
CPU-GPU Response Time and Mapping Analysis
for High-Performance Automotive Systems
Robert Höttger, Junhyung Ki, The Bao Bui, Burkhard Igel

IDiAL Institute
Dortmund University of Applied Sciences and Arts

Dortmund, Germany
{robert.hoettger, igel}@fh-dortmund.de,

{junhyung.ki001, the.bui003}@stud.fh-dortmund.de

Olaf Spinczyk
Computer Science Institute

Osnabrück University
Osnabrück, Germany
olaf.spinczyk@uos.de

Abstract—In accordance to the interest in autonomous driving,
automotive software requires increasing computing power whilst
formal verification methods form crucial requirements in order to
cope with safety, reliability, real-time, or fault-tolerance demands.
Image processing is a mandatory part for this trend which
makes the use of GPUs reasonable. This paper outlines methods
to address formal verification challenges in modern automotive
environments and presents results along with an industrial model
provided by the WATERS workshop community. Most of the
challenges addressed in this paper are part of the WATERS
industrial challenge 2019 [5].

Index Terms—AMALTHEA, APP4MC, Mapping, Automotive,
RTA, GPU

I. INTRODUCTION

Recent development activities in the automotive domain
have risen challenges when applying response time analysis
(RTA) as well as memory contention and access latency
estimation to AUTOSAR compliant models. Mapping tasks
to processing units in order to optimize latencies of task
chains and response times under the consideration of memory
to GPU offloading costs and highly heterogeneous hardware
architectures with different memory types, processing speeds,
peripherals, accelerators, and more, as well as sophisticated
memory contention models increases complexity and requires
appropriate changes to conventional formal RTA methods [5].
This paper uses conventional RTA for fully-preemptive tasks
under rate monotonic scheduling running on CPUs using the
windowing technique [11] and combines it with weighted
round robin (WRR) RTA for GPU tasks [13].

Additionally, we define a memory contention model for
GPU copy engines as well as differences of asynchronous and
synchronous GPU offloading mechanisms.

While memory accesses are already accounted within ticks
of GPU tasks, CPU task response times must account memory
contention caused by tasks running on different processing
units that use different memory controller clients and/or the
GPU’s copy engine, and memory access latencies in addition
to ticks and preemption.

Finally, we present results of task to CPU and GPU mapping
exploration conducted with the help of a genetic algorithm.
We repeat the algorithm for different optimization goals and
measure various metrics such as response time sum, standard

deviation of processing unit utilizations, as well as latencies
of cumulated memory accesses, task chains, the copy engine
operations, and contention over worst-, best-, or average
execution times and synchronous and asynchronous offloading.

The remainder of this paper is structured as follows. The
next Section II introduces related work, the context this paper’s
work is referring to, as well basics of the used system model.
Afterwards, Sections III and IV form the main contributions
of this paper and formulate the specific challenges and their
solution approaches to response time analysis and task map-
ping across CPUs and GPUs in the respective automotive
domain. The solutions account data access costs, memory
contention, Copy Engine (CE) operations, synchronous or
asynchronous offloading, rate monotonic CPU and WRR
GPU scheduling, whereas the task mapping either optimizes
(a) the sum across all task response times, (b) task chain
latencies, of (c) load balancing. Finally, Section V presents
measurements and results whereas Section VI concludes this
paper.

II. RELATED WORK, ASSUMPTIONS, & SYSTEM MODEL

Current research shows that compute and memory band-
width isolation is an effective approach to reduce shared
cache conflicts, bus and shared cache contention, as well as
buffer conflicts or request reordering in the memory con-
troller [9]. The WATERS community has been working on
solving various automotive challenges since 2015 [10] such
as worst-case end-to-end latencies along complex cause-effect
chains [6], communication paradigms [4], WCET / WCRT
for advanced shared memory architectures [14], optimized
application mapping, and sophisticated models for multi-core
execution platforms.

The WATERS2019 challenge [5] forms the basis of this
paper via the following assumptions:
• Fixed priority (mixed) preemptive scheduling in form of

rate monotonic scheduling (Di = Ti)
• CPU contention given as:

γi,k = blk,i + (Kk ·#Ci) + sGPU · bGPU (1)

with #Ci denoting the number of cores that run at least
one task which accesses at least one label accessed by τi.

