Towards Multi-Objective Dynamic SPM Allocation

Shashank Jadhav Heiko Falk

shashank.jadhav / heiko.falk@tuhh.de

Institute of Embedded Systems, TUHH
21st International Workshop on Worst-Case
Execution Time Analysis (WCET), Vienna, Austria

, TUHH

Hamburg UniversyofTecholgy

July 11,2023

Overview =

© Motivation

© Shashank Jadhav Heiko Falk 1

Motivation =

e Worst-Case Execution Time (WCET)
e Energy consumption
e Static SPM allocation constrained by small SPM size

© Shashank Jadhav Heiko Falk 2

Overview =

© Dynamic SPM Allocation (DSA)

© Shashank Jadhav Heiko Falk 2

Dynamic SPM Allocation (DSA) =

© Shashank Jadhav Heiko Falk 3

DSA: Memory Objects

Flash

Memory Objects:
-- Functions: Foo_1() and Foo_2()
-- Loops: Loop_1, Loop_2,
SPM Loop_3, and Loop_4

|120

21 Empty

140 140

160 160

90—
95+

100

115+

© Shashank Jadhav Heiko Falk

DSA: Liveness Analysis

Flash

Memory Objects:
-- Functions: Foo_1() and Foo_2()
-- Loops: Loop_1, Loop_2,
SPM Loop_3, and Loop_4

30
120 120

Empty
Liveness conflicts:
- Foo_2(), Loop_3, and Loop_4
-- Foo_1() and Foo_2()

140 140

160 160

90—
95+

100

115+

© Shashank Jadhav Heiko Falk

cts Allocation

Flash

Memory Objects:
-- Functions: Foo_1() and Foo_2()
-- Loops: Loop_1, Loop_2,
SPM Loop_3, and Loop_4

120

120 Empty
Liveness conflicts:

--Foo_2(), Loop_3, and Loop_4
-- Foo_1() and Foo_2()

Memory Object Allocation:
-- Flash: Foo_1() and Loop_3()
-- SPM: Foo 2(), Loop_1,

Loop_2, and Loop_4

140 140

160 160

90—
95+

100

115+

© Shashank Jadhav Heiko Falk

DSA: Address Assignment

© Shashank Jadhav

Heiko Falk

Flash

90—
95+

100

115+

SPM

Memory Objects:
-- Functions: Foo_1() and Foo_2()
-- Loops: Loop_1, Loop_2,
Loop_3, and Loop_4

Liveness conflicts:
--Foo_2(), Loop_3, and Loop_4
-- Foo_1() and Foo_2()

Memory Object Allocation:
-- Flash: Foo_1() and Loop_3()
-- SPM: Foo 2(), Loop_1,

Loop_2, and Loop_4

140

160

Address Assignment:
-- First-Fit Heuristic
-- Best-Fit Heuristic

DSA: Code Transformation =

At Compile Time

e

Memory
Object (MO)

© Shashank Jadhav Heiko Falk 8

DSA: Code Transformation =

= = un

At Compile Time

Object (MO)

© Shashank Jadhav Heiko Falk 9

DSA: Code Transformation

At Compile Time During Runtime

BO_call
Insert.
(Memepy Cal

BO_jump
from

Object (MO)

S

© Shashank Jadhav Heiko Falk 10

DSA: Code Generation and Analyses

© Shashank Jadhav Heiko Falk 1

Overview =

e Multi-Objective DSA-based Optimization

© Shashank Jadhav Heiko Falk 1

Multi-Objective Optimization Problem

e Search Space:
* x € X e {019

© Shashank Jadhav Heiko Falk 12

Multi-Objective Optimization Problem

e Search Space:
* x € X e {019
e Objective Space:

* © = {F(x) = (F1(x), F2(x))Ix € X}
Where, F1(x) = WCET objective and F,(x) = Energy objective

© Shashank Jadhav Heiko Falk 12

Multi-Objective Optimization Problem

e Search Space:
* x € X e {019
e Objective Space:

* © = {F(x) = (F1(x), F2(x))Ix € X}
Where, F1(x) = WCET objective and F,(x) = Energy objective

e Minimization function:
* minycx F(X)

© Shashank Jadhav Heiko Falk 12

Multi-Objective Optimization Problem

Search Space:
* x € X e {019
Objective Space:

* © = {F(x) = (F1(x), F2(x))|x € X}
Where, F1(x) = WCET objective and F,(x) = Energy objective
e Minimization function:
* minycx F(X)
Search Space Constraint:

* X(F1):(F+L) = X(F+1):(F+L) T T
Where,

B 1, ifX,:+/:0&(3f|)\F+/gAfE/\tp)&Xf:‘l
W= 0, otherwise

© Shashank Jadhav Heiko Falk 12

Multi-Objective Optimization Problem

Search Space:
* x € X e {019
Objective Space:

* © = {F(x) = (F1(x), F2(x))Ix € X}
Where, F1(x) = WCET objective and F,(x) = Energy objective

Minimization function:
* minycx F(X)
Search Space Constraint:

* X(F1):(F+L) = X(F+1):(F+L) T T
Where,
B {1, ifX,:+/ = 0&(3f|)\,‘:+/ C X e /\T:F)&Xf =1

