
Towards Multi-Objective Dynamic SPM Allocation

Shashank Jadhav Heiko Falk

shashank.jadhav / heiko.falk@tuhh.de

Institute of Embedded Systems, TUHH
21st International Workshop on Worst-Case

Execution Time Analysis (WCET), Vienna, Austria

July 11, 2023

Overview

1 Motivation

2 Dynamic SPM Allocation (DSA)

3 Multi-Objective DSA-based Optimization

4 Evaluation

5 Conclusion

© Shashank Jadhav Heiko Falk 1

Motivation

• Worst-Case Execution Time (WCET)
• Energy consumption
• Static SPM allocation constrained by small SPM size

© Shashank Jadhav Heiko Falk 2

Overview

1 Motivation

2 Dynamic SPM Allocation (DSA)

3 Multi-Objective DSA-based Optimization

4 Evaluation

5 Conclusion

© Shashank Jadhav Heiko Falk 2

Dynamic SPM Allocation (DSA)

Determine Memory
Objects

Perform Liveness
Analysis

Allocation of
Memory Objects

Solve Address
Assignment Problem

Code Transformation
for DMA

Final Code Generation
and

WCET/Energy Analyses

© Shashank Jadhav Heiko Falk 3

DSA: Memory Objects

Determine Memory
Objects

Perform Liveness
Analysis

Allocation of
Memory Objects

Solve Address
Assignment Problem

Code Transformation
for DMA

Final Code Generation
and

WCET/Energy Analyses

main()

Foo_2(...)
MO_2

0

5

20

30

50

70

80

90
95

100

115

Flash

MO_3

Loop_1

call
Foo_1(...)

MO_4

Loop_2

Foo_1(...)

MO_5
Loop_3

MO_6
Loop_4

MO_1
55

60

120

140

160

SPM
120

140

160

Memory Objects:
 -- Functions: Foo_1() and Foo_2()
 -- Loops: Loop_1, Loop_2,
 Loop_3, and Loop_4

Empty

call
Foo_2(...)

© Shashank Jadhav Heiko Falk 4

DSA: Liveness Analysis

main()

Foo_2(...)
MO_2

0

5

20

30

50

70

80

90
95

100

115

Flash

MO_3

Loop_1

call
Foo_1(...)

MO_4

Loop_2

Foo_1(...)

MO_5
Loop_3

MO_6
Loop_4

MO_1
55

60

120

140

160

SPM
120

140

160

Memory Objects:
 -- Functions: Foo_1() and Foo_2()
 -- Loops: Loop_1, Loop_2,
 Loop_3, and Loop_4

Liveness conflicts:
 -- Foo_2(), Loop_3, and Loop_4
 -- Foo_1() and Foo_2()

Empty

call
Foo_2(...)

Determine Memory
Objects

Perform Liveness
Analysis

Allocation of
Memory Objects

Solve Address
Assignment Problem

Code Transformation
for DMA

Final Code Generation
and

WCET/Energy Analyses

© Shashank Jadhav Heiko Falk 5

DSA: Memory Objects Allocation

main()

Foo_2(...)
MO_2

0

5

20

30

50

70

80

90
95

100

115

Flash

MO_3

Loop_1

call
Foo_1(...)

MO_4

Loop_2

Foo_1(...)

MO_5
Loop_3

MO_6
Loop_4

MO_1
55

60

120

140

160

SPM
120

140

160

Memory Objects:
 -- Functions: Foo_1() and Foo_2()
 -- Loops: Loop_1, Loop_2,
 Loop_3, and Loop_4

Memory Object Allocation:
 -- Flash: Foo_1() and Loop_3()
 -- SPM: Foo 2(), Loop_1,
 Loop_2, and Loop_4

Liveness conflicts:
 -- Foo_2(), Loop_3, and Loop_4
 -- Foo_1() and Foo_2()

Empty

call
Foo_2(...)

Determine Memory
Objects

Perform Liveness
Analysis

Allocation of
Memory Objects

Solve Address
Assignment Problem

Code Transformation
for DMA

Final Code Generation
and

WCET/Energy Analyses

© Shashank Jadhav Heiko Falk 6

DSA: Address Assignment

main()

Foo_2(...)
MO_2

0

5

20

30

50

70

80

90
95

100

115

Flash

MO_3

Loop_1

call
Foo_1(...)

MO_4

Loop_2

Foo_1(...)