Baseline bli,k is derived from a processing unit’s access
latency to memory as well as labels accessed by τi. K and
sGPU are constants derived from the memory contention
model [2] in conjunction with information given in the
forum1.

• GPU contention is given as γi,GPU = lbGPU + 0.5 ·#C
• Copy operations of the CE are handled by the GPU
• The execution engine’s memory accesses are already

covered in GPU ticks
• Data is always transferred in form of an integer multiple

of a complete cache line (i.e. 64 Bytes)
The challenge model is given as an AMALTHEA model2 that
can be accessed by the APP4MC3 platform.

Table I collects all indexes and notations used throughout
this paper which is based on the Burns Standard Notation [3].

TABLE I
INDEXES AND NOTATIONS

Entity index Entity index
Task i Runnable p

Processing Unit m Memory l
Label n Global memory g

Lower priority tasks o Higher priority tasks h

Description Symbol Description Symbol
Deadline Di Period Ti

WC execution time C+
i WC exec. time on pum C+

i,m

Runnable exec. time cp Task τi
WC Response time R+

i Busy period Wi

Procesing unit pum Priority Pi

Utilization Ui,m Runnable rp
Frequency in Hz fm Latency L

Given those indexes, we define the following different
latencies:
• La,i = A task’s access latency derived from all its label

accesses to memory
• Lc,i = A task’s contention latency derived from the

challenge denoted in Eq. 1.
• A task’s locking latency that is subdivided into:

– The global latency defined by spin locks for re-
sources shared across tasks running on different
processing units

– The local locking latency derived from the priority
ceiling protocol (PCP)

The locking should be considered for semaphores or other
lock types that ensure deterministic system behavior as
well as cooperative tasks that can only be preempted at
runnable bounds.

Several suggestions to improve real time behavior and
determinism for AUTOSAR applications running on a hetero-
geneous multi core system have been proposed [12] [7] but
not yet included in the AUTOSAR specification. Considering

1WATERS forum thread https://bit.ly/2IlLXTe, accessed 05.2019
2AMALTHEA 0.9.3 documentation http://eclip.se/fy, accessed 06.2019
3APP4MC website http://eclip.se/eU, accessed 06.2019

locking latencies is planned for a later extension of this paper’s
work.

III. CHALLENGE I: RTA FOR CPU-GPU
A. CPU Response Time Analysis

1) Data Access Costs:
Before a tasks starts executing on a CPU, labels need to be
read from memory. After a task finishes execution, its results
(labels) must be written into memory. Eq. 2 describes the
memory access latencies that is added to each CPU task’s
response time.

L+
a,i =

∑
x∈rli

(⌈
lsx
64

⌉)
· rlm,l
fm

+
∑
y∈wli

(⌈
lsy
64

⌉)
· wlm,l
fm

(2)

The constant 64 is used here as the baseline derived from the
challenge [5]. Here, ls denotes the label size and rl and wl
define given read label and write label latencies specified in
the given AMALTHEA model. Recent publications such as
[8] have shown that memory mapping significantly influences
task response times.

2) Memory Contention:
Memory contention latencies are added to task response times
using Eq. 1.

3) CPU Response Time Analysis:
Based on [14], we consider the worst case response time
(R+

i) for rate monotonic scheduling within a level-i busy
period window using recurrence relation as shown in Eq. 4.
However, the previously outlined latencies must be added to
task execution times in order to get more accurate analysis.
While label access latencies always occur (also for BCET),
worst case execution times take all described latencies into
account as shown in Eq. 3.

C+
i =

∑
p

cp + La,i + Lc,i + Ll,i with rp ∈ τi (3)

Wi =
∑

he∈hep(i)

⌈
Wi

The

⌉
· Che with he ∈ (h ∧ i)

Ki =

⌈
Wi

Ti

⌉
fk,+i =

∑
h∈hp(i)

⌈
fk−1,+
i

Th

⌉
· C+

h + k · C+
i

R+,CPU
i = max

k∈[1,Ki]

(
fki − (k − 1)Ti

)
(4)

