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Abstract—For many decades, the High Performance Comput-
ing (HPC) industry has relied on profiling techniques for debug
and performance optimization purposes, either for single-core or
multi-core systems.

On the other hand, the safety-critical industry, with the shift
from single-core to multi-core COTS processors for time-critical
products such as avionics, railway or space computer subsystems
is facing new challenges with a trade-off between performance
and predictability.

In multi-core processors, concurrent accesses to shared hard-
ware resources are generating inter-task or inter-application tim-
ing interference, breaking the timing isolation principles required
by the qualification / certification standards associated with for
such critical software. Several solutions have been proposed in the
literature to control or regulate timing interference, but most of
these solutions require to perform some level of runtime profiling
or monitoring.

However, regular profiling techniques relying on interrupts,
multi-threading, or OS modules are usually not an option with
Real Time Operating Systems (RTOS).

Additionally, to accurately quantify the maximum inter-
application slowdown due to timing interference, we require
specific co-running applications, named stressing benchmarks
and designed to produce a preset workload on each shared
hardware resource, and generate the ad-hoc traffic.

In this talk, we present the profiling techniques we are using to
evaluate time predictability in the presence of timing interference
and ensure real-time behaviour of safety-critical applications:
1) METrICS, a measurement environment for multi-core time-
critical systems running on top of the industry-standard PikeOS
RTOS. 2) A set of Stressing Benchmarks, dedicated at generating
workloads on specific hardware resources. 3) xTRACT Visualizer,
a GUI allowing us to visualize and to analyze the collected
information and measure timing-interference level.

I. INTRODUCTION

The safety-critical industry is facing a demand for cheaper
equipment and more stringent SWaP (Size Weight and Power)
constraints [2], making the shift to multi-core COTS processor
products appealing. A consequence is a larger trade-off in
terms of performance versus predictability [17], [21].

On a multi-core processor, different pieces of software
will be executed on different cores at the same time. Such
different software will compete electronically to use the shared
hardware resources of the processor architecture, causing
concurrent accesses to the same hardware.

On the hardware resources side, concurrent accesses are
arbitrated, introducing inter-task or inter-application jitter de-
fined as timing interference [10]. These interference are

breaking the timing isolation principles required by the stan-
dards [13], [14], [24] of time-critical software.

The literature [9] proposes several Deterministic Platform
Solutions to tackle this problem, including control solutions
[5], [10], [8], [16], [15] aiming at completely preventing such
timing interference and regulation solutions [26], [29], [18]
reducing the amount of interference below a harmful level.

However, most of these solutions (especially regulation
solutions) requires some level of profiling, to either accurately
measure task runtimes, or hardware resource load level.

II. PROFILING EMBEDDED SYSTEMS

Performance monitoring and profiling tools have been ex-
isting for a long time to help the HPC programmers with
debugging their systems, optimizing their applications, or
identifying bottlenecks. A wide variety of generic tools exists
for non-RTOS systems [28] such as gprof [7], valgrind [22],
or atom [6]. These tools rely on either OS features such
as multi-threading, interrupts or timers, or either on pseudo-
automatic code instrumentation to collect the required timing
information.

However, in real-time operating systems, such features are
either not available (with enforced static scheduling), restricted
or prohibited due to their impacts on time determinism (such as
the impact of interrupts on WCET). This is especially true for
safety critical software that is constrained by drastic limitations
due to the safety standards [13], [14], [24].

Beyond this limitation, if collecting timing information is
enough to observe timing interference, it is not sufficient to
regulate the shared resource usage that causes interference due
to resource contention. As a consequence collecting additional
resource usage information is as critical as collecting timing
information.

Generic tools such as oprofile [19] specialize in collect-
ing such information by gathering the Performance Monitor
Counters that are usually only available in privileged mode.
The claim is that oprofile is low-overhead and non-obtrusive,
and it is true from a non-RTOS point of view: Both the
monitored application and the kernel remain untouched thanks
to a dedicated kernel module. Also, the overhead mainly
depends on the interrupt-based sampling frequency.

In RTOS systems, features like modular kernels do not
exist, and using interrupt-based sampling is not an option for



systems based on static scheduling. Such systems are relying
on micro-kernels and modularity is even prohibited for safety
and security reasons. Besides, ”low-overhead” does not have
the same meaning for large scale systems running minutes to
hour-long applications where a cost of tens of milliseconds
is negligible and for periodic safety critical systems that are
likely to have tasks deadlines in the order of 10 millisecond
or less, and to have RTOS services that should be completed
in microseconds.