MO_5
Loop_3

MO_6
Loop_4

MO_1
55

60

120

140

160

SPM
120

140

160

Memory Objects:
 -- Functions: Foo_1() and Foo_2()
 -- Loops: Loop_1, Loop_2,
 Loop_3, and Loop_4

Memory Object Allocation:
 -- Flash: Foo_1() and Loop_3()
 -- SPM: Foo 2(), Loop_1,
 Loop_2, and Loop_4

Liveness conflicts:
 -- Foo_2(), Loop_3, and Loop_4
 -- Foo_1() and Foo_2()

call
Foo_2(...)

Foo_2(...)

MO_2MO_3

Loop_1

MO_6
Loop_4

MO_4

Loop_2

call
Foo_2(...)

Address Assignment:
 -- First-Fit Heuristic
 -- Best-Fit Heuristic

Determine Memory
Objects

Perform Liveness
Analysis

Allocation of
Memory Objects

Solve Address
Assignment Problem

Code Transformation
for DMA

Final Code Generation
and

WCET/Energy Analyses

© Shashank Jadhav Heiko Falk 7

DSA: Code Transformation

B1

B2 B3

B4

B5

FLASH

B0
FLASH

FLASH FLASH

FLASH

FLASH

At Compile Time

Memory
Object (MO)

Determine Memory
Objects

Perform Liveness
Analysis

Allocation of
Memory Objects

Solve Address
Assignment Problem

Code Transformation
for DMA

Final Code Generation
and

WCET/Energy Analyses

© Shashank Jadhav Heiko Falk 8

DSA: Code Transformation

B1

B2 B3

B4

B5

FLASH

B0
FLASH

FLASH FLASH

FLASH

FLASH

Insert
Memcpy Call Fix Jumps

At Compile Time

Memory
Object (MO)

B0_call
B0_jump

Fix Jumps
B4_jump

Determine Memory
Objects

Perform Liveness
Analysis

Allocation of
Memory Objects

Solve Address
Assignment Problem

Code Transformation
for DMA

Final Code Generation
and

WCET/Energy Analyses

© Shashank Jadhav Heiko Falk 9

DSA: Code Transformation

B1

B2 B3

B4

B5

FLASH

B0
FLASH

FLASH FLASH

FLASH

FLASH

Insert
Memcpy Call Fix Jumps

At Compile Time During Runtime

Memory
Object (MO)

B0_call
B0_jump

Fix Jumps
B4_jump

B1

B2 B3

B4

B5

SPM

B0
FLASH

SPM SPM

SPM

FLASH

Call Memcpy &
Copy MO to SPM

Jump from
B0_call in Flash to

B1 in SPM

Memory
Object (MO)

B0_call B0_jump

Jump from B4 in SPM
to B5 in Flash

B4_jump

Determine Memory
Objects

Perform Liveness
Analysis

Allocation of
Memory Objects

Solve Address
Assignment Problem

Code Transformation
for DMA

Final Code Generation
and

WCET/Energy Analyses

© Shashank Jadhav Heiko Falk 10

DSA: Code Generation and Analyses

Determine Memory
Objects

Perform Liveness
Analysis

Allocation of
Memory Objects

Solve Address
Assignment Problem

Code Transformation
for DMA

Final Code Generation
and

WCET/Energy Analyses

Temporarily Resize
SPM

Fix Literal Pool
Placements

Statically Allocate
Code

Insert Temporary
NOP Basic Blocks

Within Main Memory

Perform WCET
and

Energy Analyses

Output Final
Version of the

Code

© Shashank Jadhav Heiko Falk 11

Overview

1 Motivation

2 Dynamic SPM Allocation (DSA)

3 Multi-Objective DSA-based Optimization

4 Evaluation

5 Conclusion

© Shashank Jadhav Heiko Falk 11

Multi-Objective Optimization Problem

• Search Space:
∗ x ∈ X ∈ {0, 1}d

• Objective Space:
∗ Θ = {F(x) = (F1(x), F2(x))|x ∈ X}

Where, F1(x) = WCET objective and F2(x) = Energy objective
• Minimization function:

∗ minx∈X F(x)
• Search Space Constraint:

∗ x(F+1):(F+L) = x(F+1):(F+L) + τ

Where,

τl =

{1, if xF+l = 0 & (∃f | λF+l ⊆ λf ∈ Λ1:F) & xf = 1
0, otherwise

• Address Assignment Algorithm Constraint:
∗ (T − η) = 0

© Shashank Jadhav Heiko Falk 12

Multi-Objective Optimization Problem

• Search Space:
∗ x ∈ X ∈ {0, 1}d

• Objective Space:
∗ Θ = {F(x) = (F1(x), F2(x))|x ∈ X}

Where, F1(x) = WCET objective and F2(x) = Energy objective

• Minimization function:
∗ minx∈X F(x)

