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shared memories 

 allow integration of many components – heterogeneous and dynamic 

 result  BEs and HRTs share NoC resources e.g. links and buffers 

 safety standards  in case of shared resources require 

 functional independence - still allow application communication 

 timing independence – still allow efficient scheduling 
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 timing and/or safety relevant functions require 

predictable upper-bound on timing 

 but this must be performance efficient 

 counter example: Time-Triggered Architectures  

 performance efficient timing predictability is more complex  

 application requirements vary during execution 

 predictability requires powerful verification 

 higher safety-levels require verification by formal methods  

– timing analysis 

 analysis requires predictable architectures and application behavior 

 but only for safety-critical application functions 

 easy to provide overly pessimistic settings for BE senders 

Goals for Time Predictability 
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Problem 1: Heterogeneous Traffic 

 memory  main shared resource 

 cache lines – short, sporadic 

 DMA transfers – long, regular 

 heterogeneous communications 

 different applications – BEs and real-time 

 control, streaming 

 on-chip and off-chip traffic 

 Consequences:  

 Dynamics leads to pessimistic guarantees 

 High complexity of analysis and hard verification 
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 Problem 2: Heterogeneous Components 

 Memory Controllers and Peripherals 

 Routers – at least one or more 

 Consequences:  

 Coupling of scheduling leads to pessimistic 

guarantees 

 High complexity of analysis and hard verification 

 

Problems with MPSoCs 

Core 0 Core 1 

R 

R R 

NI NI 

NI NI 

DDR I/O 

Core 0 

R 

Core 1 

Analysis must deal efficiently with these challenges! 
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Presentation Outline 

 Motivation MPSoC 

 MPSoCs with CPA 

 Analysis 

 Arbitration at the NoC level 

 Interface to SDRAMs 

 Results 

 Summary 
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 originally used for scheduling analysis of tasks on processors 

 resources  provide service 

 scheduled according to policy (e.g. round-robin) 

 tasks  consume service 

 worst and best-case execution times 

 event models  activate tasks 

 η+/-(Δt): Minimum/Maximum number of 

activations within any time window Δt 

 δ+/-(n): Maximum/minimum time interval 

between first and last activation 

of any sequence of n activations 

(pseudo-inverse to η+/-(Δt)) 

Compositional Performance Analysis 

Resource 

Task 

Task 

Resource 

Task η+/-(Δt) 
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 covers typical PJD event model  

period (P), jitter (J), min. dist. (D)  

 variety of activation patterns used in practice 

e.g. periodic + spontaneous, dual cyclic, 

TDMA 

 timing verification can consider them through 

use of minimum distance functions 

 i.e. specification of the minimum distance 

between any n consecutive events (δ-(n)) 

 

 

Complex Activation Patterns 

All traces which stay between δ-(n) 

and δ+(n) satisfy the event model 
any 5 events are 

separated by at 

least 62.5 ms 
3 events may 

come at once 
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 analysis performed iteratively 

 Step 1:  define memory access patterns  

 Step 2:  analyze transmission time in the NoC  

 local analysis (at each router) or global (whole NoC) 

depending on the QoS mechanism 

 compute worst-case response time (𝑹+) of flits based 

on critical instant (busy window) 

 propagate event models downstream 

 derive output event models 

 Step 3: analyze the memory – global 

 use output model from the whole NoC 

 local analysis for the selected memory scheduler 

 go to step 1 if non-schedulable 

 otherwise, terminate 

CPA Approach for MPSoC 

Input Event Models 

Local  

Scheduling Analysis 

Output Event Models 

Convergence or  

Non-Schedulability ? 

No 

Environment Model 

Terminate 
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Application of CPA: 

Analysis of NoC Router with 2-Stage Scheduling 

 output ports  processing resources 

 input ports  shared resources with 

mutually exclusive access 

 traffic stream  chain of tasks mapped to 

resources 

 flit transmission  task execution 

 flit arrival  task activation 

 input and output event models 
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[1] Jonas Diemer, Jonas Rox, Mircea Negrean, Steffen Stein und Rolf Ernst, 

 "Real-Time Communication Analysis for Networks with Two-Stage 

Arbitration" in Proc. of EMSOFT, Oktober 2011 
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Complex Multistage Scheduling 

• flit transfer 

• output blocking 

• FIFO blocking 

• backpressure blocking 

• avoid at all cost! 
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 : arrival time of event q 

