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Abstract—In this paper, we design and implement a fixed-
priority and fully preemptable controller for Kubernetes. The aim
of this controller is to manage mixed criticality services in a real-
time fashion, giving high priority to critical applications to speed-
up their container placement operation. Such improvements are
necessary in current serverless computing scenarios where there
is a need to scale applications dynamically and with the lowest
possible creation latency for critical workloads.

Index Terms—Edge-Cloud, Orchestration, Containers, Mixed-
Criticality, Kubernetes

I. INTRODUCTION

Recently, containers and orchestration technologies have
been increasingly adopted in cloud computing [1], [2] as well
as in the Industrial-Internet-of-Things (IIoT) [3] and edge
computing infrastructures [4].

In a typical scenario, a cloud service provider would make
its application available to end-users through platforms that
allow its deployment by adopting container technologies.
An important aspect of the deployment phase is the static
provisioning, an activity aimed at establishing how many
instances of an application are needed to cope with the
expected load. If the expected load is lower than the actual
one, an under-provisioning problem might occur, with more
instances needed to serve all incoming requests. The opposite
miscalculation might lead to an over-provisioning situation
where too many instances are running, leading to a useless
resource consumption and increased resource usage cost.

Serverless platforms automate this process by monitoring
applications and their actual workloads to dynamically estab-
lish the correct amount of instances, scaling them up or down
accordingly [2], [5]. The time-to-scale is a major concern
in these scenarios since instances must be ready as soon as
possible, as they are activated when the load is increasing.
This challenge, known in literature as the cold-start problem,
has been addressed by several researchers. Some focus on
improving the container creation process, trying to reduce
the cold-start duration, while others focus on reducing their
occurrences by pre-warming instances or keeping them alive to
cope with expected requests. These solutions bring with them
the overhead of the mathematical models needed to predict
the behavior of the incoming load [2], [6].

We believe that these solutions, as good as they can be, will
never bring sufficient improvements if the underlying container
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Fig. 1: Time for vanilla Kubernetes to start a high-priority con-
tainer by creating a ReplicaSet, while applying an increasing
number of interfering requests (IR) to the orchestrator.

orchestration technology is not able to keep up with stringent
timing requirements.

In industrial scenarios, services may have different critical-
ities and requirements and must be seamlessly orchestrated
across the same computing infrastructure. Therefore, orches-
trators must prioritize the management of critical containers
over non-critical ones in order to maximize the probability of
meeting the service level objectives (SLOs) of critical services
[7]–[9].

However, current orchestrators cannot preemptively pri-
oritize some services. For example, Kubernetes, which is
the standard de facto among orchestrators, is not capable
of distinguishing between high- or low-priority containers
while handling concurrent events. Fig. 1 concretely shows this
problem: the time to place and start a container can increase
up to tens of seconds regardless of the container priority when
the orchestrator is busy handling an increasing number of
interfering (low-priority) requests and related events.

In this work, a novel solution to these problems is presented
through the implementation of a fully preemptable custom
controller for the Kubernetes platform that allows mixed-
criticality orchestration. We implemented our solution rely-
ing on Rust to have a fixed-priortiy preemptive scheduling
of controller threads. The use of Rust enables full control
over the scheduling policy and parameters of the kernel-level
threads (KLTs), allowing us to use kernel real-time scheduling
policies. In this way, we overcame the limitation of Golang
(i.e., the programming language of the other K8s components),



which allows limited control over the scheduling parameters
due to its user-level threading model (ULT).

Our experiments show, in our setup, a reduction in the time
spent in the control plane when deploying a pod up to 99%
(28ms vs. 7140ms), also benefiting from low variances.

The implemented solution was also integrated in the Knative
serverless environment to show which benefits are already
addressable from an end-user perspective and which still
require further optimization.

The remainder of the paper is organized as follows. Section
II provides a background on K8s and Knative. Section III
presents the design of the custom solution and the Knative
patch required to integrate it with the new workflow. Then,
Section IV discusses the experiments conducted to prove the
validity of the said solution, while Section V provides a
benchmark to test the new design in a serverless environment.
Finally, Section VIII concludes the paper.

II. BACKGROUND

For the purpose of this research, two platforms were
adopted: Kubernetes [10] as a container orchestrator and
Knative [11] as a serverless platform.

A. Kubernetes
Kubernetes is a container orchestration platform. Its archi-

tecture (see Figure 2 revolves around the concept of a cluster,
which is a collection of all available computational resources.
It can be divided into two main logical units: the control plane
and the worker nodes. The control plane consists of several
components whose main duty is to manage workloads that will
be scheduled on the worker nodes.

Fig. 2: K8s architecture.

The apiserver is the access point to the cluster. It allows
for managing the current and desired state of all Kubernetes
objects. It can be used by both external users and the other
internal components to communicate with each other.

