Validation of processor timing models using cycle-accurate
timing simulators

Alban GRUIN Thomas CARLE  Christine ROCHANGE ~ Pascal SAINRAT
July 110, 2023

Irit, Univ. Toulouse Il Paul Sabatier, CNRS

UNIVERSITE ©
TOULOUSE anl" )
PAUL SABATIER agence nationale

de la recherche



The need for precise and accurate timing models

- We require accurate models for WCET analysis and timing anomalies
detection

1/22



Timing models

Formal pipeline models, based on predicate logic

- Introduced in SICT, reused in MINOTAUR? and Vicuna3.
- Based on instruction progress in the pipeline

- Instructions are associated to a stage and a latency.
- cycle(c) function to get the next pipeline state.

- These models allow proofs on the timing behavior of the processor
- Timing-anomaly free processors!

"Hahn and Reineke, 2018
2Gruin, Carle, Cassé, and Rochange, 2021
3platzer and Puschner, 2021

2/22



The Ariane/CVA6 (and MINOTAuUR) core

e

iqueue
.HIMMM .................... :

EX  E— ;

ALU ST —
MUL, — MUL,
DIV
co :
CSR Ty
2w
LSUE |
> sU :
,M..E

mqueue

squeue

3/22



Example of timing models: (excerpt from) the MINOTAUR core i

c.ready(i) := (c.stg(i) # pre A —c.pending(i, branch) A\ pwrong(i))
V (c.ent(i) = 0 A c.isnext(c.stg(i), 1))

A (e.stg(i) = pc = (ichit(i)
V (—e.pending (i, branch) A —c.pending(i, load) A —c.pending(i, store) A —c.pending(i, atomic))))

A (c.stg(i) =18 = (opc(i) ¢ {load, store, atomic} = —c.pending(i, csr))
A (ope(i) € {mul, div} = —c.pending(i, div))
A (V) <i.dep(i, j) = c.stg(j) ds cO))

A (c.stg(i) = LSU = (opc(i) € {store, atomic} A —c.pending(i, atomic))
V (ope(i) = load A (—c.pending(i, store) A —c.pending(i, atomic))))

c.free(s) :== s € {ALU, MUL;, CSR, MULg, CO, post}
V (s € {1F, 1s, LSU, SU} A c.slot(s))
V (s € {pC, ID, DIV, LU, ST} A ((—3j . c.stg(j) = s) V (Fj . c.stg(j) = s A c.ready(j) A c.free(c.nstg(5)))))
V (i c.stg(i) = s A pwrong(i) A —c.pending (i, branch))

4/22



Example of timing models: (excerpt from) the MINOTAUR core ii

c.ready(i) = (c.stg(i) # pre A —c.pending (i, branch) A pwrong(t))
V (c.ent(i) = 0 A c.isnext(c.stg(i), 1))

A (c.stg(i) = PC = (ichit(i)
V (—c.pending (i, branch) A —c.pending(i, load) A —c.pending(i, store) A —c.pending(i, atomic))))

A (c.stg(i) =15 = (opc(i) ¢ {load, store, atomic} = —c.pending(i, csr))
A (ope(i) € {mul, div} = —c.pending(i, div))
A(Vj <i.dep(i, j) = c.stg(j) Ds CO))

A (c.stg(i) = LSU = (ope(i) € {store, atomic} A —c.pending(i, atomic))
V (ope(i) = load A (—c.pending(i, store) A —c.pending(i, atomic))))

5/22



Example of timing models: (excerpt from) the MINOTAUR core iii

c.ready(i) = (c.stg(i) # pre A —c.pending(i, branch) A pwrong(t))
V (c.ent(i) = 0 A c.isnext(c.stg(i), 1))

A (e.stg(i) = pC = (ichit(i)
V (—e.pending (i, branch) A —c.pending (i, load) A —c.pending(i, store) A —c.pending(i, atomic))))

A (c.stg(i) =18 = (opc(i) ¢ {load, store, atomic} = —c.pending(i, csr))
A(ope(i) € {mul, div} = —c.pending(i, div))
A(Vj <i.dep(i, j) = c.stg(j) Is €0))

