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Selected Focus on WATERS 2019 Challenge
Contributions

» Combined Data Transfer Response Time and Mapping Exploration in MPSoCs
* Explore task mappings to an heterogeneous platform

* Task response time computation considers DMA transfers and data
prefetching

* Minimize completion time

» Goals
* Fast exploration for early design-phases considering MPSoC characteristics
* Accurate results
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Selected Focus on WATERS 2019 Challenge

Additional Assumptions (on Top of Challenge Specification)

» Assumptions
 All tasks execute according to AER model: Acquisition (read), Execution, Restitution (write) phase
Suppose that all memory accesses are performed by DMA requests
DMA data prefetching serializes requests: No interference effects on latency
Assume that the bandwidth of the DMA accesses equals those of the GPU
Do not consider task periods nor preemption

» Rationale: Integration of Model-Driven Engineering and Design-Space Exploration (DSE)
» Optimize task mapping and scheduling
« Consider data transfers (data fetching + prefetching)

» Approach: Integration of approach into AutoFOCUS3 MDE tool
« Complete flow from the provided AMALTHEA model to optimized schedules
» Basis for experimental validation
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Optimization Problem

» Problem Size
o # Tasks: 39 (14 actual tasks + 25 R/W tasks)
o # Cores: 9 (incl. 2x DMA)

» Allocation Choices: ~1.64 * 10e37/;
Considering alloc. constraints: ~6.05 * 10e7/;
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=>» Prefetching is achieved by implicit parallelism of non-dependent tasks and the AER model
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Overview: Model-Driven Engineering
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Overview: Design Space Exploration

AMALTHEA > AF3|_ [\ coc o Model AF3 Objectives
Import : & Consitramts
» MOEA DSE integrates in AF3 ¥
MOEA DSE
AF3 > MOEA
> Main loop: Use MOEA to explore
task-to-core mappings
« Benefit from flexibility and performance of [
MOEA generic optimization problems Mapping <
» Here: Optimize mappings w.r.t. resulting U ;§
schedule latencies Msg. Routing S
¥
. SMT Scheduli g
» SMT-based schedule synthesis (Z3) c’e - °
« WCETs depending on allocation to (" Evaluation ——
heterogeneous architecture ¥
* Memory transfers: Estimate latencies MOEA - AF3
using R/W tasks |

[ Solution j
Selection
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SMT Scheduler Algorithm

» Bisection algorithm

* Unsuitable performance of the automatically activated Z3 optimizer
Disclaimer: The large set of Z3 strategies was not intensively
examined

* Minimize upper bound for schedule completion time

* |nitial upper bound: all tasks are allocated to a single core
(worst case)

» Use SMT status information (SAT, UNSAT) to determine
* Next step’s direction

» Solution’s schedule completion time accuracy based on UNSAT
results that provide a lower bound

» Termination criteria
» stepSize < X * UpperBound, or
* SMT timeout to bound exploration runtime: Running time increases

Upper bound estimation
=» init. stepSize

v

Call SMT

v

Evaluate SMT status &
Adjust CT bound
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UNSAT:
Bound += stepSize
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TIMEOUT /
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Approaching the Optimal Schedule Completion Time

Calculated Completion Times Latency Error Margin
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» Roughly 4-5 iterations are needed for » Error margin: difference between guaranteed
reasonable latency estimates completion time (SAT) & lower bound (UNSAT)
» In iteration 14, the close-to-optimal * Logarithmic dependency (bisection)

completion time is found (minimum step

. « Fast accuracy increase per iteration
size reached)
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SMT Timeout vs. Accuracy
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» Termination criterion: stepSize < 10e-4 * UpperBound
» Number of iterations ~ runtime

» Accuracy increases rapidly
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Decreasing the SMT / Z3 timeout

DSE Running Time Maximum Solution Error

Timeout Min Avg Max Min Avg Max
5s 12.371 14.2238 16.767 2.0/7/E-04 | 2.0/E-04 | 2.07E-04
2S 12.614 144496 17.862 2.0/7E-04 | 2.0/E-04 | 2.07E-04
1s 6.713 9.0222 11.069 1.69E-03 | 9.56E-02 3.22E-1

» Experiment: 5 executions of bisection algorithm per SMT timeout (1s, 2s, 5s)
* Reproducible running time of SMT scheduler for the same problem instances
» Large variance of accuracy for a 1s timeout
» Worst case running time for 1s and 2s experiments are similar

» Larger timeouts provide better accuracy
« This holds until an accuracy limit is reached from which the solution will not improve
« Goal: Find sweet spot between DSE running time and accuracy (here: 2s)
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Effects of DMA Prefetching: Task Allocation 1

OMAWRIE _ |

» Parameters #sm
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Effects of DMA Prefetching: Task Allocation 2

» Parameters [ o e | ﬂ
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Conclusions

» Summary of Approach: Combined Data Transfer Response Time and Mapping Exploration in MPSoCs
 Integrated into open source AutoFOCUS3 MDE tool
« MOEA + SMT-based exploration algorithm

» Summary of Experimental Results
» Prefer accuracy metrics as termination criterion over SMT timeouts
* Small benefits of DMA-based prefetching
» Schedule completion time is dominated by computation tasks

» Future work
» Validate results (different task mappings and memory access patterns) on a real platform
DMA: optimize use and use more fine-grained model (e.g., bandwidth, interferences)
Task model: consider periods and preemption
Integrate more sophisticated timing analysis tool (task mapping and dependencies, and data prefetching)
Open question: Tune SMT timeout automatically (derive from problem size?)
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