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Motivation

• Worst-Case Execution Time (WCET)
• Energy consumption
• Static SPM allocation constrained by small SPM size
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DSA: Memory Objects
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DSA: Liveness Analysis
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DSA: Memory Objects Allocation
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DSA: Address Assignment
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DSA: Code Transformation
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DSA: Code Transformation
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DSA: Code Generation and Analyses
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Multi-Objective Optimization Problem

• Search Space:
∗ x ∈ X ∈ {0, 1}d

• Objective Space:
∗ Θ = {F(x) = (F1(x), F2(x))|x ∈ X}

Where, F1(x) = WCET objective and F2(x) = Energy objective
• Minimization function:

∗ minx∈X F(x)
• Search Space Constraint:

∗ x(F+1):(F+L) = x(F+1):(F+L) + τ

Where,

τl =

{1, if xF+l = 0 & (∃f | λF+l ⊆ λf ∈ Λ1:F) & xf = 1
0, otherwise

• Address Assignment Algorithm Constraint:
∗ (T − η) = 0
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Metaheuristic Algorithms

To solve multi-objective DSA-based optimization problem, we use:

• Flower Pollination Algorithm (FPA)
• Strength Pareto Evolutionary Algorithm (SPEA)

Algorithm Multi-Objective DSA-based optimization
1: Collect memObj, perform Liveness Analysis, and randomly initialize initial

population of size N
2: for n = 1 : N do
3: Generate DSA code
4: while Stopping criteria is not reached do
5: Update Individual using respective update operators
6: for Each updated Individual do
7: Generate DSA code
8: Update to next generation using selection operator
9: return Pareto-optimal solution set
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Comparison between...

• Proposed multi-objective DSA-based optimization (MOD)
–>Solved using:

• FPA
• SPEA

• Multi-objective static SPM allocation-based optimization (MOS)
–>Solved using:

• FPA
• SPEA

• ILP-based single objective dynamic SPM allocation (SOD)
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Pareto fronts
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Figure 1: Solutions Obtained from MOS , MOD , and SOD optimization runs
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Pareto fronts

The following percent of solutions were on the final Pareto front

• MOS–FPA: 3.62%
• MOS–SPEA: 5.26%
• SOD–ILP: 0.66%
• MOD–FPA: 70.4%
• MOD–SPEA: 20.1%

–> MOD–FPA found most number of solution on the final Pareto front
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Quality Indicators

• Coverage: C = 1− |{a∈A:∃p∈P,a⪯p}|
|A|

• Non-Dominance Ratio: NDR = |P∩A|
|P|

• Non-Dominated Solutions: NDS = |a∈A:a∈P|
|A|

From overall Evaluations, in terms of Quality Indicators:

• MOD performed much better than SOD

• MOD performed slightly better than MOS

Overheads due to dynamic copying in MOD optimization run:

• WCET overheads on average: 24.39%
• Energy overheads on average: 22.65%
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Conclusion

• Proposed compiler-level DSA-based multi-objective optimization
• WCC performs WCET and energy analysis of DSA code
• MOD is solved using FPA and SPEA
• MOD outperforms SOD

• MOD performs slightly better than MOS

Future Work

• Reducing the WCET and energy overheads by using DMA
• Reducing the compilation time needed by multi-objective DSA-based

optimization
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Thank You

© Shashank Jadhav Heiko Falk 19


	Motivation
	Dynamic SPM Allocation (DSA)
	Multi-Objective DSA-based Optimization
	Multi-Objective Optimization Problem
	Metaheuristic Algorithms

	Evaluation
	Pareto fronts
	Quality Indicators

	Conclusion