A (c.stg(i) = LSU = (opc(i) € {store, atomic} A —c.pending(i, atomic))
V (ope(i) = load A (—c.pending(i, store) A —c.pending (i, atomic))))

6/22



Example of timing models: (excerpt from) the MINOTAuUR core iv

c.ready(i) := (c.stg(i) # pre A —=e.pending(i, branch) A pwrong(i))
V (c.cnt(i) = 0 A c.isnext(c.stg(i), 1))

A (c.stg(i) = PC = (ichit(i)
V (—e.pending (i, branch) A —c.pending (i, load) N\ —c.pending(i, store) A —c.pending(i, atomic))))

A (c.stg(i) =18 = (opc(i) ¢ {load, store, atomic} = —c.pending(i, csr))
A (ope(i) € {mul, div} = —c.pending (i, div))
A (Vj <i.dep(i, j) = c.stg(j) Ds CO))

A (c.stg(i) = LSU = (opc(i) € {store, atomic} N\ —c.pending(i, atomic))
V (ope(i) = load N (—c.pending (i, store) A —c.pending (i, atomic))))

c.free(s) :== s € {ALU, MULy, CSR, MULg, CO, post}
V (s € {1F, 18, LSU, SU} A c.slot(s))
V (s € {pc, ID, DIV, LU, ST} A ((=3j . c.stg(j) = s) V (T . c.stg(j) = s A c.ready(j) A c.free(c.nstg()))))
V (Fi.c.stg(i) = s A pwrong(i) A —c.pending (i, branch))

7122



Issues with timing models

- These models can be tedious to write, and may not be correct wrt. the actual
core.

- Hardware descriptions are complex.
- MINOTAUR — ~75.000 lines of SystemVerilog...

- Datasheets are imprecise at best.

- The whole process is not very robust.

8/22



Contributions

Validation methodology based on simulation, with a test approach
- Simulation infrastructure for processor models
- Description language for formal processor models

- Simulator compiler

9/22



Validation workflow overview

Verification workflow

Verilog description
of the processor

J

bit-accurate
cycle-accurate F@
Verilog simulator
identical?

reads to Dcache -

writes to Dcache

model .
~»| reads to Icache [—» . commit
simulator

divisions
branch mispred.

10/22



Traces

Trace kind Contents

Icache Addresses, opcodes, timings, cancellations of accesses
Dcache reads Timings and cancellations
Dcache writes, divisions Timings
Control flow Cycles at which a misprediction happens

Commit Address, commit cycle

1/22



Experimental evaluation on the MINOTAuUR processor

- Tried our workflow on the TACLe benchmark suite and CoreMark.

- Took 2 days to generate all traces from the processor
- Validated our model against the benchmarks in ~1h

- Found several issues.

- After fixing the model, the simulator generates the same commit trace as the
pProcessor.

12/22



First issue, related to data dependencies

WaW and RaW data dependencies are handled differently

- In the model: Vi < j.dep(i, j) = cstg(j) Dg co
- l.e. ifthere is a data dependency between instructions i and j, it will be resolved

when the older instruction has completed its execution.
- True for RaW hazards, not for WaW hazards: writes must be committed before

reusing a register.
- Fix:

Vj <i.(depyali, j) = cstg(j) Os co)
A (deppan i, J) = ((opc(j) = csr A c.stg(j) Os co) v (c.stg(j) O co)))

13/22



Second issue, related to the load unit

The LU stalls for one cycle after a cache miss

« In the model:

s e {pc, ID, DIV, LU, ST} A ((—3j. c.stg(j) = s)
v (3j.cstg(j) = s A cready(j) A cfree(c.nstg(j))))

- Fix: create a special case for the LU, taking the cache hit into account.

s = LU A((—=3j.cstg(j) = Lu)
v (3j.cstq(j) = LU A cready(j) A cfree(c.nstg(j)) [A dehit(j) )

14/22



Third issue, related to CSRs

CSR do not prevent arithmetic instructions to be issued

cstg(i) =15 = (opcl(i) ¢ {load, store, atomic} = —c.pending(i, csr))

A (opc(i) € {mul, div} = —=c.pending(i, div)) A (Vj < i.dep(i, j))

15/22



(Semi-)automatic generation of timing simulators

- Going from predicate logic to a reasonably fast programming language
manually (eg. C++) is also error-prone and time consuming.

