
PROCEEDINGS OF

OSPERT 2023
The 17th Annual Workshop on

Operating Systems Platforms for
Embedded Real-Time Applications

July 11th, 2023 in Vienna, Austria

in conjunction with

The 35th Euromicro Conference on Real-Time Systems
July 11–14, 2023, Vienna, Austria

Editors:
Renato Mancuso
Alexander Zuepke

https://www.ecrts.org/workshops/ospert23/
https://www.ecrts.org/2023/


Contents

Message from the Chairs 3

Program Committee 3

Keynote Talk 5

Session: RTOS Reactiveness and Awareness 7
Assessment of Efficient Dispatching in FreeRTOS

F. Hagens, K.-H. Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ResourceGauge: Enabling Resource-Aware Software Components

A. Schmidt, L. Gerhorst, K. Vogelgesang, T. Hönig . . . . . . . . . . . . . . . . . . . . . . . . 11
Arm MUCH: Full-spectrum hardware-event-based Armv8 application profiler

A. Misuraca, A. Bastoni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Session: From Real-Time OS to Real-Time Cloud Systems 25
Joint Time-and Event-Triggered Scheduling in the Linux Kernel

G. Gala, I. Kadusale, G. Fohler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Program 33

© Copyright 2023 Boston University & Technische Universität München.
All rights reserved. The copyright of this collection is with Boston University & Technische Universität München.
The copyright of the individual articles remains with their authors.





Message from the Chairs

Welcome to OSPERT’23, the 17th annual workshop on Operating Systems Platforms for Embedded Real-Time
Applications. This year, OSPERT will provide a combined program with the RT-Cloud workshop. We invite you
to join us in participating in a workshop of lively discussions, exchanging ideas about systems issues related to
real-time and embedded systems.

The workshop will open with a keynote by Ulrich Drepper, discussing co-development of hardware and
software at the Red Hat CoDes lab at Boston University. We will have a second keynote from the RT-Cloud
workshop in the afternoon.

OSPERT’23 received four submissions from which all were selected by the program commitee to be
presented at the workshop. Each paper received three individual reviews. Our special thanks go to the program
committee, a team of nine experts for volunteering their time and effort to provide useful feedback to the authors,
and of course to all the authors for their contributions and hard work.

OSPERT’23 would not have been possible without the support of many people. The first thanks are due
to Alessandro Papadopoulos, Peter Puschner, and the whole ECRTS organizing team for entrusting us with
organizing OSPERT, and for their continued support of the workshop. We would also like to thank the chairs of
prior editions of the workshop who shaped OSPERT and let it grow into the successful event that it is today.

Last, but not least, we thank you, the audience, for your participation. Through your stimulating questions
and lively interest you help to define and improve OSPERT. We hope you will enjoy this day.

The Workshop Chairs,

Renato Mancuso Alexander Zuepke
Boston University Technische Universität München
USA Germany

Program Committee

Harini Ramaprasad UNC Charlotte
Bryan Ward Vanderbilt University
Daniel Casini Scuola Superiore Sant’Anna
Francesco Restuccia Northeastern University
Christian Dietrich Technical University of Hamburg
Gedare Bloom University of Colorado at Colorado Springs
Arpan Gujarati University of British Columbia
Catherine Nemitz Davidson College
Marine Sauze-Kadar CEA-Leti
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Keynote Talk

Co-Developing Hardware and Software

Ulrich Drepper
Distinguished Engineer, Red Hat Research

The granularity at which hardware SKUs are available usually means that one uses a more-or-less general
development platform. On top of this, at best, a customized real-time OS is deployed, which due to portability, is
written with compromises in the HAL and user API.

In the Red Hat CoDes lab at Boston University, we are developing solutions that allow specifying the exact
needs of the program(s) to run and which creates from this specification and the program code everything from
the exact specification of the hardware (how many cores, what ISA, what extensions, what interfaces like DDR,
Ethernet, PCIe, SPI, GPIO, etc) to the bootloader, debugger interfaces, OS with standard interfaces and further
on to an integrated development environment for the software developer.

The goal is to create an efficient platform to deploy the application with complexity a developer already
handles fine on hardware based on FPGAs, which allows a common hardware design used in many situations.
All this, of course, with fleet management, documents, and design security models.

This talk will give a short overview of the current state and what we hope to achieve.

Ulrich Drepper joined Red Hat again in 2017 after a seven-year hiatus when he worked for Goldman Sachs.
He works in the Red Hat Research group, which is part of the office of the CTO. As part of his job, he looks
after the ongoing projects the group is working on. He specifically concentrates on developing new technologies
for efficient computing for high-performance needs or limited energy budgets with the help of customized
hardware/software solutions.

In his last position at Goldman Sachs, he worked on various areas, such as stochastic algorithms to aid in
operation, consulting internally on high-performance and low-latency development, and teaching classes around
computing fundamentals and machine learning.

His previous stint at Red Hat lasted 14 years. The last position was as a member of the office of the CTO
to collect and disseminate information relevant to the Red Hat Enterprise Linux product, predominantly in the
high-performs area. During this time and back to the earliest days of Linux, he developed the basic runtime and
development tools still in use today.
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Assessment of Efficient Dispatching in FreeRTOS
Florian Hagens and Kuan-Hsun Chen

Department of Computer Science, University of Twente, the Netherlands
f.hagens@student.utwente.nl, k.h.chen@utwente.nl

Abstract—This study investigates the efficiency of task dis-
patchers in real-world implementations. We focus on evaluating
various task dispatching methods based on four distinct data
structures and their impact on computation overhead and perfor-
mance in FreeRTOS. By using a real-world setup, we analyze the
merits and drawbacks of each data structure and corresponding
task dispatcher implementation. Our preliminary findings sug-
gest that task dispatcher efficiency highly depends on the task
set size and their respective periods, with alternative dispatchers
potentially outperforming the List-based implementation, which
is presently utilized in FreeRTOS, in certain scenarios. Ultimately,
this study seeks to provide valuable insights for system designers
and developers, emphasizing the importance of tailoring task
dispatchers to specific task sets for improved efficiency and
reliability in real-time systems.

Index Terms—Real-Time Operating Systems, Task Dispatchers

I. INTRODUCTION

Real-time systems demand the efficient and timely execu-
tion of periodic tasks to guarantee system stability, respon-
siveness to time-sensitive events, and predictable behavior in
their applications [1]. Although numerous studies have been
conducted on scheduling algorithms, the task dispatcher, which
plays a crucial role in initiating task execution and maintaining
task periodicity, has not been as thoroughly investigated.
This early work aims to investigate this gap by presenting a
case study on FreeRTOS’s task dispatcher, exploring various
implementations to assess their respective operation overheads.

Prior work has studied task dispatcher optimization through
hardware-based solutions and the development of efficient data
structures [2]–[5]. These studies demonstrate the importance
of task dispatcher optimization, and lay the groundwork for
our current research. However, there is yet no definitive
conclusion regarding the most suitable type of task dispatcher
to implement in specific scenarios, emphasizing the need for
further research and context-driven evaluations to establish
best practices in task dispatcher design and implementation.

The task dispatcher plays a critical role in managing tasks
with a specific data structure, as it is invoked in every system
tick. Upon the occurrence of each system tick interrupt, the
task dispatcher checks whether the current tick t is greater
than or equal to the next unblock time B, which is defined by
the earliest release job in the data structure. If this condition
is met (t ≥ B), the job with the earliest release time (Rmin)
is retrieved from the data structure. Then, the task dispatcher
compares Rmin with the current tick t. If Rmin > t, the
unblock time B is updated according to: B = Rmin However,
if Rmin ≤ t, the task with the release time Rmin is removed

Host PC

GDB OpenOCD

idf.py esptool.py USB-to-UART

JTAG Adapter

ESP32-S3-DevKitC-1

VSCode PlatformIO ESP-IDF

FreeRTOS-
Kernel

FreeRTOS-
Application

Fig. 1. Real-world measurement setup

from the task dispatcher’s data structure and placed in the
ready queue. In FreeRTOS, the frequency of tick increments is
defined by configTICK_RATE_HZ (e.g., set to 100, which
corresponds to a tick increment every 10ms). In light of the
description above, it is evident that the task dispatcher is
invoked frequently, highlighting that even minor improvements
in its overhead can lead to substantial reductions in the overall
system overhead throughout its lifespan, which is primarily
determined by the data structure.

Toward this, we evaluate the task dispatcher in FreeRTOS,
which is one of the well-known RTOS, based on four data
structures: List, Binary Search Tree (BST), Red-Black Tree
(RBT), and Heap. BST is selected to strike a balance between
time complexity and code simplicity, while Red-Black Trees
and Heaps were employed for their superior time complexity
performance. We implemented these data structures not only to
compare the average computation overhead but also the ”jitter”
(the difference between worst and best-case performance)
within a task set. The jitter here is crucial in ensuring the
predictability of the system behavior (e.g., no unexpectedly
long delay during the dispatching). Please note that, due to
the considerable challenges arising from the design principles,
e.g., memory footprint, the integration of a timing wheel has
not been implemented [4].
Our Contributions: This paper presents a thorough as-
sessment of each task dispatcher’s effectiveness, evaluating
computational overhead and offering valuable insights for
developers and researchers in the field of embedded systems. A
key aspect of our study is the use of real-world measurements
on actual hardware, on which we performed CPU cycle
measurements as a metric for determining overhead to ensure
accurate and realistic behavior of the investigated dispatchers.

The codebase for the kernel, which includes the dispatcher implementations
evaluated in this paper, is open for reference upon request to encourage trans-
parency and foster collaboration within the academic community; however, it
is not yet publicly available due to its work-in-progress status.
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II. REAL-WORLD MEASUREMENT SETUP

In Figure 1, we present the components of our real-world
measurement setup, encompassing the software, hardware, and
data collection methodologies employed for evaluating the
performance of our target system.

A. Software Components
The underlying software platform is based on the ESP-

IDF FreeRTOS kernel (FreeRTOS version V10.4.3 and ESP-
IDF version 4.4.1), which offers a comprehensive development
environment tailored for the ESP32 series of microcontrollers.
We use esptool.py and idf.py as essential command-
line utilities for handling firmware-related operations. The
esptool.py allows us to flash firmware and interact with
the ESP32 bootloader, while idf.py provides a range of
build system and project management capabilities. In order
to evaluate the changes made to the task dispatcher, we
have developed a dummy FreeRTOS application that creates
periodic tasks based on the desired task set, allowing for
easy configuration of various parameters, such as periods and
execution times.

B. Hardware and Debugging Tools
We employ the ESP32-S3-DevKitC-1 microcontroller as the

target embedded device. The microcontroller is configured and
managed using the PlatformIO structure, ensuring compatibil-
ity with multiple ESP32 devices and facilitating configuration
adjustments. To gain insights into the measurement results, we
rely on GDB and OpenOCD for debugging and profiling the
embedded device. These tools enable effective examination of
system performance and aid in understanding the intricacies
of the measurement process.

C. Evaluation Methodology
The CPU cycle counter, based on the ccount register

of the ESP32-S3-DevKitC-1, is employed to assess software
system overhead. The CPU cycle counter offers various ad-
vantages, such as high-resolution time measurements, low
overhead, independence from external factors, and consistency
among systems. We track the average, best, and worst-case
scenarios over multiple task executions.

To obtain accurate and reproducible results, we disable
most compiler optimizations (optimization level -O0), making
the measurement outcomes less reliant on the compiler or
CPU architecture. This approach, although it may impact
performance, provides valuable insights into the characteristics
of the task dispatcher and its overhead.

To assess the performance of task dispatchers, we measured
the CPU cycles for their three primary operations (i.e., task
insertion, first task retrieval, and first task removal) and
plotted them to derive visual insight. To ensure the behavioral
correctness of the implementations, we restricted the task set
to a maximum of 150 tasks.