Furthermore, dealing with timing interference forces us to
perform measurement at function-call or system-call level,
where even a cost of tens of microseconds might not be
acceptable.

In addition, resource contentions (the main sources for
timing interference) only occur at specific moments in time,
during the cycles when an arbitration occurs. As a conse-
quence, measurement and overheads have to be evaluated at
cycle level.

Finally, if sampling techniques are very efficient for best
effort applications, such techniques can be very troublesome
for safety critical applications that focuses on how the worst
case should behave. The sampling just acts as a filter that could
filter out the worst case.

To summarize, the challenge is to provide a way to 1)
perform an accurate real-time runtime and resource usage
measurement, 2) with a negligible impact on timing behaviour,
3) running outside of the operating system (avoiding system
calls) to be able to profile both the RTOS and the running
applications.

III. METRICS: A MEASUREMENT ENVIRONMENT FOR
TIME-CRITICAL EMBEDDED SYSTEMS

In [11] we introduced METrICS: a Measurement Environ-
ment for Multi-Core Time Critical Systems that is running on
top of the PikeOS [1] RTOS from SYSGO. This framework
proposes accurate runtime and resource usage measurement
while having a negligible impact on timing behaviour.

A. METrICS architecture

METrICS consists of several core components appearing in
green in Figure 1. On the left side, we present the components
actually running on the target hardware board, and on the right
side the METrICS server, running on a Linux host, and in
charge of driving the experimental campaign to be run on the
board and collect all the gathered profiling information.

The METrICS library is meant to be linked with the
target applications to provide them with an access to the
measurement probes API, allowing the collection of time and
resource access information.

The Syscall instrumentation layer provides a way to
automatically instrument each APEX system calls for ARINC-
653 avionic applications.

The Hardware Monitor Kernel Driver provides the
supervisor-level privilege necessary to access to hardware per-
formance monitor counters (PMC). Such counters introduced
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Fig. 1. Architecture of the METrICS measurement tool

in [27] allow us to count some hardware events, including the
accesses to some shared hardware resource.

The collector partition is in charge of 1) defining a shared
memory space to collect measurements; 2) configuring specific
measurement scenarios; 3) transferring the collected profiling
information to the Linux host.

Finally, the METrICS server running on the Linux host.
It drives the experimental campaign and gather the collected
profiling information.

B. METrICS intrusiveness

A major challenge in profiling tools is its intrusiveness
in the system it monitors. We distinguish execution time
intrusiveness and code intrusiveness. The former limits the
accuracy of the measurement due to the monitoring overhead,
whereas the latter requires an effort from the developer to
instrument the code of the application, which could be an issue
for legacy software.

As our context is safety-critical and time-critical embedded
applications, we focused METrICS into limiting execution
time intrusiveness, to have a minimal impact on the timing
interference phenomenon.

A time intrusiveness had been performed of a full METrICS
probe consisting of: 1) retrieving the timing information thanks
to the core-dedicated special registers; 2) retrieving the perfor-
mance monitor counters, again through direct register access;
3) retrieving thread-specific information from the OS; and 4)
storing the collected information into the shared memory. The
results are presented in Figure 2.

Over 180K runs, the probe time varies from 85ns up to
392ns. For 97% of the runs the overhead is below 110ns, and
the overhead is above 191ns for only 0.002% of the cases.

In comparison, the corresponding RTOS system call to only
obtain current time (p4 get time for PikeOS) requires 240ns,
and it only get the current time and no PMC information.
This is due to the fact that a system call involves at least two
context switches, and possibly some privilege level changes.

Therefore the low intrusiveness of the overall METrICS
probe makes it viable even for characterizing few micro-
second long system calls of the RTOS.



Fig. 2. Completion time of a METrICS probe over 180000 runs

C. Profiling Design Space

Target ARM or PowerPC embedded hardware usually pro-
vide a selection of about 250 hardware events that could be
measured with performance monitor registers. Among these
events around 50 of them are actually related to shared
hardware resource to be profiled.

