed envelope and issues task-τi-releasing events more
frequently than once every Ti. The fraction ni/Wi gives us
a rate and upper bound within which we still consider event-
internalizing sensors as correct and the environment out of
the anticipated envelope. Beyond this bound, that is, when
the nth

i event occurs within Wi, we raise as additional alarm,
indicating that the event-triggering sensor may be faulty. It is
then up to the system to decide how to respond.

Once a task τi releasing event occurs more frequently than
once within Ti, feasibility changes and requires handling
up to ni events within Wi provided more important events
and the tasks τi they release can still be scheduled. Like
mixed-criticality feasibility, this requirement makes no claims
about less important tasks, but of course we would like to
maintain as many tasks as possible, ordered by importance,
and ideally all of them. We therefore add as additional
constraint that:

Definition 1 (Out-of-Envelope Feasibility): At any time,
system responses for up to ni task-τi-releasing events in every
sliding window of length Wi must be considered and if the
response is to release all instances of τi, then those instances
must be guaranteed to receive Ci time between their release
and deadline before any less important task τj (i.e., Ij < Ii)
is scheduled.

Note that the formulation so far also allows only responding
in exceptional situations, by considering that the normal oc-
currence of a task has already occurred and setting this task’s
period to infinity.

From here, three questions need to be answered, namely
• How should the system respond to more than one releas-

ing event per Ti?,
• How to schedule released tasks so as to guarantee out-

of-envelope feasibility? and
• How to enforce that for all tasks at most ni events are

handled within Wi, respecting the importance Ii and
that the system recognizes important alarms to make the
appropriate adjustments?

In this preliminary work, we shall focus on the third
question, but let us summarize some early conclusions about
the first two questions as well.

Of course, we cannot avoid internalizing all ni events, which
creates ni-fold top-half load within the sliding window of
Wi. However, our formulation of out-of-envelope feasibility
does not require releasing all ni tasks, although for some
situations this may be desirable. Alternatively, one could

59

Fig. 1. Internalization and scheduling options for a task, which deviates from
the assumed envelope. Both events need to be internalized and generate top-
half overheads. Depending on the kind of task, out of envelope behavior can
be addressed by releasing all jobs for this event (option 1) or by informing
an already running job (option 2), e.g., by invoking an exception handler in
this task.

release some of these tasks, informing them about the out-
of-envelope behavior, which then may result in the tasks
triggering a criticality change to properly respond to out-of-
envelope situations. Figure 1 illustrates these two situations.

Clearly, out-of-envelope feasibility shows similarities to
mixed-criticality feasibility, and we expect some of the results
to carry over immediately. For example, drawing inspiration
from criticality-monotonic scheduling [17], fixed task priority
assignments according to the importance of tasks will guar-
antee that more important tasks are scheduled before less
important tasks will be considered, even in out-of-envelope
situations, provided of course that under this priority assign-
ment the task set remains schedulable in normal situations.

It is also relatively easy to construct a counterexample,
showing that such “importance-monotonic scheduling”, when
releasing all tasks instances upon their releasing event, cannot
be optimal. Consider the two tasks shown in Figure 2. The
first is characterized as τl = (2, 3, Il) and the second as
τh = (2, 6, Ih), with importance Il < Ih. For τh, we consider
an out-of-envelope behavior of nh = 2 in every sliding
window of length Wh = Th = 6. Clearly, releasing the
task twice is an exceptional situation, which however, we
would still like to handle (e.g., to respond to an unanticipated
important alarm sent in short succession). As shown in the
figure, importance-monotonic priority assignment will lead to
a deadline miss, even in normal situations (left). However, if
we would raise the priority of τl’s first job above the priority
of τh, we obtain a schedulable task set in normal situations
(middle), but also in the exceptional situation, where τh is
released twice (right). Remember, in the latter case we can
sacrifice τl’s second job, since it is less important than τh. The
system remains responsive to the unanticipated occurrence of
the second alarm, but cannot retain the full service it had in
normal situations. Also, an alarm is raised indicating that the
sensor triggering this alarm operates at its bound and should
be interpreted with care.