The task model in our evaluation is strictly periodic, main-
tained through the use of the vTaskDelayUntil() func-
tion. Other task characteristics, such as priority and execution
time, have no direct influence on the task dispatcher behavior.

III. EVALUATION

Firstly, we examined the worst-case scenario of each imple-
mentation, ranging from 1 up to 150 tasks per implementation.
Note that the worst-case scenario was enforced manually for
a single execution of the primary operations, e.g., the longest
path in tree-based structures. As shown in Figure 2, the
characteristics of different implementations differ significantly.

Note that, for subsequent task set evaluations (Figure 3
and Figure 4), a graph’s lower opacity area represents the
computation overhead space. A single execution can have any
value within this space, and the line between these bounds
represents the average computation overhead. A smaller area
with lower opacity indicates more consistent performance,
while a larger area suggests more variable performance.

Secondly, we evaluated the homogeneous task sets, where
every task had the same period. This aspect could be of interest
in automotive industries, where substantial proportions of tasks
operate within a limited number of periods [6]. Since the
three primary operations exhibit a similar rate of invocation
in such task sets, we can describe the computation overhead
comparison fairly. As shown in Figure 3, the Heap-based
dispatcher and the RBT-based dispatcher outperform the List-
based dispatcher, at 25 tasks and 65 tasks, respectively.

Finally, we synthesized task sets, according to the automo-
tive benchmark, provided by Kramer et al. [6]. This benchmark
was chosen due to its significance, abstracted from real-world
automotive applications, and its period variance. There was
a total of 9 different task periods. For every period used in
the benchmark, an equal amount of tasks was created. We
evaluated each implementation, ranging from a task set of
one uniform distribution subset, existing of 9 tasks, up to a
task set of 16 uniform distribution subsets, resulting in 144
tasks. In Figure 4, the average performance of the RBT-based
dispatcher is found to be comparable to that of the List-
based dispatcher for larger task sets; however, the RBT-based
dispatcher exhibits a substantially reduced difference, nearly
half, between the best and worst performance outcomes.

IV. CONCLUSION

In this work-in-progress, we assess the efficiency of var-
ious task dispatchers in FreeRTOS. To examine the over-
head incurred by different implementations, we deployed a
real-world measurement setup via ESP32-S3-DevKitC-1 and
examined the efficiency of different implementations under
various configurations. The experimental results show that the
performance highly depends on the size of the task sets and
their respective periods. Interestingly, we found that RBT and
Heap might perform better than the List-based task dispatcher,
which is presently utilized in FreeRTOS, in specific scenarios.

Since the specification of real-time systems is often known
offline, such as the number and the periods of tasks, we plan
to leverage this information to derive tailored implementations
automatically. Such specific solutions could be more applica-
ble for industrial applications, as argued in [7].
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Fig. 2. Worst-case computation overhead comparison of different task dispatcher implementations.
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Fig. 3. Overhead comparison of different task dispatcher implementations for homogeneous task sets.
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Fig. 4. Overhead comparison of different task dispatcher implementations for uniform distributed task sets.
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ResourceGauge:
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Abstract—Software Engineering arose from the need to scale
up and decompose the development of large software systems [1].
While the discipline was successful in finding functional in-
terfaces (i.e., data formats and callee/caller relationships), the
support to formulate non-functional interfaces [2] for resource
budgets is still lacking. Without resource awareness, designing
system software—especially for cyber-physical systems—remains
a difficult endeavor [3]. Additionally, resource awareness has
become a critical aspect for system software, as we need to design
and build CO2-efficient systems today.

In this paper, we present ResourceGauge, an approach to
ergonomically manage physical resources—such as time or
energy—using a stock Rust compiler toolchain. With Resource-
Gauge, data and/or control-flow units (e.g., functions) become
resource-aware and adequate resource use is checked for com-
positions of multiple software components. By this, expected
resource allocation failures are dependably detected at compile
time (if static annotations do not comply) as well as runtime (if
full compliance cannot be checked statically).

Index Terms—Performance Interfaces, Time, Energy

I. INTRODUCTION

Engineering system software is challenging—especially for
cyber-physical systems (CPSs) [4]. Due to the complexity
of systems interacting with the environment and computing
optimal control actions, developing CPSs becomes a highly
distributed task. Still, individual software components have,
due to their CPS nature, resource limits in the amount of time
and energy they can request and use. At integration time, such
limits must be composed and checked for compatibility. Ulti-
mately, limits must be enforced statically (i.e., at build-time)
and dynamically (i.e., at run-time), for instance, using custom
logic or leveraging _timeout(...) function variants.

To overcome this, we consider performance interfaces [2],
the non-functional equivalent to established software inter-
faces (e.g., call conventions, data structure and type). These
new interfaces are models mapping from inputs/configurations
to non-functional properties [2], [5]. We focus on constraints,
for example, resource limits per function call. Industry-grade
programming systems do not directly allow specifying and
enforcing these resource limits [3], [4]—despite developers’
demand [6]. This is a challenge, as developers understand
the application better [7] and resource optimizations are
difficult, if not impossible to accomplish without resource
awareness [8].

The contribution of this paper is threefold:
• We revisit the state of the art in dependable resource-

aware software tools and programming support.
• We propose ResourceGauge1, an approach enabling de-

velopers to make components resource-aware, with low
overhead and changes to the functionality.

• We present resourcegauge-rs, a ResourceGauge
implementation, using an unmodified Rust compiler. This
demonstrates how ownership systems, being initially
designed for memory management, can be reused for
physical resource management.

The rest of the paper is structured as follows: Sec. II
describes use cases and requirements for resource-aware soft-
ware components. Background and related work is described
in Sec. III. Sec. IV presents the usage and implementation
of resourcegauge-rs. Sec. V discusses the approach,
Sec. VI gives an outlook, and Sec. VII concludes this paper.

II. REQUIREMENTS & USE CASES

To allow for resource-aware software components (RASCs),
the following requirements must be met:
Ergonomic Working with resource limits feels natural to the

developer. This is fulfilled if the solution is declara-
tive/functional (“What are the resource limits?”) instead
of imperative (“This function has this exact timeout.”).
We use the term in line with the Rust project [16].

Dependable Resource limit exceedance is always detected
and handled. We distinguish a) soft when exceedance
may only be detected after occurring and b) hard when
exceedance is always anticipated and handled before
happening. Whenever possible, ResourceGauge realizes
hard but falls back to soft, if necessary.

Efficient Resource limit exceedance is handled as early as
possible, avoiding unnecessary computations. Further,
resource management must be lightweight.

Composable When multiple RASCs are combined, their
awareness should not interfere—instead, the integration
should become more aware thanks to the individual
components being aware.

1We use Gauge figuratively, i.e., we add fill-level- or rate-indicating gauges
to language-level items—to improve resource-awareness.
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Source Flow Data Compile Run Unmodified Compiler Focus
Green [9] Ë − Ë Ë − energy-saving by approximation
EnerJ [10] Ë Ë Ë Ë − energy-saving by approximation

ET [7] Ë Ë Ë Ë − awareness
Liu et al. [11] Ë Ë − Ë Ë application-level energy management

Carbonneaux et al. [12] Ë − Ë − − worst-case resource analysis
Eco [13] Ë Ë Ë Ë − energy- and temperature-awareness

Dehesa et al. [14] Ë Ë Ë Ë Ë constant resource usage for side-channel security
Brown et al. [15] Ë Ë Ë Ë − proofs for resource contracts

ResourceGauge (this paper) Ë Ë Ë Ë Ë enforcing resource limits; designed to be easily expandable

TABLE I
RELATED WORK COMPARED BY Target (FLOW VS. DATA), Time (COMPILE VS. RUN), USAGE OF A MODIFIED COMPILER, AND Focus.

ResourceGauge is motivated by several real-world use cases
found in both user applications and operating system (OS)
kernels. Using RASCs, developers discover and prevent code
patterns that traditionally would have resulted in resource
bugs at execution time. Further, RASCs significantly simplify
code that (already) employs manual resource management.
In kernel-space, for example, interrupts often have implicit
resource limits that must be enforced. Doing so manually
frequently leads to resource bugs [17]. Here, an automated
approach like ResourceGauge greatly helps. Further, in user-
space, distributed server-applications deal with concurrent,
time-critical requests. ResourceGauge supports developers in
reducing tail latency statically and improve timely failover
using dynamic methods. To summarize, RASCs are highly
relevant for various kernel and user code bases. We guide the
design and implementation of ResourceGauge aligned to these
use cases.

III. BACKGROUND

We focus on making physical resources (time and energy)
first-class elements of the programming environment (i.e., the
programming language, the compiler, and libraries).

Time as a Resource

There is a significant body of work on time in (distributed)
programming systems [18], [19]. A core issue is that, in to-
day’s programs, timing is emergent rather than specified [20].
Lee et al. [3] argue that time should be a concept of all
programs, not just real-time programs—where worst-case ex-
cecution time (WCET) analysis is common [21], [22]. They
propose alignment, precedence, simultaneity, and consistency,
as concepts that are not (yet) part of common programming
environments. Concepts such as XC [23] and OASIS [24]
extend the C programming language to directly handle timing
aspects. Our work focuses on the synchronization of logical
system execution and the physical passing of time.

Energy as a Resource

As energy is different from time in many ways [8] (e.g., time
progression is universal and constant), the state of the art
is even further away from establishing thorough energy-
awareness. However, there exist promising approaches to
account for system/component energy consumption to applica-
tions. For example, PowerScope [25] allows consumed energy

to be attributed to individual processes and procedures using
time-based statistical sampling of the power consumption.
Similarly, Power Sandbox [26], a more recent approach to
accounting, isolates applications in their vertical hardware
and software stack. To accommodate this, RASCs should be
orthogonal to the OS-level accounting approach.

Rust Language Ecosystem

Despite being young2, the Rust language and ecosystem
have established a reputation for providing functionality that
is ergonomic [16], [27], dependable [28], and composable.
Further, the toolchain already leads to resource-efficient re-
sults [29] in comparison to most other programming lan-
guages. resourcegauge-rs relies on the following fea-
tures of the upstream Rust compiler: a) ownership-based infor-
mation flow, b) generic and zero-sized types, c) compile-time
constant evaluation, and d) metaprogramming using macros. If
the relevant features are implemented in other languages [30],
[31], our approach can be implemented in those as well.

Related Work

In Table I, we compare alternative approaches to pro-
vide resource-awareness. First, we indicate whether these
approaches deal with (Information) Flow (or Code) analysis,
i.e., whether the behaviour is taken into account. Second, we
indicate if the approach deals with specific Data (Structures),
i.e., the data is taken into account. We further highlight
whether the approaches work at Compile- and/or Run-time,
whether they use an Unmodified Compiler, and their intended
Focus. While this is a coarse categorization, it is evident
that our approach is among those that consider both resource
implications of flow and data—looking at both the compile
time as well as the runtime. resourcegauge-rs is also
one of the few that work with an unmodified compiler.

Looking at the compile time approaches, we can distinguish
approaches based on WCET analysis [12], [15] and approaches
based on making resources explicit in the type system [7],
[10]. resourcegauge-rs takes the latter approach. If we
look in detail at the runtime approaches, we see that different
strategies are possible: [9] and [10] use approximate comput-
ing, trading accuracy of computed results for a lower energy
demand. In contrast, [7], [11], and [13] adapt the processor’s

2Initial project by Graydon Hoare since 2006, version 1.0 in 2015.
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speed to turn residual latency into an energy saving. The
security-focussed [14] applies padding, i.e., it makes functions
constant in their resource usage. Conceptually, our approach
currently only focuses on enforcing the resource budgets—but
could be used to build the approaches listed above.