• Search Space Constraint:
∗ x(F+1):(F+L) = x(F+1):(F+L) + τ

Where,

τl =

{1, if xF+l = 0 & (∃f | λF+l ⊆ λf ∈ Λ1:F) & xf = 1
0, otherwise

• Address Assignment Algorithm Constraint:
∗ (T − η) = 0

© Shashank Jadhav Heiko Falk 12

Multi-Objective Optimization Problem

• Search Space:
∗ x ∈ X ∈ {0, 1}d

• Objective Space:
∗ Θ = {F(x) = (F1(x), F2(x))|x ∈ X}

Where, F1(x) = WCET objective and F2(x) = Energy objective
• Minimization function:

∗ minx∈X F(x)

• Search Space Constraint:
∗ x(F+1):(F+L) = x(F+1):(F+L) + τ

Where,

τl =

{1, if xF+l = 0 & (∃f | λF+l ⊆ λf ∈ Λ1:F) & xf = 1
0, otherwise

• Address Assignment Algorithm Constraint:
∗ (T − η) = 0

© Shashank Jadhav Heiko Falk 12

Multi-Objective Optimization Problem

• Search Space:
∗ x ∈ X ∈ {0, 1}d

• Objective Space:
∗ Θ = {F(x) = (F1(x), F2(x))|x ∈ X}

Where, F1(x) = WCET objective and F2(x) = Energy objective
• Minimization function:

∗ minx∈X F(x)
• Search Space Constraint:

∗ x(F+1):(F+L) = x(F+1):(F+L) + τ

Where,

τl =

{1, if xF+l = 0 & (∃f | λF+l ⊆ λf ∈ Λ1:F) & xf = 1
0, otherwise

• Address Assignment Algorithm Constraint:
∗ (T − η) = 0

© Shashank Jadhav Heiko Falk 12

Multi-Objective Optimization Problem

• Search Space:
∗ x ∈ X ∈ {0, 1}d

• Objective Space:
∗ Θ = {F(x) = (F1(x), F2(x))|x ∈ X}

Where, F1(x) = WCET objective and F2(x) = Energy objective
• Minimization function:

∗ minx∈X F(x)
• Search Space Constraint:

∗ x(F+1):(F+L) = x(F+1):(F+L) + τ

Where,

τl =

{1, if xF+l = 0 & (∃f | λF+l ⊆ λf ∈ Λ1:F) & xf = 1
0, otherwise

• Address Assignment Algorithm Constraint:
∗ (T − η) = 0

© Shashank Jadhav Heiko Falk 12

Overview

1 Motivation

2 Dynamic SPM Allocation (DSA)

3 Multi-Objective DSA-based Optimization
Multi-Objective Optimization Problem

4 Evaluation

5 Conclusion

© Shashank Jadhav Heiko Falk 12

Metaheuristic Algorithms

To solve multi-objective DSA-based optimization problem, we use:

• Flower Pollination Algorithm (FPA)
• Strength Pareto Evolutionary Algorithm (SPEA)

Algorithm Multi-Objective DSA-based optimization
1: Collect memObj, perform Liveness Analysis, and randomly initialize initial

population of size N
2: for n = 1 : N do
3: Generate DSA code
4: while Stopping criteria is not reached do
5: Update Individual using respective update operators
6: for Each updated Individual do
7: Generate DSA code
8: Update to next generation using selection operator
9: return Pareto-optimal solution set

© Shashank Jadhav Heiko Falk 13

Overview

1 Motivation

2 Dynamic SPM Allocation (DSA)

3 Multi-Objective DSA-based Optimization

4 Evaluation

5 Conclusion

© Shashank Jadhav Heiko Falk 13

Comparison between...

• Proposed multi-objective DSA-based optimization (MOD)
–>Solved using:

• FPA
• SPEA

• Multi-objective static SPM allocation-based optimization (MOS)
–>Solved using:

• FPA
• SPEA

• ILP-based single objective dynamic SPM allocation (SOD)

© Shashank Jadhav Heiko Falk 14

Overview

1 Motivation

2 Dynamic SPM Allocation (DSA)

3 Multi-Objective DSA-based Optimization

4 Evaluation
Pareto fronts

5 Conclusion

© Shashank Jadhav Heiko Falk 14

Pareto fronts

4.5 5.0 5.5 6.0 6.5
WCET [Clock cycles] 1e8

3.35

3.40

3.45

3.50

3.55

3.60

3.65

En
er

gy
 C

on
su

m
pt

io
n

[p
J]

