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Motivation =

e Worst-Case Execution Time (WCET)
e Energy consumption
e Static SPM allocation constrained by small SPM size
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Overview =

© Dynamic SPM Allocation (DSA)
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Dynamic SPM Allocation (DSA) =
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DSA: Memory Objects
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DSA: Liveness Analysis

Flash

Memory Objects:
-- Functions: Foo_1() and Foo_2()
-- Loops: Loop_1, Loop_2,
SPM Loop_3, and Loop_4
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cts Allocation

Flash

Memory Objects:
-- Functions: Foo_1() and Foo_2()
-- Loops: Loop_1, Loop_2,
SPM Loop_3, and Loop_4

120

120 Empty
Liveness conflicts:

--Foo_2(), Loop_3, and Loop_4
-- Foo_1() and Foo_2()

Memory Object Allocation:
-- Flash: Foo_1() and Loop_3()
-- SPM: Foo 2(), Loop_1,

Loop_2, and Loop_4
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DSA: Address Assignment
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Flash
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SPM

Memory Objects:
-- Functions: Foo_1() and Foo_2()
-- Loops: Loop_1, Loop_2,
Loop_3, and Loop_4

Liveness conflicts:
--Foo_2(), Loop_3, and Loop_4
-- Foo_1() and Foo_2()

Memory Object Allocation:
-- Flash: Foo_1() and Loop_3()
-- SPM: Foo 2(), Loop_1,

Loop_2, and Loop_4
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Address Assignment:
-- First-Fit Heuristic
-- Best-Fit Heuristic



DSA: Code Transformation =

At Compile Time

e

Memory
Object (MO)
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DSA: Code Transformation =

= = un

At Compile Time

Object (MO)
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DSA: Code Transformation

At Compile Time During Runtime
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DSA: Code Generation and Analyses
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Overview =

e Multi-Objective DSA-based Optimization
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Multi-Objective Optimization Problem

e Search Space:
* x € X e {019
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Multi-Objective Optimization Problem

e Search Space:
* x € X e {019
e Objective Space:

* © = {F(x) = (F1(x), F2(x))Ix € X}
Where, F1(x) = WCET objective and F,(x) = Energy objective
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Multi-Objective Optimization Problem

e Search Space:
* x € X e {019
e Objective Space:

* © = {F(x) = (F1(x), F2(x))Ix € X}
Where, F1(x) = WCET objective and F,(x) = Energy objective

e Minimization function:
* minycx F(X)
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Multi-Objective Optimization Problem

Search Space:
* x € X e {019
Objective Space:

* © = {F(x) = (F1(x), F2(x))|x € X}
Where, F1(x) = WCET objective and F,(x) = Energy objective
e Minimization function:
* minycx F(X)
Search Space Constraint:

* X(F1):(F+L) = X(F+1):(F+L) T T
Where,

B 1, ifX,:+/:0&(3f|)\F+/gAfE/\tp)&Xf:‘l
W= 0, otherwise
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Multi-Objective Optimization Problem

Search Space:
* x € X e {019
Objective Space:

* © = {F(x) = (F1(x), F2(x))Ix € X}
Where, F1(x) = WCET objective and F,(x) = Energy objective

Minimization function:
* minycx F(X)
Search Space Constraint:

* X(F1):(F+L) = X(F+1):(F+L) T T
Where,
B {1, ifX,:+/ = 0&(3f|)\,‘:+/ C X e /\T:F)&Xf =1

W= 0, otherwise
Address Assignment Algorithm Constraint:
* (T—-m)=0
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Overview =

© Multi-Objective DSA-based Optimization
° Multi-Objective Optimization Problem
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Metaheuristic Algorithms =

To solve multi-objective DSA-based optimization problem, we use:

e Flower Pollination Algorithm (FPA)
e Strength Pareto Evolutionary Algorithm (SPEA)

Algorithm Multi-Objective DSA-based optimization
1: Collect memObj, perform Liveness Analysis, and randomly initialize initial
population of size N
:forn=1:Ndo
Generate DSA code
. while Stopping criteria is not reached do
Update Individual using respective update operators
for Each updated Individual do
Generate DSA code
Update to next generation using selection operator

. return Pareto-optimal solution set

O 0O NSO R ®WN
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Overview =

@ Evaluation
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Comparison between... =

e Proposed multi-objective DSA-based optimization (MOp)
—>Solved using:

e FPA
e SPEA
e Multi-objective static SPM allocation-based optimization (MOs)
—>Solved using:
o FPA
e SPEA

e ILP-based single objective dynamic SPM allocation (SOp)
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Overview =

@ Evaluation
° Pareto fronts
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Pareto fronts
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Figure 1: Solutions Obtained from MOs, MOp, and SOp optimization runs
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Pareto fronts =

The following percent of solutions were on the final Pareto front

e MOs—FPA: 3.62%
MOs—SPEA: 5.26%
SOp—ILP: 0.66%

o MOp—FPA:70.4%
MOp—-SPEA: 20.1%

—> MOp—FPA found most number of solution on the final Pareto front
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Overview =

© Evaluation

° Quality Indicators
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Quality Indicators B

[{a€A:TpeP a=p}|
1Al

e Non-Dominance Ratio: NDR =

e Coverage:C =1-—
|PNA|
P

lacA:aeP|

o Non-Dominated Solutions: NDS = A
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Quality Indicators =

[{a€A:TpeP a=p}|
1Al

e Non-Dominance Ratio: NDR =

e Coverage:C =1-—

|PNA|
IP|

e Non-Dominated Solutions: NDS = %

From overall Evaluations, in terms of Quality Indicators:

e MO, performed much better than SOp
e MO, performed slightly better than MOs
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Quality Indicators =

[{a€A:TpeP a=p}|
1Al

e Non-Dominance Ratio: NDR =

e Coverage:C =1-—

|PNA|
IP|

e Non-Dominated Solutions: NDS = 2<42<F

From overall Evaluations, in terms of Quality Indicators:

e MO, performed much better than SOp
e MO, performed slightly better than MOs

Overheads due to dynamic copying in MOp optimization run:

e WCET overheads on average: 24.39%
e Energy overheads on average: 22.65%
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Overview =

Q Conclusion
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Conclusion =

Proposed compiler-level DSA-based multi-objective optimization
WCC performs WCET and energy analysis of DSA code

e MOy is solved using FPA and SPEA

MOy outperforms SOp

e MOy performs slightly better than MOs

Future Work

e Reducing the WCET and energy overheads by using DMA

e Reducing the compilation time needed by multi-objective DSA-based
optimization
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