IV. RESOURCEGAUGE-RS

resourcegauge-rs provides ergonomic and depend-
able management of physical resources without using custom
compiler extensions to an industry-grade systems program-
ming language (Rust). Ergonomics are achieved by making it
straightforward to turn a resource-agnostic piece of software
into a resource-aware solution. Hence, the library introduces
a) a set of macros to enable resource management, b) sup-
portive algorithms and data structures to deal with resources,
c) code transformations, d) static analysis, and e) run-time
monitoring. Lst. 1 is an example where resource-agnostic
existing code is extended by a few additional language
elements—transforming it into a resource-aware function.

A. Macros

At the core of resourcegauge-rs is a procedural
attribute macro #[resourcegauge] (cf. Lst. 1). This macro
can receive multiple attributes, i.e., the max_latency="2s"

or energy limits. The procedural attribute macro completely
processes the function it is associated with, allowing for
arbitrary code transformations. A second component of the
API are function-like macro calls, such as:
check!(): Introduce a runtime check for resources. As re-

source checks impose overheads, it is up to the developer
to decide at which locations within a function these
checks should be made. Additionally, implicit checks are
performed at function exit.

remaining_latency!(): Return the remaining time before
a deadline-exceedance will be inevitable. This macro can
be used to parameterize a subroutine with an automat-
ically computed deadline. Here, previous measurements
of code blocks are considered, together with the overall
function resource budget. An equivalent for energy is
remaining_energy!().

Apart from these macros, functions that are put under
#[resourcegauge] are modified as minimally as possible.
We refrain from introducing language constructs that are not
part of the Rust language.

B. Algorithms & Data Structures

A type ResourceFailure is introduced that implements
Error. The type has variants Latency and Energy, both
of which carry a FailureMode enum: a) BudgetExceeded,
which also reports how much resource was overspent or
b) BudgetExceedanceExpected with the remaining budget
at the time of failure.

Furthermore, the two types ExpiringAt<T> and
ExpiringIn<T, const D: Duration> are introduced
that allow data to be made resource-aware (as opposed
to full functions as before). One approach is to create an

ExpiringAt with a deadline, after which reading it causes
a BudgetExceeded failure. Ideally, this type would act as a
smart pointer (implementing Deref), allowing it to be used
like normal, but with added resource checks. However, if
we obtain a reference (&T), a developer can pass it around
without requiring another deadline check. Instead, the current
design provides several methods to get access to &T in a
resource-aware manner (see Lst. 2 for the full signature):
take is used to unpack ExpiringAt<T>, after which the

developer is responsible for the “last mile” between
taking and actually using the data.

map accepts a closure accessing &T, whose result is wrapped
into another ExpiringAt<T> instance with the original
deadline. As in Result::map, the closure is only exe-
cuted if the data is still valid—otherwise we short-circuit
to ResourceFailure.

with accepts a closure and chains map and take together.
If the result is Ok, the closure was able to completely
process the expiring data while it was valid.

Additionally, we implement common traits (e.g., Copy,
Clone, Send, std::ops::Add) for ExpiringAt<T> if T

itself supports the respective trait. The result of the trait
functions is again an ExpiringAt<T>, and its validity is
the intersection of the operands. Thereby, computations of
invalid data can be made—the system remains safe, as the
result must eventually go through the fallible take(). We
do not implement these traits for ExpiringIn<T,D> as
it contains the static budget D. Instead, a developer must
convert ExpiringIn<T,D> into ExpiringAt<T>, explicitly
dropping the type-level latency budget.
resourcegauge-rs intends to provide the following

algorithms: 1) Measurements with statistical filtering, 2) Bud-
get calculations accounting for both static and dynamic data,
and 3) Budget checks based on static data only, allowing
resourcegauge-rs to reject programs with incompatible
budget requirements (cf. Sec. IV-E).

C. Code Transformation

The expansion of the #[resourcegauge] macro performs
two modifications to implement resource management (cf.
Lst. 3). First, we turn the function signature’s return value
from T to a Result with ResourceFailure as well as the
remaining ResourceLatency. Then, we modify all return ex-
pressions to wrap the original result properly. Finally, runtime
monitoring code is added (cf. Sec. IV-D).

D. Runtime Monitoring

As discussed before, the nature of physical resources and
data-dependent operation semantics implies that we cannot
enforce all resource limits at compile time. Instead, we semi-
automatically add resource checking code. Semi, because we
do so automatically at function exit, but allow the developer to
introduce more checks—improving the performance, as checks
are more fine-granular and functions exit earlier.

For each monitored function, we introduce a global, thread-
safe storage for measurements. At the function start, we
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1

2

3

4 fn receive () -> T {
5

6 let s = socket();
7

8

9

10 let d = s.recv();
11

12

13

14

15 let r = d[0..256].to_upper();
16 T(r)
17 }

a) Agnostic Code

1 use resourcegauge::prelude::*; // imports check!(),
2 // ResourceFailure, ...
3 #[resourcegauge(max_latency="10sec")]
4 fn receive () -> T {
5 // ^ becomes Result<T, ResourceFailure>
6 let s = socket(); // amenable to measurement (dynamic)
7 check!(); // detects ResourceFailure,
8 // e.g. BudgetExceeded
9

10 let d = s.recv_timeout(remaining_latency!());
11 // ^ derived timeout
12

13 check!(); // may detect e.g. BudgetExceedanceExpected
14

15 let r = d[0..256].to_upper(); // WCET amenable (static)
16 T(r)
17 } // implicit check!()

b) Small scale changes (lines 1, 3, 7, 10, 13) to make it aware code
Listing 1: Semi-automatic resource management using resourcegauge-rs.

1 impl<T> ExpiringAt<T> {
2

3 fn take(self) -> Result<T, ResourceFailure> { ... }
4

5 fn map<U>(&self, closure: impl FnOnce(&T) -> U) -> ExpiringAt<U> { ... }
6

7 fn with<U>(&self, closure: impl FnOnce(&T) -> U) -> Result<U, ResourceFailure> { ... }
8 }

Listing 2: Synopsis of methods on ExpiringAt data types.

1 struct ResourceLatency<const L:
2 std::time::Duration> {}
3

4 // Before:
5 #[resourcegauge(max_latency="2s")]
6 fn f(in: In) -> Out {
7 // ...
8 }
9

10 // After:
11 const LATENCY_f: Duration =
12 Duration::from_secs(2);
13 fn f<const L: Duration>(latency:
14 ResourceLatency<L>, in: In)
15 -> Result<(Out, ResourceLatency<
16 {L.checked_sub(LATENCY_f).unwrap()}>
17 ), ResourceFailure> {
18 // ...
19 Ok((out, latency.shorten::<{
20 L.checked_sub(LATENCY_f).unwrap()}>()
21 ))
22 }

Listing 3: Static analysis using zero-sized
types (ResourceLatency) and const generics (L).

check the leftover budget and set limits accordingly. At inter-
mediate check locations, we look backwards (resource limit
exceeded?) and forwards (will the resource limit be exceeded
with high confidence?), failing the function if appropriate. At
remaining_ locations, we compute the remaining budget for

the end of the current block (based on measurements of future
blocks and the overall budget). At the function end, we check
again if a resource limit was exceeded.
resourcegauge-rs allows for platform-specific mea-

surement methods. For latency measurements, every system
comes with the std::time::Instant API and more accu-
rate measurement on systems with cycle counters (e.g., on
x86 the rdtsc instruction and time interpolation can be
used [32]) are possible. Energy consumption can be mea-
sured or estimated using processor performance counters,
external measurement devices, or energy-models. For Intel
x86 systems, Running Average Power Limit (RAPL) [33]
is readily available on recent processors. To efficiently use
external measurement devices, interrupts based on energy
budgets can be used to efficiently limit energy consumption
[34]. If implemented at the system-level, code annotated with
resourcegauge-rs can be interrupted by an energy-out
signal once the OS has detected a budget violation using the
hardware interrupt. Finally, energy models based on other
performance counters can be used as a fall-back if no direct
energy measurements are supported by the platform.

E. Static Analysis

In our static analysis, if a program is accepted (compiled),
the resourcegauge-rs limits are not in conflict, although
run-time failures are still possible. However, these failures are
now function-local and not due to unsatisfiable composition.
While elaborate static analysis is possible with dedicated tools,
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resourcegauge-rs only uses existing Rust features (some
are nightly, cf. Sec. V) and hooks into the common compile
chain. At the core of the analysis are zero-sized [35], const
generic [36] types, e.g., ResourceLatency in Lst. 3. Being
zero-sized, the type is dropped after compilation—enabling
zero runtime cost. As the type is const generic, we can use
actual constant values (e.g., a duration in this case) to tell
different types apart. As Rust supports constant evaluation,
these values can also be leveraged to compute values at
compile time—again incurring no runtime cost.

In Lst. 3, we see that an extension of the macro introduces
additional generic parameters. The function becomes const
generic with respect to a concrete latency value. latency

becomes a zero-sized call parameter with move seman-
tics (i.e., the function takes ownership of the latency). At the
end of the function, the latency is shortened, i.e., the returned
type constant is the input constant minus the annotated latency.

At the call site, a caller must now construct a budget
ResourceLatency<Duration::from_secs(5)> and pass
it to f. Down the call stack, if a function is called without
a sufficient budget, the compilation fails. While calling a
function with a usage of X and a budget of Y, the result is
a budget of (Y-X). If this becomes negative the compilation
fails as well because checked_sub panics.

V. DISCUSSION

Overheads

resourcegauge-rs introduces compile- and runtime
overheads which we will evaluate thoroughly in future work.
At runtime, there is additional monitoring for both latency
and energy. However, the end user controls this overhead as
they can pick how often the resource is checked—at the same
time picking how early resource violations are detected. At
compile time, there are two classes of overheads. First, due to
Rust’s monomorphization of generic code, every combination
of latencies creates code duplicates, thereby increasing the
binary size. Second, the compilation time increases due to
a) procedural macro execution and b) constant evaluation. To
summarize, resourcegauge-rs gives the user control over
the introduced overheads whenever possible. This allows them
to balance convenience and efficiency.

Legacy Code / Graceful Improvement

As we are using a nightly Rust compiler version (we
do not use a fork or 2.0 version of Rust) our solution is
in tight sync with the main Rust project and ecosystem.
Thanks to the backwards compatibility guarantees of Rust,
this allows resourcegauge-rs to be used in existing
code bases with minimal friction. resourcegauge-rsis a
library that operates on functions and data types, thus a de-
veloper can gradually introduce resource-awareness—without
requiring major rewrites. Hence, existing resource-agnostic
code can be upgraded step-by-step to become resource-aware.

Error Messages

The Rust ecosystem has a reputation for providing well-
designed and helpful error messages to developers. How-
ever, macros as well as const evaluation and const generic
types can lead to situations where code annotated with
#[resourcegauge()] causes confusing error messages. We
currently investigate ways to improve this situation and con-
sider contacting the Rust team with respect to custom error
messages for violations of const generic constraints. One way
is the (also not yet stable) Diagnostic API [37].

Nightly Compiler Features

resourcegauge-rs requires a nightly compiler ver-
sion3. The reason for this is the use of constant evalua-
tion, of which only a minimal subset is stabilized so far
and some functionality is still missing. The relevant features
flags are: adt_const_params [38], const_option [39],
generic_const_exprs [40], and inline_const [41]. This
presents the danger that resourcegauge-rs breaks in the
future. Such a break would be technical, but most likely not
conceptual as the Rust project is committed to stabilising these
features.

Execution-Time Computations

The const Budget::<B1>::shorten::<B2>() method
has the purpose of statically turning a larger budget B1 into
a smaller budget B2, if B1 is larger. As these are constant
generic parameters on zero-sized types, this ideally happens at
compile time. However, with the current compiler this cannot
be achieved, hence we check at execution-time if B1 is smaller
B2. As this happens in each function invocation, a violation
would be caught through any test that executes the function at
least once, i.e., it is not a corner-case that could go undetected.