Fig. 2. Example showing that importance-monotonic scheduling is not
optimal. The low-importance task τl misses its deadline, even in normal
situations (left), whereas both jobs of it can meet their deadline if the first
one is higher prioritized than the high-importance task τh (middle). Even if
τh is released outside the anticipated envelope (up to nh = 2 events within
Wh = Th in this example), τh meets all deadlines, at the cost of the less
important second job of τl.

IV. DEFENDING AGAINST OVERWHELMING
OUT-OF-ENVELOPE BEHAVIOR

Ensuring that event-triggered systems will not get over-
whelmed by out-of-envelope behavior requires limiting the
internalization of task-releasing events to at most ni within any
sliding window of length Wi, while providing the operating
system with the signal it needs to adjust the task schedule.
In particular, if a task is released more than once every
Ti, this already constitutes out-of-envelope behavior and may
result in sacrificing the internalization of less important events
and possibly the tasks they release. This is to ensure more
important events, specifically alarms, continue to be processed.

A. Vectored Interrupt Controllers

In this section, we illustrate how vectored interrupt con-
trollers, such as the Advanced Programmable Interrupt Con-
troller (APIC) variants of x86 processors or ARM’s Nested
Vectored Interrupt Controller (NVIC) can be configured to pro-
vide these indicators while protecting from interrupt storms.

Vectored interrupt controllers (VICs) multiplex the pro-
cessor’s interrupt mechanism by providing multiple external
interrupt lines. In addition, they often allow interrupt lines
to be assigned different priorities. In this case, the interrupt
controller features an interrupt-priority level such that lower-
priority interrupts can be masked simply by raising this priority
level above the priority of the line.

In this work, we assume VICs to provide such interrupt
priorities and an interrupt priority level (both ARM’s NVIC
and various x86’s APIC variants do). We further assume that
interrupts can be masked individually and, for simplicity, will
not consider sharing interrupt lines among multiple interrupt
sources. Moreover, we shall assume that the timer interrupt
can be configured to be independent of the above constraints.
This is possible, for example, by giving the timer the highest
interrupt priority. Lastly, we shall assume devices or external
interrupt controllers (e.g., IO-APIC) expose a counter per
interrupt line that is incremented for each event occurring.
Capture compare units already provide various such counters,
albeit not for this purpose.

60

In the following, we shall continue to talk about priorities
with the implication that these are the interrupt priorities
considered in the VIC. We do not require interrupt priorities
to correlate to task priorities and will divert from the rec-
ommendation to set the interrupt priority level to the priority
of the currently running task. Instead, we shall leverage
this mechanism to control importance and prevent too many
undesired interruptions.

B. Detecting Out-of-Envelope Behavior

If a task were to be released more than ni times within
a sliding window of size Wi, the releasing sensor could be
considered faulty and no further events would need to be
handled and, for that matter, be internalized.

To capture out-of-envelope behavior precisely, we would
have to allow all events to happen and be internalized so as
to record them in ring buffers of size ni, measure their time
of occurrence and compute when the event leaves the task’s
sliding window of length Wi.

C. Defending Against Being Overwhelmed

We mask interrupts to defend against being overwhelmed,
which implies not internalizing such events.

In case the buffer is full, the OS masks the interrupt to
prevent all subsequent occurrences of this event from being
internalized, raises an alarm and sets a timer to the time of the
earliest event in the buffer plus Wi. Being masked, subsequent
events will not be internalized but are still recorded in the
devices’ counters. Once the timer fires, the OS unmasks the
interrupt line of the event to consider further occurrences.

At this point in time, the OS compares the counter at the
device against the value it read when masking the event to
identify whether the sensor is faulty (i.e., more than ni events
occurred in that time). It is then up to the OS whether it will
consider this sensor permanently damaged or resume using
this sensor once the alarm rate drops below ni/Wi.