Wi is the busy period length (window) that has to be consid-
ered for task τi. Ki is the amount of task τi instances within
the busy period that needs to be checked. fki is the finish time
of the k-th instance of τi and Ri is the worst case response
time of τi which is the maximum among all k-th finish times
minus the k-th task τi’s release which is derived from the task’s
period. Equations 4 are entirely derived from [14], depend on
the task to pu mapping, and consider only the set of tasks
mapped to the same processor pu. This implementation allows
arbitrary deadlines over rate monotonic derived deadlines.

https://bit.ly/2IlLXTe
http://eclip.se/fy
http://eclip.se/eU

4) Asynchronous and Synchronous Offloading:
The two offloading cases are expressed in Figure 1. Since

PRE

GPU

AO POST Task3Task2

PRE

GPU

POST Task3active wait Task2

Asynchronous Offloading

Synchronous Offloading

CPU

GPU

CPU

GPU

passive wait

Fig. 1. Synchronous vs asynchronous GPU task offloading (without copy
operations) in a Gantt chart

passive waiting allows other tasks to execute (cf. Task2 in
Figure 1 asynchronous offloading), the overall throughput is
higher for the asynchronous offloading. However, a penalty
has to be added for the asynchronous offloading to represent
the latency between the end of GPU kernel and the start
of the post processing phase, which is denoted as AO for
asynchronous offloading costs in Figure 1. Those additional
costs AO require less processing resources compared with
the relatively longer active waiting period during synchronous
offloading. The synchronous offloading can be implemented
using the conventional RTA from [11]. Consequently, for the
synchronous case, the triggering task τi’s execution time is:

Cs+
i = C+

i + CE+
i +R+

j,GPU (5)

With CE+
i denoted in Eq. 7 for considering copy engine (CE)

operations. This means, we take the normal execution time
for a task and add the CE time for the triggered task and its
response time at the GPU.

In order to calculate response times that consider the passive
waiting for the asynchronous offloading situation, we split the
triggering task into two parts, i.e., pre and post processing
tasks. While the former simply receives the execution time
of everything until the trigger event, the latter receives all
execution time after the trigger event including pre processing
as well as the AO penalty. Additionally, the latter task obtains
an offset value which equals the pre task’s length plus the
triggered GPU task’s response time. Consequently, we use
another RTA to consider offsets, based on [15] for the asyn-
chronous offloading approach, in which passive waiting can
be utilized by other tasks. The offset consideration makes use
of the ”imposed interference” method since the critical instant
derivation used for the synchronous offloading is not viable
when having offsets for the asynchronous case. Therefore,
task sets with the same periodic activation but different offsets
are combined in transactions. Each transaction’s (Γi) effec-
tively imposed interference (Wdb(Ri, t)) during an iteratively
increasing time interval (t) is computed. The iteration ends via
fix-point lookup for the response time calculation of the task
under consideration, i.e. R+,offs

i = R
+,offs(n)
i with R+,offs(n)

i =

R
+,offs(n−1)
i .

Wdb(τi, t) =
∑

j∈hpd(τi)

((⌊
t∗

Td

⌋
+ 1

)
· Cdj − xdjb(t)

)
t∗ = t− phase(τdj , τdb)

phase(τdj , τdb) = (Td + (Odj −Odb)) % Td

xdjb(t) =

{
0 for t∗ < 0

max(0, Cdj − (t∗%Td)) otherwise

Wd(τi, t) = max
b∈hpdτi

(Wdb(τua, t))

R0
i = C+

i

R
+,offs;(n+1)
i = C+

i +
∑

Γd∈Γ

(
Wd

(
τi, R

+,offs;(n)
i

))
(6)

All equations 6 are derived from [15] whereas d is the
transaction index. The part of task τdj that cannot be executed
during interval t is denoted as xdj .

B. GPU Response Time Analysis

Before a GPU task starts executing, the copy engine needs
to copy all accessed labels into the dedicated GPU region.

1) Copy Engine:
The copy engine CE reads all labels accessed by a task from
different memories, writes them into a dedicated GPU memory
location of the global memory and after the GPU execution
finished, all labels are written back into their original location.
This copy engine access latency is described in Eq. 7.