Availability

resourcegauge-rs is MIT licensed and available at
https://doi.org/10.5281/zenodo.8026935.

VI. FUTURE WORK

resourcegauge-rs is a first working prototype for
resource-aware Rust components, based on which we can
explore several research directions.

The annotated maximum latencies are currently found in an
iterative process, i.e., the developer adding a constraint (prob-
ably derived from system design) and then testing the system.
The sublatencies of code blocks are instead gathered by
measurement, even though some blocks are purely computa-
tional and amenable to WCET analysis. While we are targeting
systems for which a strict WCET analysis is not possible, future
work can leverage hybrid WCET approaches (e.g., [21], [22])
to validate the annotations/sublatencies or automatically infer
them.

Conceptually, lifetimes in Rust and the resource budgets
on data structures are closely related. Hence, leveraging life-
times, the ownership system, and a borrow checker such as

3To be precise, we used rustc 1.67.0-nightly (edf018221 2022-11-02)
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polonius [42] could make the detection of more static
resource violations possible. Leveraging a recent prototype of
liquid types in Rust, called Flux [27], provides further potential
for static resource analysis.

So far, we have established dependable resource limit man-
agement (i.e., compiler fails with static violations, runtime
yields Result that must be used). A different line of investiga-
tion is dynamic optimization, i.e., exploiting excess resources
at runtime. The natural approach would be to trade time for
energy, by slowing down the system—but more advanced
schemes can be envisioned.

Currently, we deal with comparably continuous treat-
ment of energy (limited by system precision). A direction
worth investigating is the phase and mode approach to en-
ergy from Energy Types [7]. Potentially, it is possible to
use resourcegauge-rs’s annotations to infer appropriate
phases and modes.

As discussed in Sec. III, we focus on sequential programs
and their resource usage. Modern cyber-physical systems are
concurrent, distributed systems, where a more global view is
required [3], [20]. Future work will hence investigate how the
annotations can be extended from functions to tasks (i.e., pro-
cesses), for example, with periodic behaviour.

Finally, resourcegauge-rs is not just targeting new-
to-be-developed software, but can also be used to refactor
Rust programs with custom resource-awareness. In the systems
community, Coccinelle [43] is a well-established tool to search
for and transform systems code (e.g., in the Linux kernel).
By leveraging Coccinelle to search for custom resource-aware
code and replacing it, resourcegauge-rs will be used to
discover and fix resource bugs early.

VII. CONCLUSION

We presented resourcegauge-rs, an implementation
of ergonomic and dependable resource-aware components in
Rust. resourcegauge-rs enables developers to declara-
tively annotate resource usages such as time and energy. This
allows a) the application to dependably react to execution–
time violations and b) checking compositions of annotated
functions and/or expiring data types for their compatibility at
compile time. Using an upstream version of the Rust compiler,
we show that this functionality can be achieved in Rust itself,
without designing a custom language or compiler extensions—
allowing for widespread use in the future.
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Abstract—Profiling on Arm architecture using the Perfor-
mance Monitoring Unit (PMU) gives developers low-overhead
access to Hardware Events Monitors (HEM). These events are
available on every Armv8-based platform and provide detailed
information on the execution of applications, including multicore-
related interference and usage of shared hardware resources.
Prompt access to such information is fundamental for mixed-
criticality systems in order to manage and regulate interference.
Despite board configuration providing dozens of different HEMs
(typically 30 to 50), the PMU only allows the simultaneous
monitoring of a limited number of them (generally between 6
and 8). A simultaneous full-spectrum hardware profiling based
on HEMs is therefore not possible. Recently, a methodology
(MUltiCorrelation HEM reading and merging approach MUCH)
has been proposed to statistically reconstruct a coherent HEM-
based execution context from multiple application runs. MUCH
has been validated only in a bare-metal environment for an NXP
T2080 PowerPC platform. Given the widespread adoption of
the Arm architecture for embedded systems, in this paper we
implemented the MUCH approach for the Armv8 architecture
on Linux to assess the viability of such an approach for complex
systems. Our results on a Raspberry Pi 3 Model B confirm the
practicality of the approach on complex Armv8-based systems.
Furthermore, we explored how to leverage the obtained full
statistical profile to derive properties of the analyzed application,
for example, the sufficient set of HEMs to simultaneously monitor
at runtime with minimal information loss, and machine learning-
based models for HEMs prediction on a future set of applications.

Index Terms—Arm, profiling, PMU, HEM, pairwise-
correlation

I. INTRODUCTION

Software profiling is a dynamic program analysis technique
where a program’s behavior is modeled using data moni-
tored at runtime. Hardware-based software profiling enables
developers to better understand the execution of a program,
monitoring how the hardware layer reacts to the application.
When integrating applications with different criticalities on
complex multi-processor systems, monitoring of hardware
performance counters is the basic mechanism used by several
techniques (e.g., [14], [23]) to manage hardware-related inter-
ference (especially in the memory subsystems) and to achieve
higher isolation among otherwise independent applications.

The Arm architecture exposes Performance Monitor Units
(PMUs) as architecture-specific, on-chip solution for low-

Andrea Bastoni was supported by the Chair for Cyber-Physical Systems in
Production Engineering at TUM and the Alexander von Humboldt Foundation.

overhead hardware event-based profiling. In this context, Hard-
ware Event Monitors (HEMs) constitute the hardware events
to be observed, and Performance Monitor Counters (PMCs)
represent the actual architectural counter where the monitored
information is stored. The Armv8 architecture defines a stan-
dard, common set of HEMs that should be present in any
implementation, and a set of HEMs that could be optionally
implemented by manufacturers [6].

Compared to other software profiling and debugging so-
lutions (e.g., Arm CoreSight [8]), Arm hardware-event-based
profiling has low overhead and generates less execution in-
terference in terms of e.g., resource usage and bus accesses.
Unfortunately, extensive application profiling and monitoring
using HEMs is limited by the low number of PMCs that are
typically available on Arm boards. In fact, PMCs are often
a magnitude order fewer than the HEMs that could possibly
be monitored. Therefore, despite the standard availability of
PMCs and HEMs on Arm-based platforms, monitoring the
full hardware execution context observing one single run of
an application (or a benchmark) is not possible.

MUltiCorrelation HEM reading and merging (MUCH) is
a recent approach [20] that relies on statistical analysis to re-
construct the full-hardware application context across multiple
runs of an application or benchmark. The approach has been
developed to target explicitly complex multiprocessor systems-
on-chip (MPSoC), where HEM monitoring and profiling is
becoming progressively more important to master interference
among mixed-criticality (real-time) applications [15]. In [20],
the approach has been validated in a bare-metal setup (without
operating system) on a PowerPC NXP T2080. Given the
increasing relevance of the Arm architecture for complex MP-
SoC used in safety critical automotive, industrial, and avionics
domains, this paper proposes Arm MUCH, an application
profiler for the Armv8 architecture that adopts the MUCH-
approach and runs on a complex operating systems such as
Linux. With Arm MUCH we:

• Validate whether the MUCH approach can be applied to
real-world Arm architectures together with a complex op-
erating system such as Linux. Our results on a Raspberry
PI 3 with Linux 5.9.93 confirm the applicability of the
MUCH methodology to the Arm architecture even with
a complex operating system.

• Contribute a framework for implementing MUCH on
Armv8. In particular, we automated the HEM allocation
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at application runtime, the gathering of the retrieved data
and performing the statistical MUCH methodology.

• Interface the Arm MUCH framework with multiple pro-
filing technologies for Arm Linux, namely perf, eBPF,
and inline assembly for manual HEMs allocation.

• Explore how to derive the minimal set of HEMs that
best characterize an application. This enables confidence
in capturing the key properties of an application despite
the limited number of monitored PMCs.

• Implement AI-based HEM-prediction systems that use
the statistical data retrieved by MUCH to reconstruct the
complete set of HEMs inside one benchmark execution
by forecasting all non-monitored HEMs.

The rest of this paper is organized as follows. Section II in-
troduces the concepts of MUCH and discusses previous work.
Section III presents the architecture of Arm-MUCH, while
Section IV discusses its implementation and our experimental
results. Section V concludes.

II. BACKGROUND AND RELATED WORK

A. The MUCH Approach

The core concept underlying the MUCH approach [20] is
to rearrange and merge individual and independent HEM
readings into one single coherent dataset as if each all HEMs
were all measured in the same run. MUCH employs Multi-
Variate Gaussian Distributions (MVGD) to preserve all pair-
wise HEM correlations simultaneously. The goal is to use
measured data to generate full-spectrum HEM vectors (merged
from multiple runs) of size nh in accordance with the MVGD
model X ∼ Nnh(µ̂, Σ̂), where µ̂ and Σ̂ are the empirical
expected value and empirical covariance matrix obtained in
multiple runs of the experiments for the same HEM hi.
The empirical covariance matrix Σ̂ can be obtained from the
empirical correlation matrix Ŝ that expresses the correlation
ρ̂ij for each pair of empirical HEMs vectors ({hi}, {hj}).
Each empirical covariance value σ̂ij in Σ̂ is computed as:
σ̂ij = ρ̂ij · σ̂i · σ̂j , where σ̂i is the variance associated with an
empirical vector of HEMs {hi}.

In order to use Multi-Variate Gaussian Distributions, the
correlation between two different HEMs must be correctly
evaluated. Each HEM needs to be measured in the same
sub-experiment, namely a benchmark run, at least once with
every other HEM present in the machine. Each HEM’s “true”
value is statistically modeled with a Gaussian distribution.
Therefore, by the central limit theorem, each sub-experiments
should run multiple times for a sufficient amount of time. We
run each sub-experiment for at least 10 seconds and repeat
every experiment 50 times.

From a mathematical point of view, the challenge is to
reorder the grouped sample vector {hi} for each HEM hi,
such that for each pair of HEMs {hi} and {hj}, the empirical
correlation ρ̂ij of the grouped samples is close to ρij , namely
the Pearson’s empirical correlation between {hi} and {hj},
calculated in the sub experiment in which they are both
allocated.

B. Previous Work

Despite the risks of non-precise and context-dependent
event accounting, the low overhead and widespread availability
of HEMs have been exploited in a host of tools to gain
insights into application’s behavior [10]. In the embedded
real-time field, the usage of HEMs have been leveraged in
multiple works to monitor and regulate MPSoC interference
at both cache [13], [14], interconnect [19], [23], and DDR
level [17], [22]. Recent architecture-level features such as Arm
MPAM [7] or Intel RDT [12] extend the concept of HEMs to
provide quality of service throughout the memory subsystem.
The usage of HEMs for profiling purposes in the GPU and
accelerators domain is a standard practice supported e.g., by
tools such as the NVIDIA Nsight Systems [16]. The Arm
v8.2 architecture also introduced a dedicated infrastructure
for statistical profiling [9], but its usage and adoption is still
limited. The Arm Coresight [8] infrastructure can deliver both
hardware assisted application profiling and debugging capa-
bilities. Its overheads for data collection and exporting hinder
nonetheless its usage for low-overhead hardware profiling.

Alternative approaches to MUCH (e.g., [11], [18], [21]) to
merge HEMs have been shown [20] to be not applicable to
HEMs or inferior to the MUCH approach.

III. ARCHITECTURE

Our Arm MUCH framework is divided in two main com-
ponents:

• Profiler Middleware that will access and manage the
run-time progress of the profiled application. Currently,
Arm MUCH supports both perf subsystem and kprobes
in order to evaluate and obtain HEMs data at run-time
from the profiled application. We note that any profiler
compatible with the perf output format could be used for
the data acquisition.

• Data Analysis Framework that performs the data pro-
cessing. This includes data collection, loading and writing
benchmark sessions to disk, and the statistical evaluations
associated with MUCH.