C : single flit transmission time 

[2]  Sebastian Tobuschat und Rolf Ernst, "Real-Time Communication 

Analysis for Networks-on-Chip with Backpressure" in 2017 Design, 

Automation Test in Europe Conference Exhibition (DATE), 2017 
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NoC Analysis – Local QoS 

 worst-case end-to-end latency  

 relies on response times 𝑹+ from local analyses 

 for each stream 

 analyze routers along its path and propagate event models downstream 

 formally analyze routers iteratively 
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 dynamics and heterogeneous components increase complexity of analysis 

 difficult verification 

 frequently highly pessimistic 

 

 Solutions: 

 further adjust the model’s complexity to decrease pessimism  

 even higher complexity of analysis  and hard verification 

 introduce QoS mechanisms to simplify the model complexity 

 e.g. global arbitration for the interconnect 

 

 

 

Problems with Local Arbitration in MPSoC 
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 include Resource Manager (RM) 

 controls resource assignment in NoC  e.g. global and dynamic  tile level traffic shaping 

 Basic concepts of Software  Defined Network (SDNs) 

adjusted and extended for  

achieving functional safety 

 Simpler analysis especially for  

longer transmissions! 

Alternative Solution: 

Extension for dynamic channel reservation 

RM 
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 overlay network to decouple data flow and control protocol 

 data layer – data transport and data routing and arbitration  

 control layer – global and dynamic arbitration 

 clients - admission control locally in nodes 

 RM – central scheduling unit 

 protocol based synchronization 

 similar to SDN but with real-time and safety for sufficient independence! 
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Example1: Resource reservation protocol for DMA 

reqMsg 

Resource 

Manager 

Client1 

time 

Sender1 

gntMsg 

access 

access_end 

relMsg 

preMsg 

resMsg 

Client2 

reqMsg 

gntMsg 
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single flit control  

message size 
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[3] Adam Kostrzewa, Selma Saidi und Rolf Ernst,  

"Dynamic Control for Mixed-Critical Networks-on-Chip"  

in IEEE Real-Time Systems Symposium (RTSS),  

(San Antonio, TX, USA), Dezember 2015.  
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 the worst-case time necessary to conduct q transmissions synchronized with the RM 

using SPP-based scheduling is bounded by  

Predictability 

𝒘𝒊 𝐪 = 𝐪 ∗ 𝐂+
𝒊 + 𝟑𝒒 ∗ 𝐂+

𝒊,𝒄𝒕𝒓𝒍 + 𝑩𝒊,𝑰𝑷𝑫 𝒘 𝒒 + 𝑩𝒊,𝑫𝑷𝑫 𝒘 𝒒  

duration of q transmissions 

for each transmission 3 ctrl messages 

(req, ack, rel) 

blocking  preemptions of applications  

with lower priorities 

blocking  preemptions of applications with higher priorities 
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 additional latency which q requests will experience in the worst-case  

due to preemptions of ongoing transmissions with a lower priority: 

Indirect Preemption Delay (IPD) 

𝑩𝒊,𝑰𝑷𝑫 Δ𝒕 = 𝐦𝐢𝐧  𝐪 ,  𝛈+
𝐣,𝐑𝐌 Δ𝒕

𝐣𝛜𝒍𝒑 𝒊
∗ max

∀𝐣𝛜𝒍𝒑 𝒊
𝐂+

𝒊,𝒄𝒕𝒓𝒍 + max
∀𝐣𝛜𝒍𝒑 𝒊

𝐂+
𝒊,𝒑𝒄𝒌𝒕  

# of trans. # of trans. with lower priority 

duration of blocking  

• sending a preemption message 

• waiting until all packets are out of NoC  

min function because we cant preempt 

• more than activated trans. with lower priority 

• and than our activations q. 
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 blocking which q requests experience in a time window ∆t, due to transmissions with a 

higher priority : 

Direct Preemption Blocking (DPD) 

𝑩𝒊,𝑵𝑷𝑫 Δ𝒕 =   𝛈+
𝐣,𝐑𝐌 Δ𝒕

𝐣𝛜𝒉𝒑 𝒊
∗ 𝐂+

𝒊,𝒄𝒕𝒓𝒍 + 𝐂+
𝒋 + 𝟐 ∗ 𝐂+

𝒋,𝒄𝒕𝒓𝒍  

# of trans. with higher priority 

duration of the preemption 

• ack and rel messages 

• resume message 

• duration of the high-prio transmission  
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Presentation Outline 