CE+
a,i =

∑
ln,i

(
lsn · (rlm,l + wlm,l)

fm

)
+
lssi · (wlm,g + rlm,g)

fm

(7)

with ln,i being all labels ln accessed by τi, lsn denoting
the label size in baseline, i.e. lsn =

⌈
#Bytesn

64

⌉
, l being

the index of the memory ln is mapped to, fm being the
frequency in Hz of the GPU τi is mapped to, rlm,l is the
read latency between GPUm and memory meml, and rlm,g
the read latency between GPUm and global memory memg .
The label size sum of a task is the cumulated sizes across
all labels accessed by a task τi : lssi =

∑
ln,i
lsn. Both read

and write latencies to the label’s original place (meml) are
multiplied with the label sizes, since the copy engine reads
during the copy-in phase and writes during the copy out phase.
Since the labels are copied into the global memory region for
the GPU, write and read latencies must be further multiplied
with the label size sum lssi for the copy in and copy out
operations respectively. The resulting data flow is CEread l ⇒
CEwrite g ⇒ GPUexecution ⇒ CEread g ⇒ CEwrite l. For
instance, the CEa time for a task τ1 accessing a single label
of 128 Bytes from an A57 core which has 5 cycles read and
6 cycles write latency to the memory the label is mapped
to, and 7 read and 8 write cycles latency to global memory,

is CEa,1 =
(128

64)·(5+6)

2·109 + 2·(7+8)
2·109 = 26ns. In addition to

the actual copy operation time, contention CE+
c,i and queuing

delay CE+
q,i needs to be considered. The CE contention time

is derived from the challenge description, i.e.:

CE+
c,i =

#Bytes/64∑
i=0

(bl + (K ·#C)) (8)

The CE queuing delay is derived from any higher priority
copy operations among tasks mapped to the GPU and shown
in Eq. 9. We assume FIFO-ordered CE queuing.

CE+
q,i =

∑
h∈hp(τi)\τmax

CE+
a,h (9)

Given a predefined label mapping as well as access latencies
from each processing unit to each memory and the frequency
of each core, we finally derive the total copy engine time that
considers blocking and contention via Eq. 10.

CE+
i = 2 · (CE+

q,i + CE+
c,i) + CE+

a,i (10)

During the implementation of the copy engine lantecy cal-
culation, situations were identified, to which labels were
written back to their original place, but not changed during
the GPU execution. Consequently, a small adjustment of the
CE operation was implemented, which only accounts written
(changed) labels to be chosen for being written back to their
original location. This adjustment reduced the CE operation
latency to a small extent as outlined in Section VI.

2) GPU RTA using Weighted Round Robin Scheduling:
After the copy engine time has been calculated, we can
analyze the response times of GPU tasks scheduled by a WRR
scheduler. A task set is schedulable if Eq. 11 is true.

∑
i

(
C+
i · Tmax
Ti

)
≤ Tmax (11)

We implemented the response time analysis described in [13]
apart from the specific burst stimulus consideration, which
is not part of the model in scope. The RTA under round
robin uses the windowing-technique proposed by Lehoczky in
[11] to check for the worst case response time of tasks with
arbitrary deadlines within the critical instant, i.e., the situation
when all tasks are released at the same time. The implemented
algorithm considers interference of others tasks (Ik,j) within
a round robin turn (k), task interference of previous round
robin turns (pad), requested execution times until each time
slice window, as well as periodic tasks with different execution
times and time slices in order to derive accurate round robin

timing behavior without much pessimism.

R+,GPU
i (q) = q · C+

i + I(q)− δ−i (q)

I(q) =

K(q)∑
k=1

Ik, where K(q) =

⌈
q · C+

i

θi

⌉

Ik =

n−1∑
j=1

Ik,j

Ik,j =

V∑
v=1

padk,j(v), V such that padk,j(v) 6= 0

padk,j(v) = min

(
lk,j(v), Cmax

j · η+
j

(
tk,j +

v−1∑
s=1

padk,j(s)

)

−
k−1∑
p=1

Ip,j −
v−1∑
s=1

padk,j(s)

)

lk,j(v) = θj −
v−1∑
s=1

padk,j(s)

tk,j =

k−1∑
p=1

Ip + (k − 1)θi +

j−1∑
u=1

Ik,u

padk,j(1) =

{
θi if Ek,j ≥ θj
Ek,j if Ek,j < θj

Ek,j = C+
j · η

+
j (tk,j)−

k−1∑
p=1

Ip,j

(12)
Here, q is the activation index, η+

j is the upper-bound arrival
function of task τi, δ−i is the minimal distance of τi events
(set to Ti in this paper), θj is the time slot of τj , K(q) is
the total number of RR-turns required by q activation of τi
to complete, Ek,j is the remaining execution demand of task
τj at the beginning of θj in the k-th RR-turn, and lk,j is the
unused time in time slot θj at the beginning of padk,j(v) as
stated in [13].