The kube manger is a collection of controllers, each moni-
toring a different Kubernetes resource, whose main duty is to
match the current and desired state. The scheduler is the unit
that assigns pods, the smallest Kubernetes schedulable unit,
composed of one or multiple containers, to worker nodes. All
cluster data is stored in a key-value database called etcd.

The kubelet is a daemon present in each node whose main
function is to retrieve pods to schedule from the apiserver and
start them on the respective node. It also monitors those pods
to keep the apiserver informed on their state and to trigger the
appropriate control loops.

Kubernetes offers a high degree of customization. New plu-
gins can be registered to be used in various scheduling phases,

and new schedulers and controllers can be introduced into
the system in addition to the already available ones, or even
replacing them. There is no restriction on the programming
language adopted. Custom resources can be used to define new
resources to extend the standard object schema. Operators can
be developed to monitor these new resources and introduce
custom logic into the system [12].

B. Knative

Knative is a serverless platform based on Kubernetes as
a container orchestrator. It configures itself as a Kubernetes
service.

Knative handles applications as services, monitoring the
current load for each one of them and establishing how
many pods are necessary for each of them according to the
application’s configuration and current load. Each Knative
application pod is composed of one or multiple user containers
and a queue-proxy that forwards traffic to the said containers
and monitors their state.

To better understand Knative’s internal components, we
must understand the request flow of each application.

• The application is deployed as a Knative service; all
related resources are created, including a deployment and
a replicaset (Kubernetes resources that host the desired
number of pods).

• An initial instance is created to establish endpoints and
service health status and is dropped immediately after,
since no load is detected.

• The activator is inserted into the request flow to buffer
new requests until pods are created.

• When new requests arrive, a scale-up operation is trig-
gered.

• When sufficient pods are ready to answer requests, the
activator is removed from the requests’ flow since they
are sent to active instances directly.

• The autoscaler is the component in charge of scaling up
and down the application according to current load, ser-
vice configuration, and containers’ monitored parameters.

• When no requests are detected for a certain amount of
time, the application scales down to 0 instances and the
activator is reinserted in the flow; initial conditions are
restored and Knative awaits for new traffic.

III. PREEMPT-K8S: DESIGN AND IMPLEMENTATION

The implemented controller replicates the deployment/repli-
caset controllers’ control loops in charge of assuring that the
specified number of pods for a certain application is always
active in the system. The deployment resource was replaced
by a custom resource that shows a field to specify the number
of instances of an application (a field already present in a
deployment object) and a field representing the criticality level
of the application.

The “single queue, multiple servers” scheme of the kube
manager can cause delays and interferences to the orchestra-
tion of critical services. The events contained in the single
queue are handled as soon as they are free without taking



into account the services’ priority level. Once a control loop
thread starts to serve an event, the thread must complete it
before serving another. In other words, queued requests are
non-preemptable.

The designed controller watches over CRs that work as
custom replicasets, without acting (and thus not interfering)
on the standard K8s replicasets. In fact, our controller only
manages services with timing constraints. The advantages
brought by this solution are as follows:

• clear separation between the management of real-time
and non-real-time services;

• mixed-criticality workloads can be brought into the pic-
ture thanks to the priority level of each service handled
by the new controller;

• an event related to a real-time resource will be handled
by a thread whose priority is determined by the priority
of the event and related resource;

• by limiting the number of concurrently running threads,
their interference is bounded and event handling becomes
fully preemptable.

Conversely, the new controller scheme with a variable
number of servers is based on the following intuition: every
event, characterized by the respective application priority, must
always be immediately assigned to a server thread that handles
it, but let the kernel schedule threads based on their priority.
In this way, if a high-priority event arrives, it can be served
immediately.

The data flow diagram of the fixed-priority and fully pre-
emptive controller, hereon PREEMPT-K8S, is shown in Fig. 3.

Fig. 3: Preempt-K8s Data Flow Diagram

A. Architecture

PREEMPT-K8S is composed of several threads, each im-
plementing a step of the control loop. They are classified as
follows:

• watcher threads are in charge of event collecting;
• watchdog threads in charge of event handling;
• server in charge of thread management.
Application-related events are published by Kubernetes,

and watcher threads can connect to them to collect them.
The CRD Watcher thread collects creation, modification, and
deletion events related to custom resources that represent
the applications themselves. The Pod Watcher thread collects
deletion events connected to the pod related to the monitored
real-time applications. These threads execute at the highest
priority among the PREEMPT-K8S threads (i.e., 96 FIFO in
our case). This design choice is due to the fact that these
threads revolve around HTTP interactions with the apiserver
that could take an indefinite amount of time, and we want to
collect events as soon as possible in order to handle them in
the smallest amount of time possible.

All collected events are posted in a priority queue where
every event is posted with the relative application priority
level. This queue is shared among all the involved threads.