The framework has been split into two components to provide
a wider set of profiling tools that the end-user can leverage
to validate the data collected. The implementation abstracts
away details of the e.g., Linux perf API and provides a unified
interface for data processing that facilitated the validation of
the experimental data.

A. Profiling Middleware

The profiling layer supports two ways to allocate at run time
the selected set of HEMs to be monitored.

The first approach uses Linux perf to select the HEMs from
bash’s command line. This approach is the easiest one, as
we do simply need to spawn a correct instance of perf with
the application we choose to monitor and the right sets of
HEMs right after the -e argument. Despite its easiness of use,
with this approach we can only monitor the entire application
from start to end. Specifically, we cannot monitor particular
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sections of the application or have warm-up phases e.g., to
avoid measuring memory allocation and initialization.

The second supported method for selecting HEMs is a
lightweight API for code instrumentation. The API can di-
rectly allocate, enable, and disable hardware events. The API
wraps the perf_event_open() syscall to access PMUs
for writing and reading purposes. This method provides better
integration and function-level granularity with the trade-off
of rebuilding the application against the profiling middleware,
inserting the right calls for PMU activation, and reading the
data through a file descriptor.

B. Data Analysis Framework

The data analysis framework processes the data generated
by the profiler—any profiler could be used as long as the
traces are in perf-format—and supports the statistical MUCH
analysis. The framework consists in a main application that
supports different modes, with regard to what the inputs
and outputs should be, including e.g., processing previous
benchmark iterations using the -l flag, or exporting benchmark
sessions to disk using -w argument. The statistical evaluation
is performed in python using numpy [1], scipy [3], and
sklearn [4]. Plots and graphical evaluation are visualized using
matplotlib. HEMs vector results are exported as binary file or
printed on stdout.

The application implements different phases to performs the
MUCH analysis of event counters.

1) Empirical correlation matrix: Ŝ(i, j) is calculated
between all pair of HEMs hi and hj . Each cell of
the matrix is defined as Pearson correlation coefficient
between HEMs at a given column and row. Hence, this
matrix will be symmetrical with unitary values on the
main diagonal.

Ŝ(i, j) =

{
1, for i = j
ρ̂ij , for i ̸= j

}

2) MVGD mapping: Using copula theory and Percent
Point Function, each HEM counter measurement {hi}
is mapped to its relative value as it was part of normally
distributed linear space.

3) MVGD-mapped covariance matrix: Σ̂0(i, j) is calcu-
lated between all pair of HEMs, using MVGD values
with covariance and correlation values from the experi-
ments. Each cell of the matrix is defined as follows:

Σ̂0(i, j) =

{
σ̂2
i , for i = j

σ̂i × σ̂j × ρ̂ij , for i ̸= j

}

4) Random samples extraction: This step reconstructs
empirical data order statistics from the MVGD-mapped
covariance matrix, using the multivariate-normal func-
tion.

5) MVGD-based correlation matrix: This step calculates
the correlation matrix between all between all pairs of
HEMs using the sorting order defined by the previous
steps.

Fig. 1: Output example of the PMU statistical evaluation.

6) Mean Squared Error (MSE): Since multiple sorting
orders could exist, this step selects the best reordering—
among multiple iterations—that minimizes the mean
squared error between the empirical correlation matrix
and the MVGD-based correlation matrix.

In addition to the standard MUCH analysis, the framework
can automatically: i) cluster HEMs to identify the smallest
set of HEMs that could reflect the key characteristics of
the profiler application, and ii) make prediction on values of
HEMs that were not allocated in a specific run.

Since the maximum number of PMUs that can be traced
simultaneously in one run is limited (e.g., the Arm Cortex-
A53 supports simultaneous tracing from only six PMUs),
clustering the most “meaningful” HEMs helps reducing the
number of runs to identify application behaviors. Clustering
of n HEMs is determined by maximizing the sum of the
maximum absolute correlation values with regards to every
other HEMs within one experiment. Correlation values are
filtered using the python Pandas Dataframe [2].

Furthermore, the framework implements three machine
learning algorithms (Linear Regression, Multi-layer Percep-
tron, and Random Forest) to predict values for HEMs that
were not allocated in a specific run. The models are trained
on the full set of all HEMs.

IV. IMPLEMENTATION AND EVALUATION

The framework, comprising the profiling middleware and
the data analysis component, has been developed in Python
and C. The profiler middleware automates the activities of
profiling applications and benchmarks using both perf and our
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Fig. 2: Single-core experiment correlation matrix for pairs
of HEMs. In each box, the upper value is the empirical
correlation, the lower value the MVGD-correlation.

lightweight API for code instrumentation. The data analysis
frameworks implements the phases described in Sec. III-B.

In order to enable profiling support in the Linux kernel, the
kernel configurations related to BPF and IKHEADERS must be
enabled. The framework requires a version of the perf profiling
tool that matches the compiled kernel version (perf can be
found in the Linux kernel sources, under ./tools/perf).
Furthermore, the framework needs Python > 3.9.2 (including
pip).

The framework has been validated with Linux on a Rasp-
berry Pi 3 Model B (Arm Cortex-A53 cores).1 We used
Armbian Buster as Linux distribution, running a 5.9.93 Linux
kernel with enabled profiling-configuration.

A. HEM Correlation Matrices

We evaluated pairwise correlation of HEMs as well as the
Arm MUCH approach in a single- and multi-core setup.

The single-core setup also serves as validation and uses
a CPU-intensive benchmark that computes the discrete log-
arithm for random natural numbers. Each benchmark-run
execute 90000 iterations. The multi-core setup uses the Sys-
bench [5] tool. Sysbench is a scriptable multi-threaded bench-
mark tool that creates complex time-based workloads. In our
testing, we used t = 10 in order to generate multithreaded
benchmarks of 10 seconds lengths. Fig. 1 presents the output
of the tool with multiple runs of the benchmarks.

We performed testing runs using both setups and identified
17 statistically-relevant HEMs, i.e., whose values were orders

1The framework was also tested on Huawei Taishan Servers using a
proprietary OS. We cannot disclose information on this setup.

Fig. 3: Multi-core experiment correlation matrix for pairs
of HEMs. In each box, the upper value is the empirical
correlation, the lower value the MVGD-correlation.

of magnitude larger than the remaining HEMs. Specifically,
we focused on: br mis pred, br pred, bus access, bus cycles,
cpu cycles, instr retired, l1d cache, l1d cache wb,
l1d cache refill, l1i cache, l1i cache refill, l2d cache,
l2d cache refill, ld retired, mem access, pc write retired,
and st retired. These HEMs have been allocated to 21
different sub-experiment, and each HEM is part of 5 sub-
experiments. Hence, there are 50 × 5 measurements for each
of the hardware monitors.

The matrices in Fig. 2 and Fig. 3 underline the correlation
between couples of HEMs {hi} and {hj}. In each correlation
box, the the upper value is the empirical correlation σ̂ij =
σ̂i×σ̂j×ρ̂ij and the lower one is the MVGD-based correlation
after the MUCH data processing.

As expected, data from the predictable synthetic single
process CPU-intensive benchmark presents very different cor-
relation than the sysbench multiprocessing benchmark.

The single-core benchmark (Fig. 2) manifests a strong
correlation between HEMs, mostly describing partial linear
relationships between HEMs belonging to the same context,
such as cache misses, or branch predictions. Instead, the
multi-core benchmark (Fig. 3) presents less correlated data,
including negative relationship between pairs of HEMs.

B. Accuracy Evaluation

We focus on the accuracy of the framework with respect
to the empirical correlation of sub-experiment data and to
potential errors in predicting HEM values in later benchmark
executions.

We assessed the distribution of the delta between empirical
pairwise correlation and MVGD sampled pairwise correlation
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Fig. 4: Correlation delta as probability density function for
single-core benchmark and 25000 values/HEM

Fig. 5: Correlation delta as probability density function for
single-core benchmark and 250 values/HEM

between couples of HEMs. This quantifies how much the
reconstructed samples differ from the actual data after MVGD
processing. Fig. 4 and Fig. 5 show the distribution of the
correlation deltas for the single-core benchmark and 25000
and 250 samples/HEM respectively. Overall, we found the
correlation delta to depend on the number of values sampled
for each HEM and reaching 0.4 (0.6) for 25000 (250) samples
of each HEM. As noted in [20], we also observed that the
experimental and the reconstructed values depends on the
number of iterations (optimization steps) performed during
sorting to obtain the re-arranged full-wide HEMs vectors
((step (5) in Sec. III-B). In our experiments, the optimization
step had a lower impact than the number of collected samples
per HEM. This is visible in Fig. 5 that shows a higher vari-
ability of the correlation delta when only 250 samples/HEM
are profiled.

TABLE I: MAPE: CPU-intensive single-process benchmark

MAPE: CPU-intensive single-process benchmark
HEM name MLR MLP RF
br pred 0.000545 0.164585 0.000460
bus cycles 0.002273 0.009775 0.006071
inst retired 0.000349 0.012472 0.000330
l1d cache 0.000454 0.011996 0.000347
l1d cache wb 0.036503 51.105616 0.014636
l1i cache 0.007588 0.014341 0.003902
l1i cache refill 0.433256 4.051663 0.459776
l2d cache 0.350933 2.164955 0.674850
l2d cache refill 0.037171 28.199508 0.027867
ld retired 0.000535 0.065614 0.000350
mem access 0.000633 0.011904 0.000549
pc write retired 0.000478 0.098950 0.000509
st retired 0.000262 0.012920 0.000346

0.870979 85.924299 1.189993

C. HEM Clustering

We used the framework to identify cluster of HEMs that can
best characterize an application, despite the limited number
of monitored PMCs in one run. We defined HEM clusters
to contain the n HEMs that maximize the sum of maximum
absolute correlation values with regards to every other HEMs
in an experiment.

For the single core benchmark experiment, we discover that
branch predictions, L1 cache counters, and CPU cycles coun-
ters (br immed retired, br mis pred, br pred, cpu cycles,
l1d cache refill, l1i cache refill) are the most suited to cap-
ture the behavior of the benchmark with a maximum absolute
correlation value of ∼ 7.866.

For the sysbench multi-core benchmark, the best clus-
ter includes the bus access and the write-retired counters
(br immed retired, bus access, l1d cache refill, l1i cache,
l1i cache refill, pc write retired) with a maximum absolute
correlation value of ∼ 6.874.

D. AI-based HEM Prediction

Arm MUCH provides a full statistical analysis of the
correlation between HEMs. We used this data set to train three
machine-learning models—Linear Regression (MLR), Multi-
layer Perceptron (MLP), Random Forest (RF)—and to evaluate
the capability of the framework in predicting non-monitored
HEM values.

After training on the set of re-arranged HEM vectors, i.e.,
after applying MUCH, we fed the networks with subsets of
HEM values coming from the HEM clustering experiments,
and evaluated the accuracy of the networks in generating
non-monitored HEMs. We used the full values of the HEM-
clustering experiments as empirical reference. The accuracy
of the forecasted values has been assessed using the Mean
Absolute Percentage Error (MAPE).

Tables I and II report the MAPE accuracy for MLR, MLP,
and RF networks in predicting HEM values that were not
measured during a benchmark run. In the tables, the best
values are marked in blue color, while the ones exhibiting
more than 10% MAPE error are marked in red. The values
are the average of 10 experiments.
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TABLE II: MAPE: Sysbench multithreaded benchmark

MAPE: Sysbench multiprocess benchmark
HEM name MLR MLP RF
br pred 0.396886 0.003298 0.697910
bus cycles 0.390227 0.161784 0.697271
cpu cycles 0.299356 0.534736 0.697193
inst retired 0.447805 0.234720 0.696650
l1d cache 0.575274 0.330672 0.595609
l1d cache refill 47.127874 0.799111 0.350560
l1d cache wb 86.262104 10.248902 0.314104
l1i cache 0.130094 0.004722 0.696297
l2d cache refill 40.071846 186.542361 0.291218
ld retired 11.226796 1.327011 0.585759
mem access 10.733564 0.425685 0.596006
pc write retired 0.341011 0.027340 0.696904
st retired 4.933629 0.431589 0.607128

202.936466 201.071931 7.522609

The Sysbench multithreaded benchmark (Table II) clearly
shows that RF outperforms MLP and MLR. Notably, MLR
predictions exceed five times the threshold (10) and MLP
can produce very high errors (186.54 for l2d cache refill
predictions). The CPU-intensive benchmark (Table I) confirms
the trends. The results are preliminary, as more training and
experiments will be needed to fully assess the capability of
the framework. Nonetheless, the approach seems promising.

