

The ROSACE Case Study

Thomas Loquen¹, Eric Noulard¹, Claire Pagetti^{1,2}, David Saussié³ and Pierre Siron⁴ ¹ONERA - Toulouse, France ²INPT/ENSEEIHT - Toulouse, France ³Polytechnique - Montréal, Canada ⁴ISAE - Toulouse, France

- General overview
- Simulink specifications
- Checker

.

- Example of implementation
- Conclusion and perspectives

Trends in avionic domain

ROSACE (Research Open-Source Avionics and Control Engineering)

Originally presented in

Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard et Pierre Siron. "The ROSACE Case Study : From Simulink Specification to Multi/Many-Core Execution". In : 20th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'14).

svn repository

- https://svn.onera.fr/schedmcore/branches/ROSACE_CaseStudy
- Content
 - 1. the SIMULINK specification (folder *simulink*)
 - 2. a checker to verify that an implementation fulfills the high level properties (folder *checker*)
 - 3. two examples of implementations (folder *prelude_implementations*)

Avionic use case: Longitudinal Flight Controller

! '#\$#%&'

!"#'\$!"#&\$

- Longitudinal motion of a medium-range civil aircraft in *en-route* phase
 - *Cruise:* maintains a constant altitude h and a constant airspeed Va

- commands a constant vertical speed Vz (rate of climb)
 - Ex: FL300 \rightarrow FL320 \rightarrow FL340 \rightarrow FL360
 - FL300 = pressure altitude of 30000 ft
- **Performance requirements for change of cruise levels**
 - **P1 settling time**: time required to settle within 5% of the steady-state value
 - **P2 overshoot:** maximum value attained minus the steady-state value
 - **P3 rise time:** time to rise from 10% to 90% of the steady-state value
 - **P4 steady-state error:** difference between the input and the output at $t \rightarrow \infty$. -

- General overview
- Simulink specifications
- Checker

.

- Example of implementation
- Conclusion and perspectives

Longitudinal flight controller architecture

- 5 filters consolidate the measured outputs provided by the sensors
- 3 controllers track accurately: altitude (h_c), vertical speed (V_{zc}) and airspeed commands (V_{ac})
- rate choices
 - 1. for controllers:
 - closed-loop system with the continuous-time controller can tolerate a pure time delay of 1 s before destabilizing \rightarrow sampling period \leq 1 Hz
 - performances \rightarrow sampling period ≤ 10 Hz
 - 2. for environment: 200 Hz to model a continuous-time phenomenon

Validation objective (and analysis at Simulink level)

1. Analysis of V_a and V_z loops with separate step demands

airspeed variation of 5 m/s

vertical speed demand of V_{zc} = 2.5m/s

2. Analysis of P4: input is a step climb

altitude change of 1000 m

- first phase: constant vertical speed deman
- second phase: altitude reaching

Results for the decoupled approach

Property	Objective		Results in SIMULINK
P1 5% settling time	V_z	$\leq 10 \mathrm{s}$ $\leq 20 \mathrm{s}$	$8.22 \mathrm{s}$ 17.22 s
P2 Overshoot	V_z	$\leq 10\%$	4.72%
D2 Diag time	V_a V_z	$\frac{\leq 10\%}{\leq 6 \mathrm{s}}$	$\frac{3.65\%}{5.09\mathrm{s}}$
rs kise ume	Va	$\leq 12 \mathrm{s}$	11.6 s
P4 Steady-state error	V_z	$\leq 5\%$	0.83%
	$\mid V_a$	$\leq 5\%$	0.11%

- General overview
- Simulink specifications
- Checker
- Example of implementation
- Conclusion and perspectives

- Python script: *check_result.py*
- Goal: verify that a tracing of a given simulation is compliant with the timedomain performance requirements of the previous table
 - Input format: CSV (comma separated value) file
 - 3 property checking: decoupled scenarios in Va and Vz and step climb
 - Possibility to draw the performances
- For a new implementation, the user must
 - Trace exactly the same variables. Which variables must be traced is detailed at the beginning of *simulink-run- scenarioX-results.csv*.
 - apply the same input step to the controller.
 - store the simulation (or execution) tracings in a .csv file.
 - call the property checker

- General overview
- Simulink specifications
- Checker

.

- Example of implementation
- Conclusion and perspectives

Results

Objective:

 Validate the implementation wrt performance requirements

Input:

Simulink specification

Results

- Lustre and Prelude associated files
- Almost the same as those obtained with Simulink

Conclusion & perspectives

- Open case study for the community
- Future work:
 - Extension of the case study to consider lateral motion

Thank you for your attention