Unfortunately, for sensors that still operate within the bound
of ni occurrences within Wi, capturing out-of-envelope be-
havior precisely comes at significant costs in terms of top-half
overheads and hence the interference that top-half handling
causes on task execution. In the worst case, this top-half
handling, even if we capture the timestamp of the respective
next event through a capture unit, amounts to Σ

τi∈Γ
ni∆TH ,

where ∆TH denotes the time needed to enter the kernel, record
the timestamp of the event in the ringbuffer, take the decision
to and mask it, and returning from the kernel, since all ni

occurrences of every task-releasing event may occur at once.
Obviously, this is not very feasible. We therefore over-

approximate subsequent events as if they occur with the first,
in case they do not affect the current scheduling decision. That
is, we ignore all but the next occurrence of each event until
when the bottom half is processed, by masking the specific
interrupt in the top half and unmasking it only after the bottom
half finishes executing. Still, multiple events may occur and
the device indicates their number, but we assign all of them
the timestamp of the event that masked them. This reduces the

Fig. 3. Example showing how the interrupt priority level may prevent
internalizing some of the events that have no consequence for scheduling. In
the figure, three tasks (τA, τB , τC) and their events (EA, EB , EC) are shown
that may preempt the currently running task τcurrent . We set the interrupt
priority level to below the importance of the least important task (τB) that
may still preempt τcurrent . This way, τC , whose event importance IC is
lower than or equal to the interrupt priority level gets masked. However, the
event EA of task τA remains enabled, since τA is more important than τB
(although less important than τcurrent).

sliding window during which we do not allow further events to
be internalized and creates more pressure in the system1, but
ensures we do not miss events that we should have handled.

In the same way, we mask events that have no immediate
consequence on the scheduling decision. That is, we raise the
interrupt priority level to prevent internalizing the events of
tasks that would not preempt the current task. These are lower-
important tasks whose next job the scheduler will prioritize
higher than the priority of the current running task. Again,
when lowering this level, we internalize these events with
the timestamp when we masked them and evaluate the device
event counts to identify whether sensor values were off. Notice
that even though this timestamp may be before the actual
release time of the task, the task will not be executed before the
point in time when its releasing event is internalized. Notice
also that the above mechanism is not perfect, because there
may be lower prioritized and less important tasks than the
currently running task, which are still more important than
the task with the minimum importance whose next job will
be higher prioritized. Figure 3 illustrates this point. It would
of course be possible to mask these tasks manually, albeit at
significant costs, in particular if the interrupt controller does
not allow installing and changing interrupt masks for multiple
interrupt lines at once.

V. LIMITATIONS AND OPEN QUESTIONS

Of course, we are not yet at the end of our journey and
several limitations and criticisms remain valid, which raise
open questions and require further research.

For example, one could argue that our differentiation of the
still to be considered out-of-envelope behavior and the bounds
after which we consider sensors to wrongly produce events is
artificial in the sense that we anticipate as out-of-envelope
behavior what should actually be anticipated. We admit this
contradiction and lack of a better definition of what out-of-
envelope behavior actually is, but hope the intuition will be

1Considering events to happen earlier means the system will, at the brink
of the sensor being faulty, sooner unmask interrupts, since the sliding window
ends earlier.

61

clear. Out-of-envelope behavior is what we did not anticipate
for the normal behavior of the system but which we still might
be afraid to see and therefore plan for.

Focusing on enforcement, we could of course only sketch
some of the scheduling problems that occur when the sys-
tem should remain feasible in out-of-envelope situations. We
therefore leave as an open question, the investigation of
scheduling algorithms that can guarantee schedulability of
the most important tasks when inter-separation constraints are
violated.

Our approach so far completely gives up on inter-separation
constraints once the environment moves out of the anticipated
envelope. This is mainly to capture unanticipated alarms. How-
ever, if arguments about the physical processes demonstrate
that it will be infeasible that events occur more frequently
than once every T out

i , then integrating such bounds in the
task model would greatly improve the schedulable utilization
of the system, even if the out-of-envelope period T out

i is small
compared to the period Ti.