Watchdog threads are the actual event handlers. There is a
configurable base number of threads always active that can
then grow up to a configurable maximum number if they
should be necessary to handle several concurrent events. They
all start with the same scheduling priority (a lower level than
the one used for the watchers) to retrieve new events as soon
as possible, since their priority level is not known in advance.

Each watchdog retrieves an event from the queue, de-
queuing the one with the highest priority. Once the event is
collected, the thread changes its scheduling priority to match
the one of the retrieved event (higher priority events are
handled by higher priority threads). This allows watchdogs
to preempt threads handling less critical events in order to
speed up the orchestration for higher priority applications. The
actions performed are as follows:

1) it retrieves the event with the highest priority;
2) it changes its scheduling priority to adapt to the specific

event it is handling;
3) it checks for the existence of the related resource;
4) if the resource is found, it retrieves the desired number

of application instances, otherwise, it is considered to be
‘0’ to delete all associated pods;

5) it checks for the number of currently running pods
associated with said resource;

6) it calculates the number of pods to create or delete to
match the desired state;

7) it creates/deletes the computed number of pods.
Once the event has been handled, the thread reverts to its

original scheduling priority to retrieve new events from the
queue.

When a new event arrives in the queue, it can have any
priority level. With a fixed number of watchdogs, a higher



priority even could end up waiting for less critical ones if all
threads are already busy handling them.

The server thread scales the watchdogs during the control
loop to ensure there are always sufficient threads to handle
new incoming events. A configurable threshold can be set.
The server thread keeps track of the number of busy and
free threads. When the number of free ones goes below the
threshold, it spawns new ones. This design choice also has the
advantage of pre-warming threads before new events actually
arrive in a saturated system.

Watchdogs are in charge of deleting themselves when too
many threads are free in order to reduce resource consumption.
The server does not take care of this scaling aspect because
making it able to distinguish between free threads and threads
that are currently handling an event would have made the
design uselessly complex.

The server thread has a management role, thus, its schedul-
ing priority was set higher than the watchdogs’ base one, but
lower than the watchers’ one.

We wrote the PREEMPT-K8S in 526 lines of Rust code.
Rust allows creating threads scheduled by the fixed-priority
preemptive real-time Linux scheduler and allows interacting
with a K8s cluster through the K8s API library. It is worth
noting that K8s and the majority of custom controllers are
written in Golang, but the use of user-level threads (i.e., the
goroutines) does not allow full control over the priority of
kernel-level threads.

B. Knative Patch

To interact with PREEMPT-K8S Knative had to be patched.
In the usual workflow, when a Knative service is deployed,
several Kubernetes resources are created. Among these re-
sources, there are the application deployment and the re-
spective replicaset. Knative autoscaler directly interacts with
these resources to store scaling decisions that will trigger the
standard Kubernetes controller that will actually apply them
in the cluster.

There were three challenges that were addressed: i)
PREEMPT-K8S only watches over custom resources, thus
needing Knative to create them for the managed application in
order to interact with our custom controller; ii) the Kubernetes
standard resources associated to a Knative services needed to
be removed since autoscaler decisions must be applied only
to custom resources to avoid duplicated pods created by the
vanilla Kubernetes controllers; iii) the incoming traffic needs
to be redirected to PREEMPT-K8S managed pods in the same
manner Knative routed it in the standard workflow.

The initialization code was modified to create a deployment
with no associated pods. The patch gives for granted that a user
deploys a custom resource first with one associated pod to
establish endpoints, followed by the deployment of the actual
Knative services.

A new scaler was introduced in the system to apply scaling
decisions to custom resources, thus never updating the default
deployment that remains silenced.

TABLE I: Traces from CRD and CRD’s pods.

# Request Content User Agent
R1 GET the CRD namespace kubectl
R2 GET the CRD (rtresource that triggered the event) kubectl
R3 POST the CRD (rtresource that triggered the event) kubectl
R4 LIST directed to CRD namespace kube-apiserver
R5 GET the CRD (rtresource that triggered the event) PREEMPT-K8s Controller

C1 LIST the Pods related to the CRD being handled PREEMPT-K8s Controller
C2 POST the Pod being created PREEMPT-K8s Controller
C3 GET the Pod created kubelet
C4 PATCH the Pod created kubelet
C5 GET the Pod created kubelet
C6 PATCH the Pod created kubelet

The PREEMPT-K8S stub function used to create pods
description files (i.e., manifests) was modified to include labels
used to route traffic to the managed pods.

C. Monitoring

The proposal makes use of a monitoring strategy to observe
the Kubernetes behavior during runtime, with a focus on the
pod creation operation during scale-up. The collected data are
also used to evaluate whether the proposal is suitable for real-
time environments with critical and time-sensitive workloads
(as presented in Section IV). For this reason, the monitor-
ing strategy takes advantage of distributed tracing, which
allows obtaining fine-grained monitoring data describing the
interactions between components with millisecond resolution1.
Notice that tracing could introduce overhead, but it is limited
to specific control-plane events involved in pod creation (e.g.,
CRD operations and pod creation calls) and is not continuous
for all cluster operations.