C. Task Chain Latencies

We re-use an existing outline of task chain latency calcu-
lation derived from [1] that is shown in Eq. 13 with δ(TC)
denoting the task chain length in time.

TC = {δ0, ...}

δe = R+
j=δ0

+

j<|TC|∑
j=δ1

(Tj +R+
j)

(13)

Since no task chains are given in the existing model, we added
the following two task chains manually:

1) TC1: {EKF→ Localization→ Planner}
2) TC2: {DASM→ Pre SFM Post→ Pre Local. Post}

No differences across synchronous and asynchronous latency
measurements were found for TC1 since no offloading task is
included in that chain. However, TC1’s latency measurement is
still used for the task chain latency sum optimization outlined

in the next Section IV denoted as TCSO, to which results are
also presented in Figure 4.

IV. CHALLENGE II: TASK MAPPING

Before the actual task mapping is performed, the authors
noticed, that the task Planner has a periodic activation
of 12ms whereas it’s execution time is >12ms for any
CPU. Consequently, we changed its period to 15ms to be
schedulable.

Task mapping is encoded via a genetic algorithm using
jenetics library [17]. In order to restrict the solution space for
tasks available on either CPU cores only, GPU cores only, or
both, instead of decoding a single chromosome with multiple
integer genes, each task mapping is encoded within a dedicated
chromosome consisting of a single integer gene. Consequently,
genes can have different integer domains.

We assess results by summing up the following values along
with the GA’s fitness function:

I) RTSO = Response Time Sum Optimized
a) Worst case response time sum over the CPUs and

GPUs, i.e., R+
tot =

∑
iR

+
i that involves 4, 12, and 6)

b) The total CPU memory access latency (cf. Eq. 2)
c) The total CE latency (cf. Eq. 10)
d) The total task contention (TTC =

∑
i γi; cf. Eq. 1)

II) TCSO = Task Chain latency sum Optimized
The task chain sum of all task chain latencies via
TCS =

∑
e δe that involves Eq. 13

III) LBO = Load Balancing Optimized
The standard deviation along utilization values (given in
Eq. 14) in %.

Um,% =
∑
i

(
C+
i,m · 100

Ti

)
with τi mapped to pum (14)

It is important to note here that a combination of any of
the above calculations can easily be implemented. Additional
analyses as well as further model entity analyses can be
integrated within the genetic algorithm’s fitness function.

V. RESULTS

The following subsections outline results obtained by ap-
plying outlined challenge solutions described in Sections III
and IV to the given WATERS model.

A. Synchronous vs Asynchronous Offloading

A CPU task, which offloads a GPU task and actively
waits for its finalization (i.e. synchronous offloading), obtains
significantly more execution time and response time corre-
spondingly. Since the challenge model features already highly
utilized processing units, setting the synchronous offloading
to true is infeasible with the given model since no mapping
could be found that is free from exceeding a processing unit’s
capacity across all processing units.

However, when considering best case execution times and
increasing the period of the task ‘PRE_SFM_gpu_POST‘
from 33ms to 66ms, valid results were found (cf. ‘syncBCET‘
with diagonal lines in Figure 2). Having two tasks mapped to

46
2.
73

43
1.
63

38
3.
87

42
2.
30 44

4.
78

41
9.
80

37
5.
31

41
1.
0542
3.
66

41
4.
73

38
3.
87

42
2.
30

40
9.
39

41
4.
73

37
5.
31

41
1.
05

350

370

390

410

430

450

470

La
te
nc
y	
in
	m
s

TC2	asynchronous TC2	synchronous

Fig. 2. Task chain latencies for different mappings as well as worst and best
case execution times

the GPU in this scenario, their triggering task’s execution times
increased to 911% and 1999% compared to their asynchronous
execution times. This change results in an increase to 158%
of the total response time sum fitness value.