 Motivation MPSoC 

 MPSoCs with CPA 

 Analysis 

 Arbitration at the NoC level 

 Interface to SDRAMs 

 Results 

 Summary 
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 due to the preservation of spatial locality, a simple SDRAM controller that serves requests 

in FCFS order suffices 

 SDRAM scheduling is implicitly delegated to RM  

 Hence, safety can be addressed at the RM level 

Resource Manager and SDRAM Scheduling 

N1 N2 N0 

N4 N5 N3 

N7 N8 N6 

SDRAM RM 

C C 

C 

C 

[4] Adam Kostrzewa, Selma Saidi, Leonardo Ecco und Rolf 

Ernst, "Ensuring safety and efficiency in networks-on- chip“, 

Elsevier Integration, the VLSI Journal, 2016.  
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• DRAM have a complex stateful structure 

• Timing depends on the sequence of memory accesses 

• Response time depends on the history of accesses 

• always the most pessimistic latency 

• or account for the pattern (open research question) 

• DRAM latency is very sensitive to the locality of 
accesses 

 

Interface with DRAMs Controllers 
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DMA and DRAM Granularity 

• A memory request to the DRAM is then decomposed by the memory controller into a 
sequence of internal DRAM commands: ACT, PRE and CAS executed every cycle.  

• DRAM granularity = CAS granularity to perform one data transfer (e.g a memory request of 
64 bytes requires 8 CAS commands. 

• DMA command of granularity G is decomposed into N CAS commands served in burst 
mode. 
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DRAM internal timing constraints 

• DRAMs impose internal timing constraints dictating minimum delays between consecutive 
commands 

•   

 

 

Interface with DRAMs Controllers 
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 predictable SDRAM schedulers 

 where spatial locality of transfers is not enforced (e.g. TDM with small slots), 

predictable SDRAM controllers are required 

 to deal with lack of locality, such controllers employ close-page policy and/or 

bank interleaving - Dedicated Close Page-Controllers (DCPC). 

 the operation DCPCs is controlled by two parameters: BI and BC 

 BI (Bank Interleaving) no of banks per access 

 BC (Burst Count) no of read or write commands executed per bank 

 

 RM + standard SDRAM controller  

 keeps spatial locality  

 allows reduction of row buffer open and close operations 

 out-of-order optimization must be turned off (FCFS memory scheduling) 

 choose BI = 1  leads to predictable access timing 

RM vs. predictable SDRAM scheduling 
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Dedicated Predictable Memory Controllers:  (DCPC). 

• Use of a close page policy + bank interleaving  

• The goal is to eliminate the correlation between DRAM latency and the locality of accesses 

• Bank Interleaving (BI) = 1, Burst Count (BC) =1 

 

Sequence of SDRAM commands:  

 

Interface with DRAMs Controllers 

PRE CAS PRE ACT CAS ACT PRE CAS ACT     Bank 1 . . . PRE CAS ACT 
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Dedicated Predictable Memory Controllers:  (DCPC). 

• Use of a close page policy + bank interleaving  

• The goal is to eliminate the correlation between DRAM latency and the locality of accesses 

• Bank Interleaving (BI) = 1, Burst Count (BC) =1 

 

Sequence of SDRAM commands:  

 

 

 

 

=> Reduced DRAM efficiency 

 

Interface with DRAMs Controllers 

PRE CAS PRE ACT CAS ACT PRE CAS ACT     Bank 1 . . . PRE CAS ACT 
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Dedicated Predictable Memory Controllers:  (DCPC). 

•  Bank Interleaving (BI) = 4, Burst Count (BC) =1 

Sequence of SDRAM commands:  

 

Interface with DRAMs Controllers 

PRE CAS     Bank 1 

PRE ACT CAS 
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PRE CAS ACT 
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PRE CAS ACT     Bank 4 PRE . . . 
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Timing Analysis of FCFS SDRAM Controller 

• We define a simple timing analysis for SDRAM controller considering FCFS scheduling 
strategy,  

• This analysis can be used in combination with a NoC mechanism which guarantees 
freedom from interference for an entire DMA transfer composed of multiple packets.  