W= 0, otherwise
Address Assignment Algorithm Constraint:
* (T—-m)=0

© Shashank Jadhav Heiko Falk 12

Overview =

© Multi-Objective DSA-based Optimization
° Multi-Objective Optimization Problem

© Shashank Jadhav Heiko Falk 12

Metaheuristic Algorithms =

To solve multi-objective DSA-based optimization problem, we use:

e Flower Pollination Algorithm (FPA)
e Strength Pareto Evolutionary Algorithm (SPEA)

Algorithm Multi-Objective DSA-based optimization
1: Collect memObj, perform Liveness Analysis, and randomly initialize initial
population of size N
:forn=1:Ndo
Generate DSA code
. while Stopping criteria is not reached do
Update Individual using respective update operators
for Each updated Individual do
Generate DSA code
Update to next generation using selection operator

. return Pareto-optimal solution set

O 0O NSO R ®WN

© Shashank Jadhav Heiko Falk 13

Overview =

@ Evaluation

© Shashank Jadhav Heiko Falk 13

Comparison between... =

e Proposed multi-objective DSA-based optimization (MOp)
—>Solved using:

e FPA
e SPEA
e Multi-objective static SPM allocation-based optimization (MOs)
—>Solved using:
o FPA
e SPEA

e ILP-based single objective dynamic SPM allocation (SOp)

© Shashank Jadhav Heiko Falk 14

Overview =

@ Evaluation
° Pareto fronts

© Shashank Jadhav Heiko Falk 14

Pareto fronts

. Benchmark: Auto_a2time 1e11 Benchmark: Auto_basefp ez Benchmark: Auto_ttsprk
365 Total Number ¢ Total Number % Total Numbel
= R T R of Soutions | = 1.025 of Solutions
&) = =
= 3.60 = X =
: Ay e o Aol 2o A
Zass ® 10| S L ® | 2 ® 5o
8 2 21915
S50 $ o B 0 ¢ws| £ ¢ 2
£ X 99| Ein X 11| & X 656
S aas S X S 1005
= * + 10 > 110 Y e = + 11
B340 2 21900
& A g a g A
33 106 Ls95
"S« [] *
s

50 55 60 6 1s 16 17 18 19 20 28 28 30 31 32 33 34
WCET [Clock cycles] 1e8 WCET [Clock cycles] 1e8 WCET [Clock cycles] e

A MOs-FPA @ MOs—-SPEA ¢ MOp -FPA X MOp - SPEA 4 SOp — ILP

Figure 1: Solutions Obtained from MOs, MOp, and SOp optimization runs

© Shashank Jadhav Heiko Falk 15

Pareto fronts =

The following percent of solutions were on the final Pareto front

e MOs—FPA: 3.62%
MOs—SPEA: 5.26%
SOp—ILP: 0.66%

o MOp—FPA:70.4%
MOp—-SPEA: 20.1%

—> MOp—FPA found most number of solution on the final Pareto front

© Shashank Jadhav Heiko Falk 16

Overview =

© Evaluation

° Quality Indicators

© Shashank Jadhav Heiko Falk 16

Quality Indicators B

[{a€A:TpeP a=p}|
1Al

e Non-Dominance Ratio: NDR =

e Coverage:C =1-—
|PNA|
P

lacA:aeP|

o Non-Dominated Solutions: NDS = A

© Shashank Jadhav Heiko Falk 17

Quality Indicators =

[{a€A:TpeP a=p}|
1Al

e Non-Dominance Ratio: NDR =

e Coverage:C =1-—

|PNA|
IP|

e Non-Dominated Solutions: NDS = %

From overall Evaluations, in terms of Quality Indicators:

e MO, performed much better than SOp
e MO, performed slightly better than MOs

© Shashank Jadhav Heiko Falk 17

Quality Indicators =

[{a€A:TpeP a=p}|
1Al

e Non-Dominance Ratio: NDR =

e Coverage:C =1-—

|PNA|
IP|

e Non-Dominated Solutions: NDS = 2<42<F

From overall Evaluations, in terms of Quality Indicators:

e MO, performed much better than SOp
e MO, performed slightly better than MOs

Overheads due to dynamic copying in MOp optimization run:

e WCET overheads on average: 24.39%
e Energy overheads on average: 22.65%

© Shashank Jadhav Heiko Falk 17

Overview =

Q Conclusion

© Shashank Jadhav Heiko Falk 17

Conclusion =

Proposed compiler-level DSA-based multi-objective optimization
WCC performs WCET and energy analysis of DSA code

e MOy is solved using FPA and SPEA

MOy outperforms SOp

e MOy performs slightly better than MOs

Future Work

e Reducing the WCET and energy overheads by using DMA

e Reducing the compilation time needed by multi-objective DSA-based
optimization

© Shashank Jadhav Heiko Falk 18

© Shashank Jadhav

Heiko Falk

Thank You

	Motivation
	Dynamic SPM Allocation (DSA)
	Multi-Objective DSA-based Optimization
	Multi-Objective Optimization Problem
	Metaheuristic Algorithms

	Evaluation
	Pareto fronts
	Quality Indicators

	Conclusion