B. Task Chain Latencies

Task chain latency results for TC2 are shown in Figure 2.
The RTSO mapping features the highest task chain latencies
among the different mappings whereas the TCO mapping so-
lution provides the lowest task chain latencies. Asynchronous
and synchronous measurements are the same for the TCO
mapping, since the respective offloaded tasks (SFM and Lo-
calization) are mapped to a CPU which, according to the
challenge [5], results in 0 execution time for the Pre and
Post processing runnables within the triggering task. The
other mappings map at least one of those two tasks to the
GPU which results in different latency measurements among
the synchronous and asynchronous offloading approach.

Synchronous task chain latency measurements of Figure 2
violate at least one deadline except for the ‘syncBCET‘
solution due to the significant increase of wasted CPU cycles
during acrivae waiting.

While task chain optimized mappings clearly feature the
lowest task chain latencies, synchronous execution results in
a task chain latency increase of up to 9.2%.

C. Various Metric Results along Different Mappings

Final utilization results are presented in Figure 3. The
utilization already shows infeasibility of the given mapping
model due the GPU being utilized by > 141%. Even the
Denver0 processing unit will hardly meet the deadlines since
the instructions only already fill > 98% of the processing
unit’s capacity. Utilization is computed via Eq. 14. In addition
to Figure 3, Figure 4 presents measurements of different
metrics along with the three optimized mappings as well as an
early valid mapping. Due to infeasibility, some of those metrics
could not be calculated for the given mapping model such
that the given mapping is ommitted in Figure 4. Interestingly,
the load balancing approach does not provide the best cumu-
lated response times although it provides clearly the lowest

98
.74

%

30
.99

%

0.0
0%

75
.45

%

28
.84

%

13
.45

%

14
1.4

0%

74
.99

%

72
.51

%

62
.07

% 74
.17

%

63
.45

%

62
.94

% 80
.10

%

72
.51

%

69
.95

%

79
.2
0%

35
.73

%

75
.39

%

74
.17

%

78
.43

%

77
.51

%

50
.95

%

86
.66

%

74
.17

%

52
.50

%

60
.44

% 78
.43

%

76
.76

%

82
.79

%

35
.73

% 55
.18

% 74
.17

%

84
.10

%

80
.10

%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Denver0 Denver1 ARM0 ARM1 ARM2 ARM3 GPU

Ut
iliz
at
io
n

EV RTSO TCSO LBO Given

Fig. 3. Processing unit utilizations for an (a) EV = early valid mapping, (b) RTSO = response time sum optimized, (c) LBO = load balancing optimized, (d)
TCO = task chain optimized mapping results, and (e) the given mapping

0%
20%
40%
60%
80%

100%
Response	Tume	Sum

Task	Contention

Label	Access	Costs

CE	Latency

Task	Chain	Lateny

Utilization	StdDev

EV RTSO TCSO LBO

Fig. 4. Different metric measurements for calculated mapping results

utilization standard deviation with ∼40%. The configuration
for the measurements of Figures 3 and 4 is considering WCET,
asynchronous offloading, only written labels for the CE back
to host process, and 1ms ·Pi for the GPU time slice derivation.

D. Time Slice Derivation for GPU WRR Scheduling

During investigating time slice lengths and weights for the
round robin scheduling on the GPU, ticks of the Detection
task were reduced to C+

Dectection∗ = 1
10 in order to have

three tasks running on the GPU without exceeding the GPU’s
capacity, i.e., having a feasible task set of three tasks on the
GPU. Apart from Detection, Localization and SFM
were mapped to the GPU.

sl =

∑
i Ti −R

+
i

nbTasksGPU
(15)

Figure 5 shows average task slack times derived from Eq. 15
along with different base time slices θ (x-axis) and weights,

i.e., individual time slices that are derived from the base
time slice θ. The figure compares equal weights (same θ),
priority weights (derived from RMS whereas the highest
priority has the highest value Pi), utilization weights (cf.
Eq. 14) multiplied with the number of tasks mapped to the
respective GPU, and the utilization weights only. For all θ
values except 100ms, the priority-based time slice derivation
shows the highest (best) slack times. In addition to the slack
times presented in Figure 5, Figure 6 provides insights into
each time slice weighting approach’s standard deviation.