Kubernetes has been configured to enable the generation
of tracing data for both the apiserver and etcd com-
ponents, to monitor the pod creation operation, and measure
the orchestration time. The tracing data has been collected
through two OpenTelemetry [13] pipelines, for cluster-wide
and node-specific data, respectively, which send the traces to
the observability back-end, i.e., Zipkin [14] in our setup.

In order to determine how to use the tracing data to
measure the orchestration time, we have analyzed the data
generated during the scaling scenario, for both the proposed
PREEMPT-K8S and the vanilla controllers. In this scenario,
the PREEMPT-K8S controller is expected to perform the
following operations:

• CRD Watcher: GET request to retrieve CRD event;
• Watchdog: LIST operation to retrieve a list of current

pods associated with the resource;
• Create Pod Function called by the Watchdog: POST

request to create a pod (repeated for each pod to create).
TABLE I provides an overview of the traces collected from

both the CRD and the CRD’s pods when using the PREEMPT-
K8S controller.

Kubernetes first gets the CRD namespace and then the
resource (R1-R2). If the resource does not exist, it is created

1Tracing is preferred instead of monitoring tools like Prometheus, since
they usually collect monitoring data with second granularity, which is not
enough in the real-time context.



by using a POST request (R3); otherwise, a PATCH request is
generated to change the state of the resource. Then, Kubernetes
makes a LIST request (R4) to get resource quotas. The last
trace (R5) is the first controller operation. We used R3 as the
start event to calculate the orchestration time, since it is the
request used for creating a resource.

Regarding the CRD’s pods traces, the first trace (C1) is
the LIST request made by PREEMPT-K8S to get all pods
related to the CRD being handled, followed by the pod creation
operation (C2). This is the last event in the control plane and
it can be used as the end event for the orchestration time
measurement. After orchestration, Kubernetes has to start the
pod on the selected node. This stage involves the kubelet
running on that node, which exhibits a precise communication
pattern during the pod creation (C3-C6). The pod is created,
going into a ”Container Creating” state (the first GET-PATCH
couple, C3-C4). Then, the pod goes into a ”Running” state (the
second GET-PATCH couple, C5-C6). These traces can be used
as other candidates for the end event of the orchestration time
measurement. Specifically, the first kubelet GET request (C3)
can be used as the end event to make a fair comparison with
the vanilla controller, being the first common event since the
orchestration starts.

For the vanilla controller, there is a slight variation con-
cerning our proposal. The POST/PATCH trace representing
the start time is found in the same namespace where the
pod will reside, but the user agent is always kubectl. The
orchestration time can be taken at two different points. If
the ”nodeName” field is already set, the scheduler will not
be involved in the flow. This is also the case for the custom
controller scenario, where a scheduling operation is simulated
by assigning pods the name of the node they will execute
on. In this situation, the kube manager POST operation trace
can be taken as the end event for orchestration measurement.
Otherwise, the scheduler’s one is used. The kubelet operations
remain the same.

Based on this analysis, we use two ways to calculate the
orchestration time. The first one defined as the time between
the request for creating a resource/deployment and the last
action before sending the request to the kubelet, e.g., C2−R3
for PREEMPT-K8S, and the second one defined as the time
between the request for creating a resource/deployment and
the first kubelet operation relative to the created pod, e.g.,
C3−R3 for PREEMPT-K8S. It is important to note that the
first way allows focusing only on the scheduling action of K8s,
neglecting the kubelet actions. Instead, the second one allows
for a fairer comparison with the vanilla controller, as indicated
earlier. Both ways are used in our evaluation.

IV. PREEMPT-K8S EVALUATION

We compare the proposed PREEMPT-K8S against the
vanilla Kubernetes deployment controller in various configura-
tions to understand its capability in handling mixed-criticality
services. We used Kubernetes v1.29.6 and containerd v1.7.11.
We also leveraged the OpenTelemetry framework along with
Zipkin to collect Kubernetes traces (millisecond resolution), as

described in Section III. We deployed the Kubernetes cluster
via VMs (8 cores, 8 GB RAM each) running on multiple
servers (Intel Xeon E5-2630L, SCSI storage). Each VM is
a node of the cluster. One of the VMs is the control plane
VM, and runs on a dedicated server, while the others are used
as worker nodes, depending on the experiments detailed in
the following. Critical resources/deployments include an nginx
server pod (v1.27.5). For statistical significance purposes, we
repeated each experiment 30 times, reporting the average
(Avg) and standard deviation (SD) as metrics of interest.