V. CONCLUSION

In this paper, we have presented Arm MUCH, a frame-
work for the Armv8 architecture that adopts the MUCH [20]
approach to overcome the limitations of modern PMUs that
only allow a reduced number of HEMs to be monitored
simultaneously.

We have validated the applicability of MUCH to Arm in
contexts that include a complex operating system (Linux)
and non trivial benchmark applications. Furthermore, we have
investigated extensions of MUCH to i) derive minimal sets
of HEMs that can best characterize the runtime behavior of
an application, and ii) predict values of non-monitored HEMs
using AI-networks trained on the full set of statistical data.

Our results confirm that Arm MUCH can capture the
correlation between HEMs observed in different runs with ad-
equate accuracy. Our experiments on clustering and prediction
presented promising initial results that are worth investigating
in future works, potentially in combination with tools to detect
and analyze hardware noise,2 to better understand whether the
currently achieved accuracy can be improved. Additionally, the
Random Forest approach to predict HEM values would benefit
from a larger training set and more iterations.

In the future, we would also like to investigate the inte-
gration with custom eBPF programs and user-defined uprobe
hooks to easily and precisely access performance counters.
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Abstract—There is increasing interest in using Linux in the
real-time domain due to the emergence of cloud and edge
computing, the need to decrease costs, and the growing number
of complex functional and non-functional requirements of real-
time applications. Linux presents a valuable opportunity as it
has rich hardware support, an open-source development model,
a well-established programming environment, and avoids vendor
lock-in. Although Linux was initially developed as a general-
purpose operating system, some real-time capabilities have been
added to the kernel over many years to increase its predictability
and reduce its scheduling latency. Unfortunately, Linux currently
has no support for time-triggered (TT) scheduling, which is
widely used in the safety-critical domain for its determinism,
low run-time scheduling latency, and strong isolation properties.
We present an enhancement of the Linux scheduler as a new
low-overhead TT scheduling class to support offline table-driven
scheduling of tasks on multicore Linux nodes. Inspired by the
Slot shifting algorithm, we complement the new scheduling class
with a low overhead slot shifting manager running on a non-time-
triggered core to provide guaranteed execution time to real-time
aperiodic tasks by using the slack of the time-triggered tasks
and avoiding high-overhead table regeneration for adding new
periodic tasks. Furthermore, we evaluate our implementation on
server-grade hardware with Intel Xeon Scalable Processor.

Index Terms—Time-triggered, Event-triggered, Real-time,
Scheduler, Linux

I. INTRODUCTION

Real-time (RT) Safety-critical industries such as Thales
(railway, [1]) and Airbus (aerospace, [2]) are exploring
commercial-off-the-shelf (COTS) hardware platforms to ben-
efit from reduced time to market, lower SWaP and higher
computational power. Linux is interesting for COTS platforms
due to extensive industrial and academic research, rich COTS
hardware support, open-source versatility, and flexibility. It is
free to run, study, modify to fit special requirements, and port
to different hardware platforms. There are many useful open-
source or freely available libraries, development tools, and
applications created for Linux. Using Linux can help to keep
costs down. Developers and system designers from all domains
find the ability to adapt Linux systems to their requirements
and hardware platform advantageous.Linux has a large open-
source community that freely publishes bugs (possibly with
fixes) and enhancements to Linux for all to benefit and a
possibility for future maintenance by the community. Thus,
using Linux often ensures we save efforts to re-invent what
already exists.

Linux (in conjunction with KVM) is used to power most
of the public cloud infrastructure and is heavily used in

supercomputing [3]. With the advent of Industry 4.0, smart
healthcare devices, software-defined vehicles, and other cloud-
connected transportation (e.g., trains and trams), OEMs of
safety-critical domains will find using a single Linux operating
systems for cloud/edge servers, IoT/smart devices, and in-
vehicle software beneficial. A single operating system will
help reduce the costs and the burden of managing multiple
suppliers, maintaining many development environments, and
numerous application versions.

Using existing, often proprietary, RT operating systems
(RTOSs) or hypervisors is expensive, lacks flexibility and rich
hardware support of Linux, can lead to vendor lock-in, and
needs tedious re-implementing of existing libraries, tools, and
applications for these RTOSs.

Safety-critical industries have considered using RT-capable
Linux, e.g., NASA for ground and space operations [4], Thales
for an RT-capable cloud to support railway operations [1],
and various automotive companies for Linux-based fully open
software stack for the connected car [5]. The Linux community
has made significant efforts to support RT applications, e.g.,
PREEMPT RT [6] and Xenomai [7]. These efforts have
focused on improving determinism and reducing latency in the
Linux Kernel [8]. The current Linux kernel scheduler supports
Constant Bandwidth Server (CBS) based resource reservations
over an Earliest-Deadline First (EDF) scheduler to improve RT
guarantees [9].

Unfortunately, the Linux kernel scheduler still does not
support (table-driven) time-triggered (TT) scheduling. Safety-
critical RT systems often require TT scheduling. Since the
creation and validation of the scheduling table occur offline
in the TT schedule, a system designer can factor in complex
constraints such as latency and precedence constraints, which
would otherwise incur large overheads to handle directly at run
time. TT scheduling also enforces strong temporal isolation
between tasks. It can easily ensure that a task overrunning
its worst-case execution time (WCET) does not hamper other
tasks’ schedulability. A system using TT scheduling is highly
predictable as events occur pre-planned at fixed points in time.
Thus, testing and certifying the system is easier as there are
only a few predictable scenarios to consider.

A TT scheduler mainly consists of a dispatcher that assigns
resource(s) to task(s) based on an offline computed schedule
(during the design phase). The scheduler receives this schedule
as a scheduling table consisting of all the necessary scheduling
decisions and the point in time the dispatcher should imple-
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ment those decisions. Since a TT scheduler is quite simple,
it has much lower overheads as compared to event-triggered
(ET) schedulers (e.g., EDF-based), especially during peak load
conditions [10]. Moreover, ET schedulers can produce widely
different schedules for the same system when the sequence or
timing of events changes, leading to lower predictability. A
system with an ET scheduler requires exhaustive testing using
simulated loads, considering even the rarest events. However,
proving that the tests covered all possible scenarios that may
occur at runtime is not easy.

In this paper, we build upon some basic ideas described in
[11] and propose a new TT CPU scheduler for Linux. The
main contributions are:

1) For ensuring static scheduling guarantees and minimiz-
ing scheduling latencies, we provide the ability to sched-
ule periodic tasks (Linux threads, processes, VMs, or
containers) in Linux using TT (table-driven) scheduling.

2) Inspired by Slot-shifting [12], we combine the flexibility
to execute RT aperiodic (AP) and best effort (BE) tasks
at run time in the slack of the periodic TT tasks, and
thus, ensure efficient utilization of resources. We provide
the option to add new periodic tasks to the offline table
without the need for a high-overhead scheduling table
regeneration.

We implement our approach as a new low-overhead Linux
scheduling class (SCHED TT) with a separate Slot-Shifting
Manager (SSM) Kernel Module to help integrate RT AP tasks.
We present an overview of the actual implementation and
provide the scheduling overheads by performing experiments
on a COTS server with Intel Xeon Processor (Cascade Lake).

The proposed TT CPU scheduler for Linux can be easily
integrated with existing real-time resource management and
orchestration frameworks to give static scheduling guarantees
to tasks, VMs [1], [13], and containers [14].

II. RELATED WORK

A. Real-time and Linux
PREEMPT RT [6], an open-source patch for Linux Kernel,

is generally used to create real-time Linux. The patch focuses
on providing mechanisms to reduce latency and increase
determinism in the Linux kernel and complements existing
Linux scheduling. Many of the patches are now part of
the mainstream Linux kernel. We use a Linux kernel with
PREEMPT RT as a base for further development.

Efforts from ACTORS EU project [15] followed by the
work from Lelli et al. [9], and others led to the introduction of
SCHED DEADLINE in the Linux kernel scheduler to support
CBS-based resource reservations over an EDF scheduler.

LitmusRT provides a real-time extension for the Linux
kernel to act as an experimental testbed for real-time research,
especially on multiprocessor real-time scheduling and syn-
chronization. It supports various clustered, partitioned, global,
and semi-partitioned schedulers such as partitioned-EDF and
partitioned fixed-priority scheduling.

Approaches such as RTAI [16], Xenomai [7], and
RTLinux [17] use a hardware abstraction layer below the

Linux kernel. The Linux kernel runs as the lowest priority
(background) thread on top of this layer. Similarly, the Jail-
house partitioning hypervisor [18] runs bare metal and coop-
erates closely with Linux to run safety-critical applications.
However, guests cannot share a CPU because Jailhouse has
no scheduler. None of these approaches support running TT
tasks natively by Linux.

B. Existing TT scheduling support in OSes or hypervisors

TTTech MotionWise Platform [19] emulates a TT scheduler
in userspace via standard POSIX system calls. However, this
solution has high scheduling latencies and jitter compared to
a kernel-level implementation [20].

Specialized real-time hypervisors, such as XtratuM [21] and
PikeOS [22], support TT schedule. However, they are often
proprietary and have limited hardware and software support.
Moreover, they are unsuitable for cloud environments as they
support only a handful of guest operating systems and have
additional limitations, such as limited CPU models for VMs.

Xen with the ARINC 653 scheduler [23] only considers
cyclic scheduling on a single core. The Tableau [24] extension
to the Xen hypervisor introduces support for TT scheduling of
VMs to reduce scheduling overheads and enable high-density
packaging of VMs. However, Tableau is not explicitly targeted
to execute periodic safety-critical real-time VMs and uses a
table regeneration process to add new tasks. Gala et al. [1]
demonstrated that Xen has, in general, higher overheads than
Linux (+ PREEMPT RT patch) in conjunction with KVM.
Therefore, KVM/Linux is better suited for low latency RT
applications than Xen.

Very recently, Karachatzis et al. [20] presented an im-
plementation and evaluation of a kernel-level time-triggered
scheduling approach for Linux. The approach proposed im-
proving the node’s utilization by allowing other tasks to run
in the slack of TT tasks. In addition to allowing non-RT
tasks in the slack of TT tasks, our approach supports the
guaranteed execution of new RT tasks by appending them to
the scheduling table at run-time (without needing to regenerate
the table). Our approach takes advantage of the slot-shifting
algorithm to add the required flexibility. Our approach keeps
run-time overhead low by separating the TT task dispatching
via newly created SCHED TT scheduling class (on TT cores)
from the slot-shifting algorithm decision-making. The slot-
shifting algorithm is executed on non-TT cores with a period
equal to the slot length.