- We designed a special-purpose description language to encode predicate
logic.

- Syntax close to OCaml and to the predicate logic used.
- Functional (predicates used do not mutate anything).
- Compiled to C++.

16/22



Simulator generation workflow overview

- - Verification workflow
Verilog description

of the processor

4

bit-accurate

cycle-accurate @
Verilog simulator v
! identical?
' reads to Dcache -

writes to Dcache
model .
~»| reads to Icache [—» . commit
L simulator
divisions
branch mispred.

Simulator generation

3 description of BT !
: =) f I :
I the formal model ° (e i
! simulators '

17/22



Formal processor model description language

- Implements enough constructs to implement MINOTAuR's model.
- Data types (integers, lists, tuples, user-defined enumerations).

- Partial orders on user-defined enumerations.

- User-defined functions and recursive functions.

- Types are inferred by the compiler.

- Sufficient for MINOTAUR (and SIC).

18/22



set stage = | Pre | IF | ID | IS | ALU | LSU | CO | Post
order stage as s = Pre < IF < ID < IS < {ALU, LSU} < CO < Post

let ready(opc, limit c, i, pwrong) =
(stg(c, i) <> Pre /\ !pending(opc, c, i, Branch) /\ pwrong)
\/ (cnt(c, i) = 0 /\ isnext(c, stg(c, i), i) /\
(stg(c, i) = IS ->
(opc[i] in {Mul, Div} -> !pending(opc, c, i, Div))
/\ (forall j in ¢, (j < i -> !dep(opc, c, i, j))))
/\ (stg(c, i) = LSU ->
(opc[i] in {Store, Atomic} /\ !pending(opc, c, i, Atomic))
\/ (opc[i] = Load /\ !pending(opc, c, i, Atomic))))

19/22



Compilation to C++

// forall j in c, stg(c, j) = s -> j < i
bool tmp® {true};
for (unsigned int j {0}; j < c.size(); ++j)
tmp0 = tmp0 &5 (j < i || !'(stglc, Jj) == s));

- In our language,
everything is an
expression (not the

// exists j in ¢, stg(c, j) = s -> j < i

bool tmpl {false};

for (unsigned int j {0}; j < c.size(); ++j)
tmpl = tmpl || (§ < i || !(stg(c, j) == s)); case in C++).

- Bounds for limited

77 0 € SR, ) S € e g« lists, provided by the

unsigned int tmp2 {0};

for (unsigned int j {8}; j < c.size(); ++j) { caller.
if (5 < i |l '(stglc, j) == s))
++tmp2;
}

20/22




Integration with the simulation infrastructure

Building blocks are provided

- Trace readers, using lazy-loading if traces do not fit into working memory.
- Template for the cycle() function.
- It must be able to compute bounds for traces.

21/22



Conclusion

- We introduced a workflow to validate processor timing models
- Uses actual execution traces (obtained eg. using a cycle-accurate simulator)
- Replays instruction traces and compares the result and commit trace
- Developed a description language to simplify the transcription process

- Applied it on an existing, timing-predictable processor (MINOTAUR)

- Found and fixed several issues in the model
- Our model now conforms to the actual MINOTAUR core, at least on the
benchmarks we used

- Future work

- Automatic Coq generation
- More complex models (000)

22/22



Thank you!

A. Gruin, T. Carle, H. Cassé, and C. Rochange. Speculative execution and timing predictability in an
open source RISC-V core. In IEEE Real-Time Systems Symposium (RTSS), 2021.

S. Hahn and J. Reineke. Design and analysis of SIC: A provably timing-predictable pipelined
processor core. In IEEE Real-Time Systems Symposium (RTSS), 2018.

M. Platzer and P. Puschner. Vicuna: A timing-predictable RISC-V vector coprocessor for scalable
parallel computation. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021), 2021.



	Introduction
	Contributions
	Validation workflow
	Evaluation
	Issues found

	Generation of timing simulators
	Conclusion
	References

