
1

The ROSACE Case Study

Thomas Loquen1, Eric Noulard1, Claire Pagetti1,2, David Saussié3

and Pierre Siron4

1ONERA - Toulouse, France
2INPT/ENSEEIHT - Toulouse, France

3Polytechnique - Montréal, Canada
4ISAE - Toulouse, France

2

Outline

� General overview

� Simulink specifications

� Checker

� Example of implementation

� Conclusion and perspectives

3

Trends in avionic domain

Control design level

COTS hardware integration

- Steps: non linear � linearization around a flight condition �

controller synthesis � digitalization (sampling periods)
- Tools: Matlab / Simulink

- Coding of elementary blocks: Scade, Lustre …
- Coding of multi-periodic assembly: home made language,

manual coding, …

Implementation level

- Automatic code generator
- Manual code
- Low level services

4

Open source case study

ROSACE (Research Open-Source Avionics and Control Engineering)

Originally presented in
Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard et Pierre Siron. “The ROSACE Case
Study : From Simulink Specification to Multi/Many-Core Execution”. In : 20th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS’14).

svn repository
� https: //svn.onera.fr/schedmcore/branches/ROSACE_CaseStudy

� Content

1. the SIMULINK specification (folder simulink)

2. a checker to verify that an implementation fulfills the high level
properties (folder checker)

3. two examples of implementations (folder prelude_implementations)

5

Avionic use case: Longitudinal Flight Controller

� Longitudinal motion of a medium-range
civil aircraft in en-route phase

– Cruise: maintains a constant altitude
h and a constant airspeed Va

– Change of cruise level subphases:

! "#$#%&'

! "#$$

! "#%$

! "#&$

! "#' $

("$) *#+#$, '

commands a constant vertical speed Vz (rate of climb)
• Ex: FL300 → FL320 → FL340 → FL360

• FL300 = pressure altitude of 30000 ft
� Performance requirements for change of cruise levels

- P1 settling time: time required to settle within 5% of the steady-state value

- P2 overshoot: maximum value attained minus the steady-state value

- P3 rise time: time to rise from 10% to 90% of the steady-state value

- P4 steady-state error: difference between the input and the output at t → ∞.

6

Outline

� General overview

� Simulink specifications

� Checker

� Example of implementation

� Conclusion and perspectives

7

Longitudinal flight controller architecture

engine

elevator

200 Hz aircraft_dynamics

200 Hz

Vz_control
50 Hz

Va_control

50 Hz

altitude_hold
50 Hz

h_filter
100 Hz

Va_filter

100 Hz

Vz_filter

100 Hz

q_filter

100 Hz

az_filter
100 Hz

h_c
10 Hz

Va_c
10 Hz

Controller

Environment
simulationT

δ
e

δec

δthc

Vzc

Vz

h

az

q

Va

azf

hf

Vzf

qf

Vaf

Flight condition:
h = 10000 m, Va = 230 m/s

- 5 filters consolidate the measured outputs provided by the sensors
- 3 controllers track accurately: altitude (hc), vertical speed (Vzc) and airspeed commands (Vac)
- rate choices

1. for controllers:
- closed-loop system with the continuous-time controller can tolerate a pure time
delay of 1 s before destabilizing � sampling period ≤ 1 Hz
- performances � sampling period ≤ 10 Hz

2. for environment: 200 Hz to model a continuous-time phenomenon

8

Validation objective (and analysis at Simulink level)

1. Analysis of Va and Vz loops with separate step demands

airspeed variation of 5 m/s

vertical speed demand of Vzc= 2.5m/s

2. Analysis of P4: input is a step climb

altitude change of 1000 m

- first phase: constant vertical speed demand

- second phase: altitude reaching

9

Validation objectives

Results for the decoupled approach

10

Outline

� General overview

� Simulink specifications

� Checker

� Example of implementation

� Conclusion and perspectives

11

Property checker

� Python script: check_result.py

� Goal: verify that a tracing of a given simulation is compliant with the time-
domain performance requirements of the previous table

– Input format: CSV (comma separated value) file

– 3 property checking: decoupled scenarios in Va and Vz and step climb

– Possibility to draw the performances

� For a new implementation, the user must

– Trace exactly the same variables. Which variables must be traced is
detailed at the beginning of simulink-run- scenarioX-results.csv.

– apply the same input step to the controller.

– store the simulation (or execution) tracings in a .csv file.

– call the property checker

12

Outline

� General overview

� Simulink specifications

� Checker

� Example of implementation

� Conclusion and perspectives

13

Forces 3

Control design level

� Steps:
• coding of elementary blocks: Lustre

• coding of multi-periodic assembly: Prelude

• simulation with

• SchedMcore

http://sites.onera.fr/schedmcore/
• lustrec compiler

cavale.enseeiht.fr/redmine/projects/lustre
c
• prelude compiler

http://www.lifl.fr/~forget/prelude.html

Implementation level

SchedMcoreSchedMcore

node voter (s1, s2, s3: real)
returns (sensor: real);
let

: : :
tel Imported node voter ((s1, s2, s3: real)

returns (sensor: real) wcet 5;
node ex (i1 : rate(8,0); i2 : rate(20,0))
returns (01, 02);
let

: : :
tel

ONERA Sim2LustrePrelude toolbox (Matlab) – open source – on demand

14

Results

� Objective:
� Validate the implementation wrt

performance requirements

� Input:
� Simulink specification

� Results
� Lustre and Prelude associated files

� Almost the same as those obtained
with Simulink

15

Conclusion & perspectives

� Open case study for the community

� Future work:

– Extension of the case study to consider lateral motion

Thank you for your attention