Likewise, our approach so far assumes importance to be a
total order among tasks. It might be interesting to investigate
more well-defined structures that can capture different sets
of tasks that should be sacrificed depending on which event
violates the assumptions made in the system’s operational
envelope.

Being a report on preliminary work, we obviously did not
quantify the overhead of our approach on existing vectored
interrupt controllers, nor did we evaluate the design of VICs
that are specifically designed to capture out-of-envelope be-
havior. For example, the constraints which prevented us from
precisely tracking out-of-envelope events in Section IV vanish
if ringbuffers containing timestamps are maintained in the
VIC. Like capture units, such VICs could record the timestamp
of occurrence of interrupt-triggering events (provided the ni-
element ringbuffer is not yet full) while triggering the pro-
cessor’s interrupt service routine only when the processor is
ready to receive such an interrupt and when it would affect
scheduling decisions (communicated by the masking scheme
we discussed above).

VI. RELATED WORK

In this work, we have already discussed similarities but
also differences to mixed-criticality scheduling [8], whose
state of the art is captured in the review by Davis and
Burns [9]. Importance allows us to define trading off tasks
independent of those that originate from high-criticality tasks
exceeding their low-criticality expectations and we hope its
use to respond to clearly unanticipated situations avoids some
of the misconceptions of mixed-criticality systems [18].

We already mentioned several works to investigate event-
triggered systems and what properties they may retain despite
giving up on internalizing events only according to the globally
synchronized sparse time base. For example, Scheler and
Schroeder-Preikschat [4] ask whether the difference between
event- and time-triggered is just a matter of configuration.

We believe this can be answered only after extending our
observations to the network level.

We likewise mentioned that others have also proposed solu-
tions for defending against interrupt storms (with the purpose
of remaining within the operational envelope, unlike what we
propose — to slightly step out of it and focus on the most
important tasks). For example, Parmer and West [16] describe
a means for predictable interrupt management with the help
of deferrable servers, which, among others, has enabled core-
local reasoning and predictable cross-core communication [19]
in the M3 microkernel [20]. Scheler et al. [11] discuss hard-
ware supported interrupt handling for event-triggered real-time
operating systems. Kim et al. [12] explore interrupt handling
and enforcement in real-time system virtualization. Ley va-
del Foyo et al. [13] propose to integrate interrupt and task
handling. Brinkschulte et al. [15] suggest in a work-in-progress
presentation the notion of interrupt service threads and Elliott
and Anderson [14] propose robust interrupt handling for
multiprocessor systems, by drawing inspiration from GPUs.

VII. CONCLUSIONS

In this work, we raise the question whether real-time
systems can still remain responsive in case unanticipated
and unforeseen combinations of events move them beyond
the operational envelope for which they have been designed.
We distinguish normal situations from situations where such
out-of-envelope behavior occurs and from situations where
faulty sensors overwhelm the system by generating interrupt
storms or event combinations that the system can no longer
sensibly handle. We propose a vectored interrupt controller-
based event internalization and handling scheme that is capable
of defending against the latter, while supporting the two for-
mer. Our scheme can be implemented using existing interrupt
controllers (e.g., on ARM and x86), but would at the same
time greatly benefit from a dedicated capture unit that records
the timestamps of up to ni interrupt-triggering events in per
interrupt-line ringbuffers.

Directions for our future work include evaluating such
hard- and software implementations, further exploring the sim-
ilarities and differences between importance-based schedul-
ing (once the system leaves its operational envelope) and
mixed-criticality scheduling, and investigating whether out-of-
envelope behavior can also be tolerated at the network level.

VIII. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments.

REFERENCES

[1] D. Powell, G. Bonn, D. Seaton, P. Verissimo, and F. Waeselynck,
“The delta-4 approach to dependability in open distributed computing
systems,” in [1988] The Eighteenth International Symposium on Fault-
Tolerant Computing. Digest of Papers, 1988, pp. 246–251.

[2] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[3] D. P. Borgers and W. P. M. H. Heemels, “Event-separation properties
of event-triggered control systems,” IEEE Transactions on Automatic
Control, vol. 59, no. 10, pp. 2644–2656, 2014.