A. RQ1 - Does PREEMPT-K8S perform better than vanilla
Kubernetes?

We first evaluate how PREEMPT-K8S behaves compared to
the most basic Kubernetes setup in terms of built-in priority
handling features. About this latter, K8s implements:

• Flowschema [15], which is a feature that creates a sort of
“channel” for requests to separate them from the others.
In this case, it has been used to isolate the most critical
deployment in the namespace where it is located. A level
of precedence can be given to these “channels” [10];

• Priority classes, which is a feature that gives a certain
level of priority to pods in the scheduling and its follow-
ing phases. It was enabled alongside the previous one to
see if it impacted in some way the orchestration time in
the control plane [10].

We evaluated the following scenarios:
• vanilla Kubernetes deployment/replicaset controller;
• vanilla Kubernetes deployment/replicaset controller with

a basic FlowSchema (FS) and priority class (PC) enabled;
• PREEMPT-K8S deployed within Kubernetes with no

priority feature enabled.
We set an experiment that creates one critical resource/de-

ployment within a separate namespace and assigned it the
highest priority (i.e., priority set equal to 1). We measured
orchestration times, as the time between the request for creat-
ing a resource/deployment and the time within the last action
before sending the request to the kubelet, while an interfering
load (stressload) is applied. We neglect the kubelet time in
this experiment to quantify orchestration times only due to
the scheduling stuff of K8s. The stressload is implemented as
several single-pod resources/deployments (i.e., 10, 25, 50, and
75) running in a separate namespace compared to the one used
for the critical resource/deployment.

Please note that PREEMPT-K8S does not involve the K8s
scheduler for creating a resource/deployment. So, in the sce-
nario with vanilla Kubernetes, the scheduler was bypassed by
assigning the node name in the deployment manifest to make
a fair comparison. Instead, in the scenario with FlowSchema
and priority classes enabled, the scheduling time is considered
since the priority class feature leverages it.

Table II and Figure 4 show results across all interfering
resources/deployments.

PREEMPT-K8S shows better performance with an or-
chestration time on average, for the most critical workload,
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Fig. 4: Orchestration times for critical pod with different
interfering loads, comparing basic built-in priority handling
mechanism in K8s against PREEMPT-K8S.

TABLE II: Orchestration times for deployment of critical
service varying interference across vanilla K8s, FlowSchema-
and priority class-enabled K8s, and PREEMPT-K8S.

Interference Vanilla K8s FlowSchema+PC K8s PREEMPT-K8S
Avg [ms] SD Avg [ms] SD Avg [ms] SD

10 183 196 208 136 34 7
25 1260 1014 1369 1149 33 11
50 3555 2436 4697 2505 40 21
75 7140 4081 7680 4352 28 9

always under 100 milliseconds independently of the num-
ber of interfering resources. The standard deviation is also
smaller than the vanilla version. It can also be noted that the
FlowSchema+PC scenario is the worst case, leading to the
conclusion that the built-in mechanisms for handling priority
are ineffective compared to vanilla K8s.

The vanilla Kubernetes version analyzed in the previous ex-
periments was not the most effective in terms of performance
and priority handling. Therefore, we conduct new experiments
to reveal whether a better flow control schema and a built-
in throttling mechanism can improve the orchestration times
of a critical deployment. In K8s, throttling is a mechanism
that limits the number of requests per second from a certain
component. In that case, the kube manager traffic will be
shaped towards the apiserver to not overload it.

The experiments performed are very similar to the first ones
described before. This time, a more powerful FlowSchema
was used, replacing the previous one, in which all requests
coming from that namespace are exempted from queuing and
handled as soon as possible. The priority class remains the
same. In addition, by disabling throttling, it is possible to
accelerate the handling times of deployments under test [10].
Further, the end time for orchestration is taken considering the
first common event in all the scenarios, i.e., the first kubelet
operation relative to the created pod. In that way, we have a
fairer comparison. Thus, we considered for comparison also
the following scenarios:

• vanilla Kubernetes deployment/replicaset controller with
exempt FlowSchema and priority class enabled, and throt-

10 25 50 75
Stressload (resources/deployments)

10
1

10
0

10
1

O
rc

he
st

ra
tio

n 
tim

e 
[s

]

vanilla K8s + exempt + PC + throttling
vanilla K8s + exempt + PC + No throttling
PREEMPT-K8S

Fig. 5: Orchestration times for critical pod with different inter-
fering loads, comparing vanilla K8s with improved mechanism
for priority handling (exempt FlowSchema and throttling dis-
abled) against PREEMPT-K8S.

tling disabled;
• vanilla Kubernetes deployment/replicaset controller with

exempt FlowSchema and priority class enabled, and throt-
tling enabled;

Table III and Figure 5 show the results, comparing the
proposal with vanilla K8s with an improved mechanism for
priority handling (exempt FlowSchema and throttling en-
abled/disabled). We can notice how similar the performance
of the controllers is to the case with throttling disabled.
PREEMPT-K8S still shows slightly better mean handling
times and variances. It can also be noted that throttling is the
most limiting feature. We obtain a p-value < 0.0003 with the
Mann–Whitney U test (since the normality test failed) with a
0.05 confidence interval, resulting in statistical significance of
the analyzed distributions.

