Clustering Solutions of Multiobjective Function Inlining Problem

Kateryna Muts, Heiko Falk

k.muts@tuhh.de, heiko.falk@tuhh.de

Hamburg University of Technology

Workshop on Worst-Case Execution Time Analysis (WCET 2023)

July 11, 2023
Hard real-time systems have several design criteria.

Worst-Case Execution Time (WCET) code size energy consumption
Hard real-time systems have several design criteria.

Worst-Case Execution Time (WCET) code size energy consumption

Several contradicting objectives → Multiobjective problem
What is a solution of a multiobjective problem?

A set of trade-off solutions

Multiobjective problem
What is a solution of a multiobjective problem?

A set of trade-off solutions

Multiobjective problem
What is a solution of a multiobjective problem?

A set of trade-off solutions

Multiobjective problem

How to choose the best solution?
How to choose the best solution?

System designer’s preferences

- known
 - before solution process
- unknown
 - before solution process
How to choose the best solution?

System designer’s preferences

- **known**
 - all but one of the objectives are placed into constraints

- **unknown**
 - before solution process

- **known**
 - before solution process

- **unknown**
 - before solution process
How to choose the best solution?

System designer’s preferences

- *known*
 - *before solution process*
 - all but one of the objectives are placed into constraints
- *unknown*
 - *before solution process*
 - all objectives are combined into a single objective
How to choose the best solution?

System designer’s preferences

- all but one of the objectives are placed into constraints
- all objectives are combined into a single objective
- a decision maker conducts in direction of the desired solution

known before solution process

unknown before solution process

known before solution process

- all objectives are combined into a single objective
How to choose the best solution?

System designer’s preferences

- *known* before solution process
 - all but one of the objectives are placed into constraints
- *unknown* before solution process
 - all objectives are combined into a single objective
 - a decision maker conducts in direction of the desired solution

↓

one solution
How to choose the best solution?

System designer’s preferences

known
before solution process

– all but one of the objectives are placed into constraints

unknown
before solution process

– all objectives are combined into a single objective

– a decision maker conducts in direction of the desired solution

one solution
How to choose the best solution?

System designer’s preferences

- all but one of the objectives are placed into constraints
- all objectives are combined into a single objective
- a decision maker conducts in direction of the desired solution

→ one solution

known
before solution process

unknown
before solution process

one solution

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

→ one solution
"The magical number seven, plus or minus two" effect1: Humans can handle only a limited amount of information simultaneously.

1George A. Miller. “The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for Processing Information”. In: \textit{Psychological Review} 63 (1956), pp. 81–97.
"The magical number seven, plus or minus two" effect\(^1\): Humans can handle only a limited amount of information simultaneously.

\(^1\)Miller, “The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for Processing Information”.
"The magical number seven, plus or minus two" effect1: Humans can handle only a limited amount of information simultaneously.

1Miller, “The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity for Processing Information”.
How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering

Refine large clusters

Merge small clusters

3 clusters 8 clusters 6 clusters
How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering

Refine large clusters

Merge small clusters

3 clusters 8 clusters 6 clusters
How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering

Refine large clusters

Merge small clusters

3 clusters 8 clusters 6 clusters
How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering

Refine large clusters

Merge small clusters

3 clusters

8 clusters

6 clusters
Original clustering \rightarrow \text{Refine large clusters} \rightarrow \text{Merge small clusters}

Given:

- set S to be clustered
- maximum cluster size τ

\Rightarrow Divide S into $n = \left\lceil \frac{|S|}{\tau} \right\rceil$ clusters by using an existing clustering method\(^2\)

Original clustering \rightarrow Refine large clusters \rightarrow Merge small clusters

Given:

- set S to be clustered
- maximum cluster size τ

\Rightarrow Divide S into $n = \left\lceil \frac{|S|}{\tau} \right\rceil$ clusters by using an existing clustering method\(^2\)

- K-Means clustering
- Agglomerative clustering
- Spectral clustering

\(^2\)Pedregosa et al., “Scikit-Learn: Machine Learning in Python”.
Original clustering \rightarrow **Refine large clusters** \rightarrow **Merge small clusters**