• If freedom of interference is guaranteed then locality of accesses of packets from the same 
DMA request is also guaranteed,  

• The model also assumes that all data is aligned within the boundaries of a single DRAM 
row 

• The analysis determines the worst-case execution time of an SDRAM DMA request 

 

 

Interface with DRAMs Controllers 

PRE CAS CAS CAS ACT CAS CAS CAS     Bank 1 
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Timing Analysis of FCFS SDRAM Controller 

• The worst execution time of an SDRAM request is computed as follows under the following 
worst-case assumptions,  

• Worst-Case Assumptions:  

1. The target row is NOT already activated,  

2. The previous request is accessing the same bank,  

 

 

 

 

 

 

Interface with DRAMs Controllers 
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Timing Analysis of FCFS SDRAM Controller 

• The worst execution time of an SDRAM request is computed as follows,  

 

 

 

 

Interface with DRAMs Controllers 
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Timing Analysis of FCFS SDRAM Controller 

• The worst execution time of an SDRAM request is computed as follows, 

•   

 

 

 

 

Interface with DRAMs Controllers 

Time to serve N CAS commands after 
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Timing Analysis of FCFS SDRAM Controller 

• The worst execution time of an SDRAM request is computed as follows,  

 

 

 

 

Interface with DRAMs Controllers 

Residual time due to previous request 
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Timing Analysis of FCFS SDRAM Controller 

• The worst execution time of an SDRAM request is computed as follows,  

 

 

 

 

Interface with DRAMs Controllers 

Residual time depends if the previous request is 

a read or a write,  

 

 

 

 

In case of read,  

Differece between the time to perform a read and 

the ACT to PRE command to load the previous 

row 

 

 

 

In case of write, 

End of WR operation to PRE delay 

 

Residual time due to previous request 
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Presentation Outline 
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Resource Managers and SDRAM scheduling 

Transmission Size (Memory Granularity) 
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Resource Managers and SDRAM scheduling 

Worst-case latency for a 256-bytes request 

on DDR3 devices (with 8-bit wide interfaces) 
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 NoC based many-cores are entering safety critical system design 

 analysis is not trivial  

  must cover simultanously safety dynamics and  

 performance!  

 dynamic resource management using a research manager is a 

highly efficient NoC control mechanism for such NoCs providing 

worst case guarantees 

 mechanism supports simpler memory control and transient error 

handling 

 

Conclusion 

Thank you! 

Acknowledgement: Some of the slide contents have been provided by 

Leonardo Ecco, Sebastian Tobuschat, and Eberle Rambo 
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 enforced by the system (HW or SW) 

 due to the nature of controller process e.g. periodic activations in control  

 predictable memory models 

 later enforced e.g. by rate-limiter in network interface (cf. RM) 

 

 from simulation / trace 

 obtain models from trace (as shown before) 

 from design / analysis 

 formal worst-case models 

 

 compatible with current, standard automotive design process 

 SymTA/S tool provided by Symtavision (now: Luxoft) 

 open source PyCPA tool 

 

Step 1: Deriving Event Models 
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 dynamically adjust arbitration 

 correlate rates with the load of the system 

 i.e. the number of simultaneously active senders at runtime 

 observe and enforce behavioral models supported by the analysis 

 adaptive QoS - based on the load of the system at runtime 

 

Example2: Cache Protocol 

# of act. senders 

time 

2 

4 

6 

Mode 1 

Mode 2 

Mode 3 

Transition Transition 
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 many-core systems are reaching critical embedded systems 

 sensor fusion and recognition in highly automated driving  

 high performance + service guarantees 

 safety + availability 

 dynamic system loads 

 function modes 

 limited power and cost budget  

 higher systems integration  

 mixed criticality 

Motivation 
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There are 4 possible interference scenarios 
 

Calculating the Interference 

i: stream under analysis   j, k: interfering stream 

Indirect Output Blocking 

k 

i 

j 

Direct Output Blocking 

i 

j 

Direct Input Blocking 

i 

j 

Overlapping Streams 

i 

j 

Same Input Port, different Output Ports Same Output Port, different Input Ports 

Same Input Port and same Output Ports Same Output Port, different Input Ports* 
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 compositional approaches 

 real-time calculus (RTC) 

 implemented e.g. in MPA (free, open-source) 

 network calculus 

 implemented e.g. in  RTaW-PEGAS (commercial) 

 compositional performance analysis (CPA) 

 implemented in SymTA/S (commercial) 

 now also available in pyCPA (free, open-source; from IDA, TUBS) 

 

 

 

Overview of Formal Analysis Methods/Tools 



July 3rd 2017 | WATERS Workshop Barcelona  | Adam Kostrzewa, Selma Saidi, Rolf Ernst |  

Jitter Propagation 
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