We could point out that the slightly better performance
are not a sufficient justification for the development effort.
This is not true because all these features cannot be used in
production. Indeed, disabling throttling leads to good enough
results compared to PREEMPT-K8S. However, Kubernetes
developers strongly discourage disabling that mechanism be-
cause it could lead to several problems that are unacceptable
in a real-time mixed-criticality environment [16]. The exempt
FlowSchema is only useful in a situation like the one shown
in these experiments, where there is only one deployment in
the associated namespace. If more namespaces were exempted
from queuing or if a single exempted namespace was hosting

TABLE III: Orchestration times for critical deployment vary-
ing interference across K8s with exempt FlowSchema- and
priority class- enabled K8s, enabling and disabling throttling,
compared to PREEMPT-K8S.

Interfence K8s exempt+PC+no throttling K8s exempt+PC+throttling PREEMPT-K8S
Avg [ms] SD Avg [ms] SD Avg [ms] SD

10 72 17 191 184 41 12
25 106 37 1499 1318 47 17
50 145 70 4675 2874 73 61
75 196 110 9094 3886 100 81



multiple deployments, there would be no prioritization at
all. Further experiments will investigate this aspect. For the
priority classes mechanisms, it is a complex mechanism that
requires users to create a new Kubernetes resource for each pri-
ority level. Our PREEMPT-K8S only needs the priority level
number given through the custom resource of an application,
making it a more user-friendly mechanism.

TABLE IV: Kubelet effect comparing vanilla K8s with ex-
empt FlowSchema, priority classes, throttling disabled against
PREEMPT-K8S with or without a dedicated worker node to
the most critical application.

Scenario Avg [ms] SD
K8s exempt+PC+no throttling (dedicated) 144 61

PREEMPT-K8S (dedicated) 39 19
K8s exempt+PC+no throttling 196 110

PREEMPT-K8S 100 81

B. RQ2 - How much does the kubelet affect the orchestration
times?

The Kubelet component handles the creation of containers
on the worker node. In this experiment, the objective is to
evaluate the impact of Kubelet on orchestration times. We set
up the K8s cluster with 4 worker nodes. We set PREEMPT-
K8S and the vanilla K8s scheduler to deploy pods uniformly
on all available worker nodes. In this way, each Kubelet service
has to manage all incoming requests for the assigned worker
node, unaware of the priority level of the application. We
consider 75 interfering resource/deployment, and assign to the
most critical application a dedicated worker node. The results
were compared with the previous ones and they can be seen
in Table IV, while Figure 6 shows the respective box plots.

We can notice that the Kubelet represents an actual bot-
tleneck that needs to be patched to be aware of the choices
made by schedulers for priority handling. PREEMPT-K8S
would benefit from a Kubelet that works only for the most
critical workload. The Mann–Whitney U test showed a clear
statistical difference, with a 0.05 confidence interval, between
distributions for PREEMPT-K8S experiments (p-values are
< 0.0001), while there is no statistical evidence for vanilla
K8s experiments (p-value 0.0484), although the results show
slightly better performance when using an exclusive node.

V. PREEMPT-K8S IN A SERVERLESS ENVIRONMENT

The experiments in Section IV show the relevant improve-
ments provided by PREEMPT-K8S during the orchestration
phase against vanilla K8s, by testing various configurations
to properly handle services at differentiated priorities. In this
section, instead, we analyze to what extent PREEMPT-K8S
adds benefits to a serverless-based service with high-priority
constraints. As a critical service, we set up an HTTP server
pod2 that receives POST requests with a time parameter
that specifies the time to sleep within the serving (this wait

2A simple Go webserver used as a test image,
https://github.com/knative/serving/tree/main/test/test images/autoscale
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Fig. 6: Boxplots of Kubelet effect comparing vanilla K8s
with exempt FlowSchema, priority classes, throttling disabled
against PREEMPT-K8S with or without a dedicated worker
node to the most critical application.

is used for simulating connection delays). We measure the
service latency, i.e., the end-to-end response time for 10
Knative services with priorities ranging from 1 to 10 for
each. Each service is set with 10 threads as the concurrency
level. As workload we trigger 40 requests-per-second for each
service for a total of 400 requests. For the critical service, we
dedicated 2 worker nodes among the 4 available. For statistical
significance purposes, we repeated each experiment 30 times,
duration of 1 minute each, and we report the average (Avg)
and standard deviation (SD) as metrics of interest. As the
stressload, we based on “real-traffic-test” benchmark in [17],
which simulates realistic traffic with random request latency,
service startup latency, and payload sizes. The benchmark was
adapted to stress the scaling feature of Knative to show the
improvements provided by PREEMPT-K8S during scaling op-
erations. We compare PREEMPT-K8S against Knative scaling
achieved through the deployment/replicaset vanilla controllers.