Given:

- clusters
- maximum cluster size τ
Original clustering → **Refine large clusters** → Merge small clusters

Given:

- clusters
- maximum cluster size τ

- The size of the largest cluster is greater than τ
 - yes: Divide the largest cluster
 - no: Stop
Given:

- Clusters
- maximum cluster size τ
- maximum distance between clusters $dist$
Given:

- Clusters
- maximum cluster size \(\tau \)
- maximum distance between clusters \(dist \)

\[\Rightarrow \text{Merge two clusters if} \]

- the distance between them is less than \(dist \)
- the size of the merged cluster is less than or equal to \(\tau \)
Function inlining decreases WCET and energy consumption but increases code size.

```c
1   int max (int i, int j)
2   {
3       return i>j?i:j;
4   }
5
6   int main()
7   {
8       ...
9       a = max(c,d);
10      ...
11      b = max(f,g);
12   }
```

```c
1   int main()
2   {
3       ...
4       a = c>d?c:d;
5       ...
6       b = f>g?f:g;
7   }
```
Function inlining decreases WCET and energy consumption but increases code size.

```c
int max (int i, int j)
{
    return i>j?i:j;
}

int main()
{
    ...
    a = max(c,d);
    ...
    b = max(f,g);
    ...
}
```

(WCET, code size, energy consumption) → min
Function inlining decreases WCET and energy consumption but increases code size.

```
1 int max (int i, int j)
2 {
3   return i>j?i:j;
4 }
5
6 int main()
7 {
8   ...
9   a = max(c,d);
10  ...
11  b = max(f,g);
12 }
```

(WCET, code size, energy consumption) → min

WCET-Aware Compiler Framework **WCC**
Cluster sizes after each stage of the proposed approach

- **a2time01**
 - Cluster size: 5, 5, 6, 6, 7, 7, 8, 8
 - Stages: Orig., Refine, Merge

- **canrdr01**
 - Cluster size: 5, 6, 6, 6, 8, 8, 9, 9
 - Stages: Orig., Refine, Merge

- **iirflt01**
 - Cluster size: 2, 4, 4, 4, 6, 6, 6, 6
 - Stages: Orig., Refine, Merge

- **pntrch01**
 - Cluster size: 7, 7, 7, 9, 9, 9, 9
 - Stages: Orig., Refine, Merge

- **puwmod01**
 - Cluster size: 5, 10, 15, 15
 - Stages: Orig., Refine, Merge

- **ttsprk01**
 - Cluster size: 12, 14, 14, 14, 18, 21, 20, 20
 - Stages: Orig., Refine, Merge

- **Agglomerative clustering**, **K-Means**, **Spectral clustering**
Clusters for benchmark iirflt01 and spectral clustering

Original clustering

Refinement

Merging

Total:
4 clusters
7 clusters
6 clusters

Total:
4 clusters

96%
98%
100%
102%
104%
106%

96%
98%
100%
102%
104%
106%

96%
98%
100%
102%
104%
106%

WCET
Energy consumption
Code size

WCET
Energy consumption
Code size

WCET
Energy consumption
Code size
Final clusters for benchmark iirflt01

Agglomerative clustering

Total: 6 clusters

K-Means

Total: 6 clusters

Spectral clustering

Total: 6 clusters
Conclusion

– The proposed clustering method guarantees that the sizes of all clusters are less than a predefined limit.

– We demonstrated the approach on multiobjective function inlining with WCET, code size and energy consumption as objectives.

– K-Means, agglomerative and spectral clusterings showed similar results in terms of the number of clusters and their sizes, but agglomerative clustering showed the smallest runtime.
Maximum distance between two clusters

\[dist = \frac{d_{\text{max}}}{n - 1} \]

(1)

\(n \) is the number of clusters in the input set \(S \) and \(d_{\text{max}} \) is the maximum distance between two points from the set \(S \):

\[d_{\text{max}} = \max_{p,q \in S} \| p - q \| \]

(2)