VI. CONCLUSIONS

This paper provides solutions towards typical response time
analysis and task mapping challenges for high performance au-
tomotive systems. Therefore, formal CPU and GPU response
time analyses are given that consider different scheduling
paradigms (RMS and WRR), contention models, memory
access and offloading patterns (synchronous vs asynchronous),
task chains as well as locking, queuing, and blocking latencies.
Results are presented along with applying the solutions to the
WATERS 2019 challenge and its given AMALTHEA model.

The WRR scheduling has been investigated towards four
different time slice derivation methods of which the default
time slice times task priority derivation method has shown

1ms 2ms 5ms 10ms 20ms 50ms 100ms
Base time slice length

44
45
46
47
48
49
50
51

Sl
ac

k
tim

e
in

 %
 =

T i
R

+ i
T i

10
0

46.88 47.32 47.64 49.63 49.63 48.70 46.91

47.60 48.47 50.17 49.99 49.63 48.70 46.91

45.02 45.02 46.03 47.71 47.26 48.55 46.83

44.94 45.02 45.19 45.19 46.03 47.71 47.99

Average Slack Time in % ()
(a) Same
(b) Pi

(c) Ui, m nbTasks
(d) Ui, m

Fig. 5. Influence of time slice derivation methods and different base time slice
lengths (θ) on slack times: (a) equal, (b) priority-, (c) utilization·nbTasks-, and
(d) utilization-based time slices

Same Pi Ui, m nbTasks Ui, m

30

40

50

60

70

80

90
Sl

ac
k

tim
e

in
 %

 =
T i

R
+ i

T i
10

0
Average Slack Time in % (-derivation method)

Fig. 6. Average slack time deviations of different time slice derivation
methods

lower response times in average. Mappings have been calcu-
lated via a genetic algorithm and its results are presented along
with various configurations such that BCET-WCET consider-
ation, Synchronous-Asynchronous GPU offloading, time slice
derivation method, as well as the Copy-Engine operation type.

Measurements of three different task to processing unit
mappings, each optimized towards a different goal, and the
given mapping have shown a rather sophisticated reasoning
about the quality of results along various metrics such as
memory contention, processing utilization standard deviation,
cumulated label access costs, CE latency, task chain latency,
and the sum of response times. However, each of the calculated
mapping significantly outperforms the given mapping in most
metrics.

One of our next steps is to further analyze blocking times
on runnable level based on [16] as well as extending the
current response time analysis to consider mixed-preemptive
scheduling in terms of cooperative tasks, that can only be
preempted at runnable bounds.

VII. LIMITATIONS & REMARKS

It took us a couple of days and forum questions to
fully understand the challenge model entities. We have been
implementing our solutions since the publication of the
AMALTHEA challenge model, not fully dedicating all re-
sources to the challenges themselves. Most effort was spent
on implementing concepts of [13] and [15].

Related progress, implementation, and information of this
paper are intended to be collected in the WATERS forum
corresponding thread4.

REFERENCES

[1] Jalil Boudjadar and Simin Nadjm-Tehrani. Schedulability and Memory
Interference Analysis of Multicore Preemptive Real-time Systems. In
Proceedings of the Int. Conference on Performance Engineering, ICPE,
pages 263–274. ACM, 2017.

4WATERS forum thread for this paper: https://bit.ly/2IEJPpz, accessed
06.2019

[2] Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna. Memory
Interference Characterization Between CPU Cores and Integrated GPUs
in Mixed-Criticality Platforms. In Proceedings of the Int. Conference
on Emerging Technologies and Factory Automation, ETFA, pages 1–10,
2017.

[3] R.I. Davis. Burns Standard Notation for Real Time Scheduling. In
N. Audsley and S.K. Baruah, editors, Real-Time Systems: The Past, The
Present and The Future, pages 38–41. Mar 2013.

[4] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, Falk
Wurst, and Dirk Ziegenbein. WATERS Industrial Challenge 2017. In
Int. Workshop an Analysis Tools and Methodologies for Embedded and
Real-time Systems, WATERS, 2017.

