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What is a solution of a multiobjective problem?

Multiobjective problem

A set of trade-off solutions
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How to choose the best solution?

System designer’s preferences

– all but one of the objectives are

placed into constraints

– all objectives are combined into a

single objective

– a decision maker conducts in direction

of the desired solution

one solution
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”The magical number seven, plus or minus two” effect1: Humans can handle

only a limited amount of information simultaneously.

Solutions
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1George A. Miller. “The Magical Number Seven, plus or Minus Two: Some Limits on Our Capacity

for Processing Information”. In: Psychological Review 63 (1956), pp. 81–97.
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How to guarantee that the sizes of clusters are less than a predefined size?

Goal: the size of each cluster is less than or equal to 5

Original clustering
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Original clustering Refine large clusters Merge small clusters

Given:

– set S to be clustered

– maximum cluster size τ

=⇒ Divide S into n =
⌈
|S |
τ

⌉
clusters by using an existing clustering method2

• K-Means clustering

• Agglomerative clustering

• Spectral clustering

2Fabian Pedregosa et al. “Scikit-Learn: Machine Learning in Python”. In: Journal of Machine

Learning Research (Jan. 2012). arXiv: 1201.0490v4.
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Original clustering Refine large clusters Merge small clusters
Clusters

Given:

– clusters

– maximum cluster size τ

The size of the largest

cluster is greater than τ

Divide the largest cluster

Stop

yes

no
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Original clustering Refine large clusters Merge small clusters
Clusters Clusters

Given:

– Clusters

– maximum cluster size τ

– maximum distance between clusters dist

=⇒ Merge two clusters if

– the distance between them is less than dist

– the size of the merged cluster is less than or equal to τ
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Function inlining decreases WCET and energy consumption but increases code

size.

1 int max (int i, int j)
2 {
3 return i>j?i:j;
4 }
5
6 int main()
7 {
8 ...
9 a = max(c,d);
10 ...
11 b = max(f,g);
12 }

1 int main()
2 {
3 ...
4 a = c>d?c:d;
5 ...
6 b = f>g?f:g;
7 }

(WCET, code size, energy consumption) min

WCET-Aware Compiler Framework WCC

10 / 16



Function inlining decreases WCET and energy consumption but increases code

size.

1 int max (int i, int j)
2 {
3 return i>j?i:j;
4 }
5
6 int main()
7 {
8 ...
9 a = max(c,d);
10 ...
11 b = max(f,g);
12 }

1 int main()
2 {
3 ...
4 a = c>d?c:d;
5 ...
6 b = f>g?f:g;
7 }

(WCET, code size, energy consumption) min

WCET-Aware Compiler Framework WCC

10 / 16



Function inlining decreases WCET and energy consumption but increases code

size.

1 int max (int i, int j)
2 {
3 return i>j?i:j;
4 }
5
6 int main()
7 {
8 ...
9 a = max(c,d);
10 ...
11 b = max(f,g);
12 }

1 int main()
2 {
3 ...
4 a = c>d?c:d;
5 ...
6 b = f>g?f:g;
7 }

(WCET, code size, energy consumption) min

WCET-Aware Compiler Framework WCC

10 / 16



Setup

11 / 16



Cluster sizes after each stage of the proposed approach
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Clusters for benchmark iirflt01 and spectral clustering
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Final clusters for benchmark iirflt01
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Runtime
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Conclusion

– The proposed clustering method guarantees that the sizes of all clusters are less

than a predefined limit.

– We demonstrated the approach on multiobjective function inlining with WCET,

code size and energy consumption as objectives.

– K-Means, agglomerative and spectral clusterings showed similar results in terms of

the number of clusters and their sizes, but agglomerative clustering showed the

smallest runtime.
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Maximum distance between two clusters

dist =
dmax

n − 1
(1)

n is the number of clusters in the input set S and dmax is the maximum distance

between two points from the set S :

dmax = max
p,q∈S

||p − q|| (2)
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