1e11 Benchmark: Auto_a2time
Total Number
of Solutions

1, 1

1, 0

27, 27

9, 9

1, 0

1.4 1.5 1.6 1.7 1.8 1.9 2.0
WCET [Clock cycles] 1e8

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

En
er

gy
 C

on
su

m
pt

io
n

[p
J]

1e11 Benchmark: Auto_basefp
Total Number
of Solutions

4, 0

1, 1

17, 5

19, 1

1, 0

2.8 2.9 3.0 3.1 3.2 3.3 3.4
WCET [Clock cycles] 1e9

1.895

1.900

1.905

1.910

1.915

1.920

1.925

En
er

gy
 C

on
su

m
pt

io
n

[p
J]

1e12 Benchmark: Auto_ttsprk
Total Number
of Solutions

1, 1

5, 0

3, 2

6, 6

1, 1

MOS – FPA MOS – SPEA MOD – FPA MOD – SPEA SOD – ILP

Figure 1: Solutions Obtained from MOS , MOD , and SOD optimization runs

© Shashank Jadhav Heiko Falk 15

Pareto fronts

The following percent of solutions were on the final Pareto front

• MOS–FPA: 3.62%
• MOS–SPEA: 5.26%
• SOD–ILP: 0.66%
• MOD–FPA: 70.4%
• MOD–SPEA: 20.1%

–> MOD–FPA found most number of solution on the final Pareto front

© Shashank Jadhav Heiko Falk 16

Overview

1 Motivation

2 Dynamic SPM Allocation (DSA)

3 Multi-Objective DSA-based Optimization

4 Evaluation

Quality Indicators

5 Conclusion

© Shashank Jadhav Heiko Falk 16

Quality Indicators

• Coverage: C = 1− |{a∈A:∃p∈P,a⪯p}|
|A|

• Non-Dominance Ratio: NDR = |P∩A|
|P|

• Non-Dominated Solutions: NDS = |a∈A:a∈P|
|A|

From overall Evaluations, in terms of Quality Indicators:

• MOD performed much better than SOD

• MOD performed slightly better than MOS

Overheads due to dynamic copying in MOD optimization run:

• WCET overheads on average: 24.39%
• Energy overheads on average: 22.65%

© Shashank Jadhav Heiko Falk 17

Quality Indicators

• Coverage: C = 1− |{a∈A:∃p∈P,a⪯p}|
|A|

• Non-Dominance Ratio: NDR = |P∩A|
|P|

• Non-Dominated Solutions: NDS = |a∈A:a∈P|
|A|

From overall Evaluations, in terms of Quality Indicators:

• MOD performed much better than SOD

• MOD performed slightly better than MOS

Overheads due to dynamic copying in MOD optimization run:

• WCET overheads on average: 24.39%
• Energy overheads on average: 22.65%

© Shashank Jadhav Heiko Falk 17

Quality Indicators

• Coverage: C = 1− |{a∈A:∃p∈P,a⪯p}|
|A|

• Non-Dominance Ratio: NDR = |P∩A|
|P|

• Non-Dominated Solutions: NDS = |a∈A:a∈P|
|A|

From overall Evaluations, in terms of Quality Indicators:

• MOD performed much better than SOD

• MOD performed slightly better than MOS

Overheads due to dynamic copying in MOD optimization run:

• WCET overheads on average: 24.39%
• Energy overheads on average: 22.65%

© Shashank Jadhav Heiko Falk 17

Overview

1 Motivation

2 Dynamic SPM Allocation (DSA)

3 Multi-Objective DSA-based Optimization

4 Evaluation

5 Conclusion

© Shashank Jadhav Heiko Falk 17

Conclusion

• Proposed compiler-level DSA-based multi-objective optimization
• WCC performs WCET and energy analysis of DSA code
• MOD is solved using FPA and SPEA
• MOD outperforms SOD

• MOD performs slightly better than MOS

Future Work

• Reducing the WCET and energy overheads by using DMA
• Reducing the compilation time needed by multi-objective DSA-based

optimization

© Shashank Jadhav Heiko Falk 18

Thank You

© Shashank Jadhav Heiko Falk 19

	Motivation
	Dynamic SPM Allocation (DSA)
	Multi-Objective DSA-based Optimization
	Multi-Objective Optimization Problem
	Metaheuristic Algorithms

	Evaluation
	Pareto fronts
	Quality Indicators

	Conclusion