The duration of a single experiment (1 minute) allows us to
properly test the scaling mechanism before reaching a stable
number of active instances for each service. The scaling logic
is driven by the set number of concurrent requests, i.e., scale
up when too many requests are detected for a given service,
and scale down in the opposite situation.

Fig. 7 and Table V show the results. There is a clear
indication that the services are properly prioritized when
scaled with the PREEMPT-K8S controller compared with
vanilla K8s in both configurations. However, PREEMPT-K8S
exhibits a slightly higher end-to-end service latency average
than vanilla cases, especially when the priority decreases.
By recalling RQ2 (see §IV-B), the kubelet operations affect
PREEMPT-K8S (as well as vanilla configurations) since there
is no awareness of priorities, which are properly handled in the
scheduling phase. More effort is needed to properly integrate
PREEMPT-K8S into Knative, by also patching the kubelet
and performing a detailed timing analysis to spot bottlenecks.
However, even for our preliminary integration in a serverless
setting, the orchestration times obtained by PREEMPT-K8S
show a smaller standard deviation than the vanilla settings
in the majority of cases, especially for the highest priority
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TABLE V: Service latencies (Avg in ms and SD) for 10
critical services at 10 different priority levels, scaled by the
PREEMPT-K8S controller, vanilla K8s, and vanilla K8s with
best built-in priority handling, via Knative.

Service
Priority

Vanilla K8s Vanilla K8s +
Exempt + PC +

No Throttle

PREEMPT-K8S

Avg [ms] SD Avg [ms] SD Avg [ms] SD
1 1029 906 1019 1029 1169 395
2 1312 904 1158 789 1866 1035
3 1517 1089 1382 880 1733 924
4 1434 1077 1101 770 1816 683
5 1648 1001 1547 1087 2331 982
6 1479 1104 1480 855 2535 798
7 1660 1001 1438 977 3079 973
8 1606 978 1518 782 3160 637
9 1693 1244 1254 719 3208 688

10 1726 1088 1403 803 3733 624

service, as already demonstrated in §IV. More importantly,
they show the ability of PREEMPT-K8S to correctly prioritize
the services during the scale-up operations.

VI. DISCUSSION AND LIMITATIONS

While the proposed PREEMPT-K8S controller demonstrates
significant improvements in orchestration time for mixed-
criticality serverless workloads, potential threats to the validity
and generalizability of our results must be acknowledged.

Thread Scheduling Limitations. Our design relies on
dynamically adjusting the scheduling priority of kernel-level
threads after retrieving events from the queue. Although this
approach enables preemption of low-criticality tasks, there
remains a brief interval between event retrieval and priority
escalation. This design choice may introduce minimal delays,
which could be avoided with alternative multi-queue or
static-priority thread-pool designs. In practice, our empirical
results suggest this overhead is negligible; however, different
system loads or hardware could amplify this effect.

Runtime and Implementation Constraints. We implemented
PREEMPT-K8S in Rust to enable fine-grained control over
kernel-level threads and their real-time scheduling attributes.
In contrast, common Kubernetes extensions are typically
developed in Go, where goroutines do not map directly to
individual kernel threads. This architectural mismatch limits
direct portability of our solution to controllers written in
Go, unless a similar native-thread mechanism is integrated.
This could constrain adoption by the broader Kubernetes
ecosystem.

Monitoring and Instrumentation Overhead. To measure
orchestration performance with high temporal resolution, we
employed distributed tracing with millisecond granularity.
Although we carefully scoped tracing to only control-plane
interactions (e.g., CRD and pod lifecycle operations),
extensive tracing could add non-negligible overhead under
heavy load if misconfigured. To mitigate this, we used
sampling and verified that trace collection did not significantly
distort orchestration latencies in our setup.

System Configuration Dependencies. Our experiments
assume explicit control of system-level settings, including
real-time scheduling (SCHED FIFO), disabled real-time
throttling, fixed CPU frequencies (performance governor),
and limited idle states. These configurations ensure minimal
jitter and maximum predictability, but they may not be feasible
or desirable in multi-tenant or production Kubernetes clusters
where strict CPU isolation is impractical. Additionally,
improper configuration of real-time scheduling parameters
could lead to resource starvation for other workloads.

Comparative Baselines. We compared PREEMPT-K8S
with the default Kubernetes controller as well as with
Kubernetes configured with FlowSchemas, PriorityClasses,
and throttling adjustments. While these baselines represent
standard priority-handling techniques in Kubernetes, they
do not exhaustively cover all possible fine-tuning options
or third-party schedulers. Moreover, the specific workload,
cluster size, and stress loads in our experiments might differ
from production deployments, which could influence observed
orchestration times.