C. Joint scheduling of TT and ET RT tasks

Many previous scheduling algorithms have explored com-
bining both time-and event-triggered approaches to take advan-
tage of both the contrary scheduling approaches. Fohler [12]
presented the Slot shifting algorithm for joint scheduling of TT
and ET tasks. Schorr [25] presented a multiprocessor extension
to the slot-shifting algorithm. However, previous works do
not integrate these and other approaches (e.g., [26], [27]) to
combine TT and ET tasks with the Linux kernel scheduler.
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III. BACKGROUND

A. Slot Shifting

Let us consider a global time whose progress is triggered by
equidistant events. We consider a sparse time base where the
time duration separating two of these events is called a slot A
multicore slot on a cloud node can run N tasks at a time, where
N is the total number of CPU cores scheduled under the TT
schedule. For simplicity of explanation, we assume each task
requires only one core. Thus, a slot consists of CPU allocation
in time units (e.g., milliseconds) and a mapping of tasks to
TT cores. We used an existing heuristic algorithm to create
the mapping in the form of an offline scheduling table. The
heuristic must know all tasks in the system before run time to
create the scheduling table. We must store the scheduling table
in the node. The node’s scheduler uses it to execute tasks once
the node boots. At run time, the TT scheduler cannot handle
a task that is not present in the offline scheduling table.

Since the exact activation times of sporadic or aperiodic
RT tasks are unknown before run time, we must consider
them periodic when creating the scheduling table. Moreover,
if the system designers need to add a new task to an existing
scheduling table, they must recompute it. While creating the
scheduling table, the task resource assignment occurs based
on the worst-case resource demand. In the average case, most
tasks utilize only a fraction of the allocated resources at run
time.

The slot-Shifting [12], [25] algorithm provides a way to
run or add AP RT tasks in the slack of TT tasks at run time
without needing an expensive table regeneration process. Slot
shifting defines capacity interval (or simply interval) as a set
of consecutive slots that possess the exact mapping of tasks to
cores. In other words, a new interval starts on a slot when the
set of tasks assigned to this slot differs from the previous one.
Intervals may contain some cores without any task assignment,
resulting in idle slots within the interval. These slots form the
Spare Capacity (SC) of the interval. The scheduler uses SC to
execute AP RT tasks with guaranteed CPU execution time.

The scheduler executes any task assigned to the current
interval (as per the scheduling table). In idle slots, it runs
any ready tasks defined in the scheduling table that do not
belong to the current interval. If no task is ready, the scheduler
executes a best-effort or idle task. The scheduler reduces the
run time SC at the end of every slot where a task assigned
to the current interval does not execute. The run time SC
increases when a task assigned to the current interval finishes
before its WCET.

Slot shifting define acceptance test and a guarantee routine
to handle AP RT tasks [25]. When a new AP RT task arrives,
the acceptance test determines the sum of the remaining SC
in the current interval, spare capacities in all the intervals
before the task’s deadline, and the usable SC in the interval
where the deadline of the AP RT task lies. Then it checks
if the determined sum is more significant than the WCET
of the task (in terms of slots). If the test is successful, the
guarantee routine adds the task temporarily to the scheduling

table and updates the spare capacities of all affected intervals.
The guarantee routine may need to split existing intervals. The
result is that this routine guarantees the CPU allocation to the
newly accepted AP RT task. Using a similar idea, we can
permanently add a new periodic RT task to the scheduling
table without requiring a high-overhead table regeneration
process by considering offline SC values (instead of online
values).

B. Linux scheduler

The Linux scheduler is part of the kernel that helps manage
tasks and decide which to run next. It is modular and designed
to be extensible [28]. It is a multi-queue scheduler that
maintains a per-core run queue of ready tasks. It consists of a
core scheduler and extensible modules called the scheduling
classes, as shown in figure 1. Each class encapsulates a
scheduling policy to decide which ready task (belonging to
that class) to run next (from the run queue).

Linux currently supports four main scheduling classes:
1) Deadline (DL) for SCHED DEADLINE policy to sup-

port CBS-based resource reservations over EDF schedul-
ing.

2) Real-Time (RT) for POSIX fixed-priority scheduling
with SCHED RR (round-robin) and SCHED FIFO poli-
cies.

3) Completely Fair Scheduling (CFS) to maintain balance
in allocating processor time to tasks.

4) Idle for scheduling very low-priority jobs, usually the
idle process.

These classes are hierarchically organized by priority:

DL > RT > CFS > IDLE

The core scheduler selects which task to run next from the
run queue on each core by searching through the scheduling
classes in decreasing order of priority. As a result, the tasks
of lower priority classes run in the idle time of higher priority
classes. We add a new highest priority TT scheduling class
(TT > DL).

IV. IMPLEMENTATION

Let us assume a multicore processor with N
CPU cores (C0, C1, . . . , CN−1). We let M cores
(CN−M , CN−M+1, . . . , CN−1) out of these N cores
(M < N ) to execute process belonging to the TT class
(SCHED TT policy). We will refer to them as TT cores.

Linux Kernel

Scheduler

DL IDLECFSRT

Run Queues

Core Scheduler

TT
New

Fig. 1: Relevant parts of Linux CPU Scheduler
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There will be at least one core (C0) that will not run TT
processes. We will refer to it/them as non-TT core(s). We
also assume that each TT task only has a single thread.

To obtain real-time behavior from the Linux kernel (low
latency and high determinism), we chose the fully preemptible
kernel (RT) model via kernel configuration during build
time. The fully preemptible kernel is available via the PRE-
EMPT RT patch. This model ensures that preemption is possi-
ble on almost all kernel code apart from some critical sections
and implements mechanisms to reduce preemption. The Linux
kernel performs significant asynchronous housekeeping work,
such as timekeeping, timer callbacks, interrupt handlers, RCU
callbacks, and kernel threads. Using standard Linux kernel
configuration, every core is assigned housekeeping work. The
“noise” from this housekeeping work can significantly impact
applications running on the TT cores.

The isolcpus parameter helps us to isolate the TT cores from
the general SMP balancing and scheduler algorithms. Simi-
larly, we initialize the nohz full to configure full dynticks
along with CPU Isolation, rcu nocb poll to offload RCU
processing to non-TT cores, and the irqaffinity parameter
to affine the IRQs to non-TT cores (e.g., nohz full =
CN−M , CN−M+1, . . . , CN−1). Once the system boots, Linux
ensures that no processes execute on these TT cores unless
instructed by the slot-sifting manager (SSM) kernel mod-
ule and restricts all housekeeping work to non-TT cores
(C0, . . . , CN−M−1). Thus, we ensure almost housekeeping
noise-free TT cores to run processes assigned to SCHED TT
policy as depicted in Figure 2. After the system boots, we
insert SSM and ensure it runs on a non-TT core (e.g., C0).

The SSM runs as a timer interrupt routine just before the
start of each slot. This module runs a partitioned slot-shifting
algorithm. It decides what should run in the upcoming slot on
each TT core and informs the decision to TT scheduling class
via a shared structure.

The TT scheduling class acts as the interface between the
SSM and the core Linux scheduler. It runs as a periodic timer
interrupt routine at the start of every slot. It checks the shared
structure set by SSM to check which task to run in the current
slot. If the task to run is not the same as the task in the
previous slot, it marks the core for rescheduling by the Linux

C0

C1

..
.

CN−M

..
.

CN−1

Slot length

Slot shifting manager kernel module HRT interrupt (C0 only)

SCHED TT class HRT interrupt per TT core

TT processes / VMs / containers

Fig. 2: SCHED TT dispatcher and SSM kernel module

#define SCHED\ DEADLINE 6 // Existing
#define SCHED\ TT 7 // New
struct t a s k s t r u c t {

. . . // Existing task structure
# i f d e f CONFIG SCHED TT POLICY
unsigned int TT id ; // New

# e n d i f
}

Listing 1: TT class macro

struct rq { // Existing RQ structure
. . .
struct d l r q d l ; // Existing
# i f d e f CONFIG SCHED TT POLICY
struct t t r q t t ; // New

# e n d i f
}
struct t t r q { // New

. . .
boo l s c h e d u l e r r u n n i n g ;

} ;

Listing 2: TT class run queue

core scheduler. The following sections explain the detailed
implementation of the TT scheduling class and SSM.

A. TT scheduling class

We have developed this scheduling class from scratch to
implement the SCHED TT policy and enable TT scheduling
in Linux. We have implemented it on top of Linux kernel
version v5.19.9 with PREEMPT RT patch.

We defined a macro SCHED TT in “include/linux/sched.h”
to declare the new highest priority scheduling class (see
Listing 1). We also add a new variable to the task structure
(process descriptor) to act as a logical identifier for a task
belonging to the TT class.

The information about all ready processes is present in a
per-core run queue (RQ) data structure (struct rq), which in
turn has a TT RQ data structure (struct tt rq tt) to store
information about ready TT tasks on the core (see Listing
2). This structure also has a variable the slot-shifting kernel
module uses to indicate to the TT scheduler if it should start
running.

We made minor additions to the Linux core scheduler
code to ensure the kernel knows the new highest priority
class and does the additional logging for the TT class if
requested. For example, we defined a macro SCHED TT in
“include/linux/sched.h” to declare the new highest priority
scheduling class. We also add a new variable to the task
structure (process descriptor) to act as a logical identifier for
a task belonging to the TT class. The information about all
ready processes is present in a per-core run queue (RQ) data
structure (struct rq), which in turn requires a TT RQ data
structure (struct tt rq tt) to store information about ready TT
tasks on the core.

The modular Linux scheduler requires each scheduling class
to implement some functions specified in the Class structure.
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DEFINE SCHED CLASS( t t ) = {
// enqueue new runnable TT task in Linux RQ
. e n q u e u e t a s k = e n q u e u e t a s k t t ,
// dequeue stopped TT task from Linux RQ
. d e q u e u e t a s k = d e q u e u e t a s k t t ,
// pick next appropriate task to run from
// the TT scheduling class
. p i c k n e x t t a s k = p i c k n e x t t a s k t t ,
. . .

Listing 3: TT class definition

void i n i t i n i t s c h e d t t c l a s s (void ){
// set the tick equal to the slot length
t t s e t t i c k p e r i o d m s ( TT TICK PERIOD ) ;
. . .
//Set a timer on each TT core
f o r e a c h p o s s i b l e c p u ( i ) {

t i c k t i m e r = p e r c p u p t r (& t t t i c k t i m e r , i ) ;
h r t i m e r i n i t ( t i c k t i m e r ,CLOCK MONOTONIC,
HRTIMER MODE ABS HARD ) ;
//function to call on each tick
t i c k t i m e r −> f u n c t i o n = t t c p u t i c k ;

}
. . .

}

Listing 4: TT class initialization

Some crucial functions of the TT scheduling class to interface
with the core Linux scheduler are show in Listing 3.

During kernel boot, the core Linux scheduler expects an
interface (Listing 4) to initialize the new scheduling class. The
initialization of the TT class includes setting up a per-core
high-resolution timer (HRT) to have precise timer interrupts
at slot boundaries.

The main job of the HRT timer callback (Listing 5) on
each core is to check if the task id assigned by SSM to the
current slot for this core differs from the previous one. If it
is different, it marks the current core for rescheduling using
resched curr(). As a result, the Linux core scheduler runs and
uses the pick next task tt() interface to get the pointer to
the new task to run. It performs a context switch and then
runs the new task in the current slot on that core. In case this
interface of the TT class does not provide a task to run, the
Linux core scheduler automatically looks for runnable tasks
of lower-priority scheduling classes. The same is valid if the
TT class tasks finish execution early.

Only non-DL scheduling classes should be used together
with the TT class. It is possible to execute new RT aperiodic
tasks in the slack of TT tasks via the SSM module.