However, these architecture only provides a limited number
of performance monitor registers (from 4 to 6), only allowing
to concurrently profile a few hardware resource. As a conse-
quence, a large number of runs are necessary to systematically
study correlations between performance monitor counters and
observed runtime (around C6

50 runs).
To perform such a large number of experiments some form

of automation is necessary, and driven by the METrICS server
on the Linux host. The different steps of the automated profil-
ing process are appearing in Figure 1, with 1) the selection of
target executable and test configuration, 2) the configuration
of hardware counters to use, 3) the collection of measurements
and, 4) the storage of result files.

Such experimental campaigns generate a rather large
amount of raw data, making the direct analysis quite difficult.
In the Section V, we present the visualization tools we
developed to assist the analysis.

IV. STRESSING BENCHMARKS FOR EXERCISING
INTERFERENCE CHANNELS

A non-intrusive ability to measure runtime and resource
accesses is not enough to quantify timing interference and
identify interference channels as now required by the certi-
fication authorities for multi-core safety critical systems.

To exercise the sensitivity of each applications to additional
accesses to shared hardware resource from other cores, it is
required to design specific co-running benchmarks specialized
in performing a preset number of resource accesses.

Such benchmark have been introduced [25] as stressing
benchmarks. They were designed as a way 1) to charac-
terize both the partially documented hardware architecture
and blackbox applications; 2) to actually identify the shared
hardware resources and associated contention mechanisms;
and 3) to identify the hardware resources each application is
sensitive to.

In [3], stressing benchmark are extended to be able to
perform a tunable access workload to simultaneous hardware
resource to compute application signatures in terms of hard-
ware resource usage. These signatures are then used as an
alternative way to bound WCET of co-running applications.

A. Designing stressing benchmarks
A stressing benchmark is designed to perform periodic

accesses on a memory mapped region, performing either read
or write accesses.

Depending on the target memory address and size, we
can stress out different peripheral, from the DDR memory to
PCIe peripherals.

The stride (or address distance) between two accesses
defines the spatial access pattern that impacts which part of
the memory hierarchy will be targeted (L1 cache, L2 cache,
or DDR memory / interconnect).

Finally, the stress-level of the benchmarks indicates how
often the memory access are performed, defining the accesses
temporal pattern : from continuous burst accesses to repeated
elementary accesses, and various duty cycles in between.

To effectively control the ratio of memory instructions over
other kind of instructions stressing benchmarks are written
directly in assembly code, progressively inserting NOP in-
structions to lower the memory load level.

B. Using stressing benchmarks
The main purpose of the stressing benchmark is to be used

as a co-runner benchmark, to be able to compare the appli-
cations runtime in isolation and with the co-runner stressing
benchmark. This will allow us, for each application, to evaluate
its sensitivity to timing interference.

In the context of time-critical software and timing interfer-
ence, it is critical to bound the most adverse effect a co-running
application can have on a specific application time behavior.

Monitoring with METrICS both the execution time of an
application and the effective number of accesses to hardware
resource, while progressively increasing the stress level allow
us to determine: 1) the maximum available bandwidth in terms
of access to this resource; and 2) the level of extra resource
access supported by our applications before being significantly
slowed down by the timing interference phenomenon.

This is depicted in Figure 3. The y-axis represents the
observed runtime of the monitored application, while the x-
axis represents the stress level (aka the number of extra
accesses performed by the stressing benchmark).

The leftmost point in the chart corresponds to the applica-
tion running alone in isolation (aka the classical WCET of the
application running in isolation). The rightmost point in the
chart corresponds to a permanent maximum workload from
the stressing benchmark actually preventing the monitored
application to access the required resource (aka some denial
of service from a co-runner).

The Pareto optimal point of the curve, appearing in red
in Figure 3, corresponds to the level of stress beyond which
the induced slowdown overhead is no more acceptable. The
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Fig. 3. Determining an acceptable level of slowdown and the associated extra
access budget

asymptotic shape of such curves show that not dealing with
timing interference and continuing to rely on resource over-
provisionning to compute a WCET bound is not an option for
multi-core processors [23], [9].