Kubelet Scheduling Effects. Our results highlight that the
kubelet remains unaware of the orchestration priorities set
by PREEMPT-K8S. Consequently, while our controller can
prioritize control-plane scheduling, the final container startup
may still experience delays at the node level due to the
kubelet’s lack of real-time awareness. Future work is needed
to align kubelet operations with orchestrator-level priorities to
close this gap.

VII. RELATED WORK

Provisioning times for scaling and deployment can be
optimized by adopting techniques explored in various studies
addressing Function-as-a-Service (FaaS) cold starts.



Many serverless platforms already employ mechanisms such
as keep-alive windows to reduce cold-start occurrences, like
Knative [18] and OpenFaaS [19]. Even though these mecha-
nisms are already functioning, many optimizations should be
considered since these keep-alive windows are still too wide
to reduce resource consumption effectively (e.g., OpenFaaS
sets a keep-alive window of 30 minutes, by default, for a pod
running the last active function). In [20], the authors pointed
out how the chosen programming language of an application
affects cold-start times, and this technical aspect should be
considered as an important requirement in the development
phase.

Other techniques, as categorized in [21], include
application-based [22], [23], checkpoint-based [24],
prediction-based [25]–[28], and cache-based [29]. Their
core strategies involve pre-warming containers, reusing or
pooling warm containers, scheduling ahead of time, and
keeping containers alive. All these aim to minimize the
overhead associated with launching a new container—such
as downloading the image, configuring the sandbox, and
initializing the language runtime and application code.

However, these solutions primarily target optimizations at
the worker node level and often overlook the orchestration
overhead, particularly under variable or heavy-load conditions.
Our approach complements these techniques by incorporating
SLO-aware orchestration to ensure that critical functions re-
ceive priority when system demand is high.

Liu et al. [30] demonstrated that although the time to start
a new pod may not lie directly on the critical execution path,
it still significantly affects the overall service response time
during scaling operations. As noted in their introduction, they
also highlight the ”declarative tax”—the latency introduced by
the orchestration system as it converts declarative configura-
tion into imperative commands for cluster reconciliation—as a
growing bottleneck in serverless environments, where startup
latencies are rapidly shrinking.

The studies in [31], [32] investigate and compare orchestra-
tion times across various Kubernetes distributions. In particu-
lar, [32] introduces a systematic benchmarking methodology,
examining pod startup times under increasing pod counts.
However, these measurements are primarily used to evaluate
the orchestrator’s throughput, rather than explicitly address-
ing orchestration latency. Notably, even research focused on
real-time orchestration—such as [33]–[37]—tends to overlook
orchestration latency. These works concentrate on ensuring the
timeliness of application execution on worker nodes, without
accounting for the orchestration overhead that may impact end-
to-end responsiveness.

Each of these studies targets a different part of the scaling
process, never focusing on the orchestration process. As we
highlighted in this paper, current orchestration platforms are
not equipped with appropriate priority handling features to
manage mixed-criticality workloads. This leads to an unpre-
dictable growth in the events handling times, since serverless
platforms might request the scaling of multiple applications at
the same time, which should be addressed by the underlying

orchestrator in the shortest amount of time possible to reduce
service response times and keep a stable quality of service. It
is not surprising that the vast majority of works focused on
the orchestration process can be found in the IIoT field, since
this problem requires a real-time approach.

Finally, some studies applied to databases (e.g., MongoDB
in [38], [39]) share the core idea of introducing priority-driven
differentiated performance by leveraging OS-level priorities
for threads handling requests. Our work is complementary to
these since it targets orchestration-level scheduling in Kuber-
netes, focusing on the control plane and container lifecycle
management, whereas [38], [39] focus on I/O operations of a
NoSQL database.

VIII. CONCLUSIONS

In this research, we highlighted the problem of slow orches-
tration times with specific reference to the Kubernetes con-
tainer orchestration platform. Facing these kinds of problems
becomes imperative if the objective is to develop a real-time
environment with mixed-criticality applications.

We proposed a custom controller that replicates one of
the most important control loops of the platform to make
it compliant with scenarios where slow start-up times are
not allowed for critical workloads and where there is a need
to take into account the criticality level of each application
managed by the system. The principal characteristic is not
only to have a handling software that handles events according
to their priority, but also to make itself a real-time software
with high-priority scheduling and preemption mechanisms.
These activities are vital in serverless computing environments
where instances must be active as soon as they are required,
especially those with high criticality and stringent timing
requirements.

Beyond the deployment loop, other control loops could be
re-imagined for real-time operation in PREEMPT-K8S. Ulti-
mately, the goal is to enable a co-orchestrator by integrating
a standard Kubernetes instance with a lightweight, patched
version for critical tasks, ensuring effective shared resources
management. This work marks an initial step toward that
vision.
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