B. Slot Shifting Manager (SSM) kernel module

We assume an external tool handles some things offline,
such as precedence constraint resolution of tasks, calculations
of the earliest start times and deadlines, and allocation of
tasks to cores. The user must provide the information received
from the external tool to the SSM kernel module via sysfs
interface. sysfs is an in-memory file system that allows users

static enum h r t i m e r r e s t a r t
t t c p u t i c k (struct h r t i m e r * t i m e r ){
int cpu = s m p p r o c e s s o r i d ( ) ;
. . .
//get the task id of current and next task
n e w s c h e d t i d = t h i s c p u r e a d ( t t s c h e d . n e x t ) ;
p r e v s c h e d t i d = t h i s c p u r e a d ( t t s c h e d . c u r r ) ;
if ( n e w s c h e d t i d != p r e v s c h e d t i d ){
// only if the previous slot task is not
// same as the task for this slot
if ( n e w s c h e d t i d )
s c h e d t a s k = s s t a s k s [ n e w s c h e d t i d ] ;
else if ( s c h e d t a s k

&& t a s k c p u ( s c h e d t a s k ) ! = cpu ){
//If the task is on different core’s RQ,

} //move it to this one’s RQ
. . .
//mark for resched by Linux core sched
r e s c h e d c u r r ( rq ) ;

}
//do not do anything if the task in previous
//slot and the current one are the same
. . .
// restart HRT for the next slot tick
return HRTIMER RESTART ;

}

Listing 5: TT class CPU tick (per core)

to interface with kernel objects such as devices, modules, and
other components.

The SSM sysfs interface allows users to input task count
and properties of tasks and perform parts of offline phase
specific to the slot shifting algorithm, checking current status,
and initiating TT scheduling on TT cores. Before initiating
TT scheduling, the user must use our task execution tool to
execute the task binaries as Linux processes and map the Linux
process identifiers (PIDs) to the slot-shifting task IDs. The tool
sets the scheduling policy for the tasks to SCHED TT.

Upon initiation of TT scheduling, SSM performs steps to
prepare for slot-shifting and then sets up an HRT timer on
core 0 to have precise interrupts before the start of the new
slot. Let us assume WCETssm is the worst-case observed
execution time of the SSM module (based on experiments
- Section V). The module sets the HRT timer to cause an
interrupt WCETssm time units before the slot boundary.

The HRT interrupt callback runs a loop to perform
the following activity for managing each TT core. We
have summarized the SSM HRT callback in Algorithm 1.
Firstly, it performs some slot-shifting housekeeping activities
such as incrementing slot numbers and updating intervals
(Update SlotShifting Intervals()), removing finished
tasks, and moving ready periodic tasks to the internal SSM
ready queue (Update Interal SlotShifting RQ()).
Then, it checks for any new (user-added) periodic
or aperiodic tasks that became active. The module
must try to add them to the existing scheduling table
(Check and Add New RT Tasks()). It performs an
acceptance test to check if enough spare capacity is present to
add these tasks. If the test is successful, the guarantee routine
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Algorithm 1 SSM HRT timer callback

function SSMOD TIMER CB(STRUCT HRTIMER *TIME)
core := N −M
while core < N do

Update SlotShifting Intervals()
Update Interal SlotShifting RQ()
Check and Add New RT Tasks()
Set Upcoming Slot Task()
Update SlotShifting Spare Capacities()
core := core+ 1

end while
end function

adds the task temporarily/permanently to the scheduling table
and updates the spare capacities of all affected intervals.
Next, it selects the task to run in the next slot of the
particular CPU core and updates the internal data structure
accessed via the TT scheduling class at the start of each slot
(Set Upcoming Slot Task()) to find out which task to run
in that slot. Finally, it updates the spare capacity as required
(Update SlotShifting Spare Capacities()). Since we
are running a partitioned slot-shifting algorithm, the HRT
callback repeats these steps for each TT core.

V. EXPERIMENTS

We evaluated our implementation on a Dell COTS server
with an Intel Xeon processor (Cascade Lake, 16 physical
CPU cores, 2.3GHz). We turned off certain configurations,
such as power-saving mechanisms (e.g., frequency scaling,
C-states) and hardware multi-threading, in BIOS and Linux
Kernel to avoid unpredictability sources for the TT cores.
Using power-saving mechanisms such as low power stats leads
to higher scheduling overhead, while frequency scaling leads
to an increase in the WCET of tasks. Kadusale et al. [29]
present an energy-aware slot-shifting algorithm variation that
considers lower power states and frequency scaling. However,
we do not consider energy-aware slot-shifting in this paper.
We ran the slot-shifting manager (SSM) on core 0 and isolated
cores 1 to 15 to run offline scheduled TT tasks as explained
in Section IV.

We specify parameters (Table I), such as the total target
utilization, WCET range, and period range, to the UUnifast
algorithm [30] to generate task sets for evaluation. Each task
in every task set performs many arithmetic operations (in a
loop) and uses the clock cycle performance counter event to
determine the time needed to perform all the operations in
each iteration of the loop. Offline scheduled tasks have total
utilization of ca. 50%. New AP RT tasks that the slot-shifting
manager must add during runtime have an additional total
utilization of 50%.

Parameter Offline tasks AP RT tasks
WCET range [1,15] [10,15]
Period range [15,50] [10,15]

Total Taskset Utilization 50% 50%

TABLE I: Taskset Parameters

We created 50 task sets via the UUnifast algorithm for the
evaluation. We parse and feed the UUnifast algorithm output
to the slot-shifting manager via the sysfs interface (see Section
IV-B). Each task set has an offline schedule duration between
480 to 520 slots, with a slot length of 3ms. We ran each test 5
times. Thus, we measure the results in the following sections
for scheduling overheads by the TT class and the slot-shifting
manager by considering more than 120× 103 slots ×15 cores
= 18 × 105 slots in total. The main aim of these task sets
is not to test the working for the slot-shifting algorithm (see
previous work [25]) but to measure the worst-case overheads
for SCHED TT and estimate the overheads for SSM. We do
not expect a change in SCHED TT overheads with different
utilization values.

A. TT class overheads

This section shows observed periodic overheads of the
individual components of the TT scheduling class and its
interaction with the Linux core scheduler. We measured all
the overheads by reading elapsed clock cycles (PMU events)
at the start and end of the appropriate code sections. These
components are depicted in Figure 3. Task Tick (T) represents
the overhead for the TT class HRT callback (Listing 5). Tick
Skew (TS) represents the maximum difference in occurrence
time of HRT time callback on each core. Schedule Trigger
(ST) is the time needed for the Linux core scheduler to
activate once the TT class HRT callback marks a core for
rescheduling. schedule function (S) is the primary function
of the Linux core scheduler. This function is triggered on TT
cores only when the TT class marks a core for rescheduling.
It puts the previously running task into the appropriate RQ,
calls TT class’ pick next task, and lastly, performs a context
switch before passing the control to the newly selected task.
pick next task function (P) is called by schedule to pick a
new task of the highest priority scheduling class to run next. In
our case, the highest priority scheduling class is SCHED TT.
pick next task in turn calls pick next task tt (Listing 3).
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C1

(TT)

. . .

C15

(TT)

SSM

T

T

P

P

Task1

TaskN

. . .

. . .

Total Overhead (D)

TS

ST

ST

S

S

Slot
start Slot . . .

time

Fig. 3: TT class overhead components

We perform experiments with offline schedules that require
and do not require migration of tasks between cores. We also
compare our results to similar components from the existing
RT scheduling class (SCHED RR round robin policy), which
is closest to TT class style scheduling. Results are shown in
Figure 4. TT class performs slightly better for task tick without
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Fig. 4: Overhead measurements for TT class and RT class
(RR) without and with(*) core migration

migration. However, the TT class performs slightly worse
with migrations because we artificially generated an offline
schedule that causes multiple migrations in the same slot. A
similar schedule is challenging to simulate for SCHED RR
as it does task migration only for load-balancing purposes.
We observed a maximum tick skew of 4.23µs for the TT
class tick. We cannot make a meaningful comparison since
RT class ticks are not precise. We observed lower overheads
for the schedule trigger and schedule function for the TT
class. We expected little difference as most code (except some
interfaces) is part of the Linux core scheduler. We observed a
significant difference in pick next task, where the TT class
has much lower overheads.

The maximum observed total overhead (D) for the TT class
with and without migrations was 7.73µs and 5.19µs in the
worst case, with more than 99% slots requiring < 2.66µs and
< 2.47µs, respectively. We targeted a slot duration of 3ms.
We read the clock cycles at the start of each slot and observed a
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Fig. 5: SSM kernel module overhead
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Fig. 6: Overheads of individual SSM functions

maximum slot duration of 3.003ms, a minimum slot duration
of 2.995ms, and an exact 3ms duration for > 99% slots.

Comparison to existing work: Karachatzis et al. [20]
experimentally demonstrate that their kernel-level TT schedul-
ing implementation has lower scheduling latency (max =
41.79µs) as compared to the existing completely fair schedul-
ing policies in Linux (max = 12813.56µs) and Motion-
Wise [19] userspace TT implementation (max = 85.67µs).
The experiments were conducted on a quad-core Intel Atom
processor (1.594GHz) on Linux kernel v5.9.1 with PRE-
EMPT RT and optimizations for running RT tasks. We did
not observe further details about how the scheduling latency
was precisely determined to make a clear comparison. In our
implementation, we observed a worst-case scheduling latency
of 5.19µs (over 18 × 105 slots) with migration disabled
(similar to them) on server-grade hardware (16 cores, 2.3Ghz),
Linux kernel v5.19.9, and similar patch and optimizations.
We measured the latency by reading hardware clock cycles
at appropriate time points within the Linux core scheduler.

B. SSM kernel module overhead

We measured the overheads for the SSM module by reading
elapsed clock cycles (PMU events) at the start and end of the
module. Figure 5 shows the observed periodic overheads of
the SSM module running on core 0 and executing the slot-
shifting algorithm for one single core and all 15 cores together.
We also measured the overheads for the individual functions
from Algorithm 1 by reading elapsed clock cycles (PMU
event) at the start and end of the functions. Figure 6 shows
the worst and average overheads of the individual functions.
Similar overheads for slot-shifting algorithms were measured
and explained by Schorr et al. [25]. Hence, we do not explain
these results in detail in this paper.

Note that the worst case seems longer in Figure 6b as
compared to Figure 5 since Figure 6b shows the cumulative
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worst case of individual functions. We use the worst-case
observed value (15.33µs) to set up the HRT timer interrupt
for SSM, as explained in Section IV-B.

We can observe that only a tiny portion of the overhead goes
into interfacing with the TT class (to set tasks for upcoming
slots). This indicates a possibility to integrate and test other
joint TT and ET scheduling algorithms in the future instead
of just allowing slot-shifting algorithms.

VI. CONCLUSION

We presented a new scheduling class for the Linux scheduler
to support time-triggered (TT) scheduling of tasks on multi-
core Linux nodes. We complemented the new scheduling class
with a low overhead slot-shifting manager (SSM) running on
a non-TT core to provide guaranteed execution time to real-
time aperiodic tasks by using the slack of the time-triggered
tasks and avoiding a high-overhead table regeneration for
adding new periodic RT tasks. We have implemented the
TT class for Linux kernel v5.19.9 with PREEMPT RT patch
and evaluated our implementation on server-grade hardware
with Intel Xeon Scalable Processor. Our implementation has
very low overheads and performs better than the existing RT
class (SCHED RR), especially for picking tasks to run next.
We also observed that more than 99% of slots achieve the
targeted slot length with a maximum error of 5ns in the rest.
We observed extremely low worst-case TT class scheduling
(< 7.73µs) and SSM overheads (< 15.33µs).

We are fine-tuning the implementation at present and work-
ing on making it open-source. In the future, we want to
support multi-threaded / multicore tasks (process, VMs, and
containers). In this paper, we focused on TT CPU scheduling
alone. However, other sources of unpredictability exist, such
as the memory hierarchy and network. Thus, we want to
consider memory bandwidth and cache allocation to slots and
explore integration with time-sensitive networking (TSN). We
aim to make the SSM modular more generalized to allow
integration of other joint time-and event-triggered algorithms.
We leave the integration of TT Linux nodes in a distributed
system or cloud to future work. It will require some form
of clock synchronization with other nodes. Since embedded
devices have a limited number of cores, we want to explore
the possibility of avoiding non-TT cores by integrating SSM
with SCHED TT class.
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