62

[4] F. Scheler and W. Schroeder-Preikschat, “Time-triggered vs. event-
triggered: A matter of configuration?” in ITG FA 6.2 Workshop on
Model-Based Testing, GI/ITG Workshop on Non-Functional Properties
of Embedded Systems, 13th GI/ITG Conference Measuring, Modelling,
and Evaluation of Computer and Communications, 2006.

[5] M. J. Khojasteh, P. Tallapragada, J. Cortés, and M. Franceschetti, “Time-
triggering versus event-triggering control over communication channels,”
in 2017 IEEE 56th Annual Conference on Decision and Control (CDC),
2017, pp. 5432–5437.

[6] H. Kopetz, “Sparse time versus dense time in distributed real-time
systems,” in [1992] Proceedings of the 12th International Conference
on Distributed Computing Systems, 1992, pp. 460–467.

[7] T. Baker, “A stack-based resource allocation policy for realtime pro-
cesses,” in [1990] Proceedings 11th Real-Time Systems Symposium,
1990, pp. 191–200.

[8] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in 28th IEEE International
Real-Time Systems Symposium (RTSS 2007), 2007, pp. 239–243.

[9] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, pp. 1–69, 2013,
current version: https://www-users.york.ac.uk/∼ab38/review.pdf.

[10] C. Perrow, “Normal accident at three mile island,” Society, vol. 18, 1981.
[11] F. Scheler, W. Hofer, B. Oechslein, R. Pfister, W. Schröder-Preikschat,

and D. Lohmann, “Parallel, hardware-supported interrupt handling in an
event-triggered real-time operating system,” in Proceedings of the 2009
International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, ser. CASES ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 167–174. [Online].
Available: https://doi.org/10.1145/1629395.1629419

[12] H. Kim, S. Wang, and R. Rajkumar, “Responsive and enforced interrupt
handling for real-time system virtualization,” in 2015 IEEE 21st Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications, 2015, pp. 90–99.

[13] L. E. Leyva-del Foyo, P. Mejia-Alvarez, and D. de Niz, “Integrated
task and interrupt management for real-time systems,” ACM Trans.
Embed. Comput. Syst., vol. 11, no. 2, Jul. 2012. [Online]. Available:
https://doi.org/10.1145/2220336.2220344

[14] G. A. Elliott and J. H. Anderson, “Robust real-time multiprocessor inter-
rupt handling motivated by gpus,” in 2012 24th Euromicro Conference
on Real-Time Systems, 2012, pp. 267–276.

[15] U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T. Ungerer, “Interrupt
service threads - a new approach to handle multiple hard real-time events
on a multithreaded microcontroller,” RTSS WIP Sessions, 08 2000.

[16] G. Parmer and R. West, “Predictable interrupt management and schedul-
ing in the composite component-based system,” in 2008 Real-Time
Systems Symposium, 2008, pp. 232–243.

[17] T. Fleming and A. Burns, “Extending mixed criticality scheduling,” in
Workshop on Mixed Criticality Systems (WMC), vol. 11, 2013, pp. 7–12.

[18] R. Ernst and M. Di Natale, “Mixed criticality systems—a history of
misconceptions?” IEEE Design and Test, vol. 33, no. 5, pp. 65–74, 2016.

[19] N. Asmussen, S. Haas, A. Lackorzyński, and M. Roitzsch, “Core-
local reasoning and predictable cross-core communication with m3,” in
2024 IEEE 30th Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2024, pp. 199–211.

[20] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and G. Fettweis,
“M3: A hardware/operating-system co-design to tame heterogeneous
manycores,” SIGARCH Comput. Archit. News, vol. 44, no. 2, p.
189–203, Mar. 2016. [Online]. Available: https://doi.org/10.1145/
2980024.2872371

63

	Message from the Chairs
	Keynote Talk
	Invited Talk 1
	Invited Talk 2
	Session: RT-AutoSec Technical Session
	Defending Event-Triggered Systems against Out-of-Envelope Environments

