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Hard real-time systems have several design criteria.

Worst-Case Execution Time (WCET)  code size energy consumption
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Several contradicting objectives —— Multiobjective problem
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What is a solution of a multiobjective problem?

A set of trade-off solutions
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How to choose the best solution?
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" The magical number seven, plus or minus two” effect!: Humans can handle
only a limited amount of information simultaneously.

Solutions

13

12 L ]

11 0..0 ®

10 [

9 L 2

R

fo— min
.
&
°

S U RN

[ ]

o, L ]
(]
LITYS

0123456 78910111213
f1— min

!George A. Miller. “The Magical Number Seven, plus or Minus Two: Some Limits on Qur Capacity
for Processing Information”. In: Psychological Review 63 (1956), pp. 81-97.
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'Miller, “The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for

Processing Information”.
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How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering Refine large clusters Merge small clusters
13 13 13
12 ® 12 ® 12 ®
[} [} [}
11 eg 1 eg 11 eg
10 o9 10 +4 10 +4
9 9 9
£ 8 £ 8 £ s
g 7 x g7 - g 7 -
T 6 % — T 6 % — T 6 %
Xy Xy Xy
25 X% 25 XX &5 xx
4 4 4
3 L 3 L 3
2 L 1P 2 " x 2 L LIPOR
1 1 1
0 0 0
0123456 78910111213 012345678 910111213 012345 6 7 8 910111213
J1— min f1— min fi— min
3 clusters 8 clusters 6 clusters

6/16



How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering Refine large clusters Merge small clusters
13 13 13
12 ® 12 ® 12 ®
[} [} [}
11 eg 1 eg 11 eg
10 o9 10 +4 10 +4
9 9 9
£ 8 £ 8 £ s
g 7 x g7 - g 7 -
T 6 % — T 6 % — T 6 %
Xy Xy Xy
25 X% 25 XX &5 xx
4 4 4
3 L 3 L 3
2 L 1P 2 " x 2 L LIPOR
1 1 1
0 0 0
0123456 78910111213 012345678 910111213 012345 6 7 8 910111213
J1— min f1— min fi— min
3 clusters 8 clusters 6 clusters

6/16



How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering Refine large clusters Merge small clusters
13 13 13
12 ® 12 ® 12 ®
[} [} [}
11 eg 1 eg 11 eg
10 o9 10 +4 10 +4
9 9 9
£ 8 £ 8 £ s
g 7 x g7 - g 7 -
T 6 % — T 6 % — T 6 %
Xy Xy Xy
25 %X 25 %% &5 xx
4 4 4
3 L 3 L 3
2 L 1P 2 " x 2 L IPONS
1 1 1
0 0 0
0123456 78910111213 012345678 910111213 012345 6 7 8 910111213
J1— min f1— min fi— min
3 clusters 8 clusters 6 clusters

6/16



How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering Refine large clusters Merge small clusters
13 13 13
12 ® 12 ® 12 ®
[} [} [}
11 eg 1 eg 11 eg
10 o9 10 +4 10 +4
9 9 9
£ 8 £ 8 £ s
g 7 x g7 - g 7 -
T 6 % — T 6 % — T 6 %
Xy Xy Xy
25 %X 25 %% &5 xx
4 4 4
3 L 3 L 3
2 L 1P 2 " x 2 L IPONS
1 1 1
0 0 0
0123456 78910111213 012345678 910111213 012345 6 7 8 910111213
J1— min f1— min fi— min
3 clusters 8 clusters 6 clusters

6/16



Original clustering —— Refine large clusters —— Merge small clusters

Given:

— set S to be clustered

— maximum cluster size 7

= Divide S into n = {'Tﬂ-‘ clusters by using an existing clustering method?

Fabian Pedregosa et al. “Scikit-Learn: Machine Learning in Python". In: Journal of Machine
Learning Research (Jan. 2012). arXiv: 1201.0490v4.
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https://arxiv.org/abs/1201.0490v4

Original clustering —— Refine large clusters ——— Merge small clusters

Given:

— set S to be clustered

— maximum cluster size T
= Divide S into n = PTﬂ—‘ clusters by using an existing clustering method?

e K-Means clustering
e Agglomerative clustering

e Spectral clustering

1

Pedregosa et al., “Scikit-Learn: Machine Learning in Python”.
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Clusters
Original clustering —— Refine large clusters —— Merge small clusters

Given:

— clusters

— maximum cluster size 7
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Clusters
Original clustering —— Refine large clusters —— Merge small clusters

Given:

— clusters

— maximum cluster size 7
The size of the largest no
e
cluster is greater than 7
yes

4(Divide the largest cIusterj

8/16



L . Clusters_ Clusters
Original clustering —— Refine large clusters —— Merge small clusters

Given:

— Clusters
— maximum cluster size T

— maximum distance between clusters dist
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L . Clusters_ Clusters
Original clustering —— Refine large clusters —— Merge small clusters

Given:

— Clusters
— maximum cluster size T

— maximum distance between clusters dist
= Merge two clusters if

— the distance between them is less than dist

— the size of the merged cluster is less than or equal to 7
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Function inlining decreases WCET and energy consumption but increases code

size.

1 int max (int i, int j)

2 {

3 return i>j?7i:j; 1 int main ()
4 } 2 {

5 3

6 int main () 4 a = c>d?c:d;
7 { 5 -
8 .. - .
9 a = max(c,d); ? }b - eres
10

11 b = max(f,g);

12 }
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WCET-Aware Compiler Framework WCC
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Cluster sizes after each stage of the proposed approach

Cluster size
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Clusters for benchmark iirflt01 and spectral clustering

Original clustering Refinement Merging
Total: Total: Total:
4 clusters 7 clusters 6 clusters

106% 106% 106%

104% 104%

104%

102% 102%

102%

100%

100%

100%

98% 98% 98%

WCET Energy Code WCET Energy Code WCET Energy Code
cosumption size cosumption size cosumption size
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Final clusters for benchmark iirflt01

Agglomerative clustering K-Means Spectral clustering
Total: Total: Total:
6 clusters 6 clusters 6 clusters
106% 106% 106%
104% 104% 104%
102% 102% 102%
100% 100% 100%
98% 98% 98%
96% 96% 96%
WCET Energy Code WCET Energy Code WCET Energy Code
cosumption size cosumption size cosumption size
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Runtime
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Conclusion

— The proposed clustering method guarantees that the sizes of all clusters are less
than a predefined limit.

— We demonstrated the approach on multiobjective function inlining with WCET,
code size and energy consumption as objectives.

— K-Means, agglomerative and spectral clusterings showed similar results in terms of
the number of clusters and their sizes, but agglomerative clustering showed the

smallest runtime.
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Maximum distance between two clusters

dmax

dist =
is 1

n is the number of clusters in the input set S and d,,ax is the maximum distance
between two points from the set S:

dmax = max |[p — 4|

)
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