C. Overall profiling process

By repeating the above-mentioned procedure for each
shared hardware resource, monitoring with METrICS and
exercising the different resource with adhoc stressing bench-
marks, we are able to actually identify the interference chan-
nels, and to quantify the impact of timing interference. The
overall two-step process is depicted in Figure 4.
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Fig. 4. Overall profiling process

The purpose of the first step is to performed an hardware-
only characterization, running the stressing benchmarks con-
currently to identify some undisclosed architecture features
such as the interference channels, and quantify the actual
available bandwidth to each hardware resource.

The second step focuses on software characterization, run-
ning each target application concurrently with stressing bench-
marks to quantify the application sensitivity to hardware
resource usage and measure actual timing interference.

V. XTRACT VISUALIZER FOR PROFLING ANALYSIS

Considering the large amount of profiling information col-
lected during our profiling processes, it is also necessary to
somehow automate data mining and profiling data analysis.

To this extent, we developed a GUI providing different ways
of visualizing the collected data: xTRACT visualizer (expert
Timing and Resource Access Counting Trace visualizer). Its
technology is based on pandas [20] for scalable data mining,
matplotlib [12] and d3.js [4] for graphical rendering, and a
Qt-based GUI using the pyside Python binding to bundle all
the visualization / filtering options.

A. Visualizing runtime variability
As METrICS collects the full distribution of events (rather

than only minimum / maximum values), it allows us to
build histograms to visualize runtime variability, showing the
distribution of the observed runtimes during successive runs,
as depicted in Figure 5.

Fig. 5. Histogram of the drone partition runtime as appearing in xTRACT
visualizer

The x-axis corresponds to the observed duration while
the y-axis indicates how many times each runtime has been
observed. The best (shortest) runtime appears on the left,
the worst (longest) observed execution time on the right, the
median value being identified with a black dot.

B. Visualizing shared hardware resource usage
We also build histograms with the collected Performance

Monitor Counter data, as shown in Figures 6 and 7. Comparing
these histograms with the previous one allows us to intuit
possible correlations between resource usage and runtime.

Fig. 6. Histogram of correlating resource accesses (L2 read cache accesses)
as appearing in xTRACT visualizer

C. Correlating timing interference
To confirm the intuited timing interference slowdowns with

hardware resource accesses, we build scatterplots such as the
one appearing in Figure 8.

Scatterplots are a way to easily identify correlations. Each
point of the scatterplot indicates that a particular run has been
observed with a number of resource accesses equal to the value



Fig. 7. Histogram of not correlating resource accesses (issued store instruc-
tions) as appearing in xTRACT visualizer

Fig. 8. Scatterplot showing linear correlation between runtime and L2 read
cache accesses as appearing in xTRACT visualizer

on the x-axis, and an observed runtime equal to the value on
the y-axis. If the points approximate a straight line, there is a
linear correlation.

D. Visualizing system call preemption
We also render various charts related to the probes auto-

matically inserted around system calls. It allows us to split
the effective runtime into the classical user time (time really
spent in the application) and the system time (time spent
in the operating system to deal with the application I/O).
Alternatively it can be used to observe the usage of kernel
locks in system calls.

Fig. 9. Visualizing ARINC-653 syscalls in ENGINE R1 task with xTRACT
visualizer

For instance, the top charts of Figure 9 shows the repartition
of APEX system calls in an instance of a particular task. The
bottom part of figure shows with boxplots the variability of the
execution time of APEX system calls for different iterations of
the same task, actually showing that the RTOS is also affected
by timing interference.

VI. CONCLUSION

In this paper, we have shown the specific challenges faced
by the safety-critical computing industry in characterizing

the fluctuating performance of multicore COTS system, and
presented an ensemble of tools we developed for that purpose.
In addition to precise execution time measurement, usage of
shared resources has to be monitored, and specific stressing
applications are required for calibration and stimulation. The
large size of measurement results implies the usage of automa-
tion, visualization and statistical analysis tools.

This instrumentation suite allows the development and the
experimental evaluation of novel techniques for mitigation of
timing interference, as well as other fine-grain optimizations.
Future improvements include the integration of state-of-the-art
data analytics techniques such as machine learning ,either for
interference channel identification or application deployment
optimization.
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Using monitors to predict co-running safety-critical hard real-time
benchmark behavior. In International Conference on Information and
Communication Technology for Embedded Systems (ICICTES), 2014.

[4] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-
driven documents. IEEE Transactions on Visualization and Computer
Graphics, 17(12):2301–2309, December 2011.

[5] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez,
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