[5] Arne Hamann, Dakshina Dasari, Falk Wurst, Ignacio Sanudo, Nicola
Capodieci, Paolo Burgio, and Marko Bertogna. WATERS Industrial
Challenge, 2019. Online: https://www.ecrts.org/forum/viewtopic.php?f=
43&t=124&sid=1da5e37bde907477b2b991c411c03a03.

[6] Arne Hamann, Dirk Ziegenbein, Simon Kramer, and Martin
Lukasiewycz. FMTV 2016 Verification Challenge. In Real-Time and
Embedded Technology and Applications Symposium, RTAS, 2016.

[7] Robert Höttger, Burkhard Igel, and Olaf Spinczyk. On Reducing
Busy Waiting in AUTOSAR via Task-Release-Delta-based Runnable
Reordering. In Proceedings of the 2017 Design, Automation & Test
in Europe Conference & Exhibition, DATE, pages 1510–1515. IEEE,
March 2017.

[8] Robert Höttger, Lukas Krawczyk, Burkhard Igel, and Olaf Spinczyk.
Memory Mapping Analysis for Automotive Systems. In Work in
Progress Paper, 25th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS, April 2019.

[9] Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan Raj Rajkumar.
Fractional GPUs : Software-based Compute and Memory Bandwidth
Reservation for GPUs. In Proceedings of the Real-Time and Embedded
Technology and Applications Symposium, RTAS, pages 29–41, 2019.

[10] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real World
Automotive Benchmarks For Free. In Int. Workshop an Analysis Tools
and Methodologies for Embedded and Real-time Systems, WATERS,
2015.

[11] John P Lehoczkyl. Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines. In Proceedings of the Real-Time Systems
Symposium, RTSS, pages 201–209, 1990.

[12] Renata Martins Gomes, Fabian Mauroner, and Marcel Baunach. Col-
laborative Resource Management for Multi-Core AUTOSAR OS. In
Wolfgang A. Halang and Olaf Spinczyk, editors, Betriebssysteme und
Echtzeit, pages 99–108. Springer Berlin Heidelberg, 2015.

[13] Razvan Racu, Li Li, Rafik Henia, Arne Hamann, and Rolf Ernst.
Improved Response Time Analysis of Tasks Scheduled Under Preemp-
tive Round-Robin. In Proceedings of the Int. Conference on Hard-
ware/Software Codesign and System Synthesis, CODES+ISSS, pages
179–184. ACM, 2007.

[14] Ignacio Sa, Paolo Burgio, and Marko Bertogna. Schedulability and
Timing Analysis of Mixed Preemptive-Cooperative Tasks on a Parti-
tioned Multi-Core System. In Int. Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems, WATERS, 2016.

[15] K. Traore, E. Grolleau, A. Rahni, and M. Richard. Response-time
analysis of tasks with offsets. In Proceedings of the Conference on
Emerging Technologies and Factory Automation, pages 1–8, Sep. 2006.

[16] Alexander Wieder and Björn Brandenburg. On Spin Locks in AU-
TOSAR: Blocking Analysis of FIFO, Unordered, and Priority-ordered
Spin Locks. In Proceedings - Real-Time Systems Symposium, pages
45–56, 2013.

[17] F. Wilhelmstötter. Jenetics is an advanced Genetic Algorithm, Evolu-
tionary Algorithm and Genetic Programming library, written in modern
day Java, 2019. Online available at http://jenetics.io/.

https://bit.ly/2IEJPpz
https://www.ecrts.org/forum/viewtopic.php?f=43&t=124&sid=1da5e37bde907477b2b991c411c03a03
https://www.ecrts.org/forum/viewtopic.php?f=43&t=124&sid=1da5e37bde907477b2b991c411c03a03
http:// jenetics.io/

	Introduction
	Related Work, Assumptions, & System Model
	Challenge I: RTA for CPU-GPU
	CPU Response Time Analysis
	Data Access Costs
	Memory Contention
	CPU Response Time Analysis
	Asynchronous and Synchronous Offloading

	GPU Response Time Analysis
	Copy Engine
	GPU RTA using Weighted Round Robin Scheduling

	Task Chain Latencies

	Challenge II: Task Mapping
	Results
	Synchronous vs Asynchronous Offloading
	Task Chain Latencies
	Various Metric Results along Different Mappings
	Time Slice Derivation for GPU WRR Scheduling

	Conclusions
	Limitations & Remarks
	References

