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Fig. 1: Model of an MPSoC in CPA with interference resulting
from the accesses to shared resources.

I. INTRODUCTION
Memory accesses constitute most of the traffic in Multi-

Processor Systems-on-Chip (MPSoCs). Therefore, controlling
interference on the interconnect and memory becomes a main
issue in real-time and safety critical domains. Achieving
this goal implies worst-case dimensioning to provide tempo-
ral guarantees required by safety standards e.g. ISO26262.
However, even with a static task-to-processor mapping, the
execution of applications is usually not independent due to the
interference on shared resources which couples executions on
different processors. In MPSoCs to conduct a single memory
access, a task must acquire several resources, e.g. interconnect
and memory controller, with independent arbiters and often
provided by different vendors. The designer must assure that
the effects resulting from coupling these different arbiters will
not lead to pessimistic formal guarantees or decreased perfor-
mance and utilization, which is usually difficult to achieve.

For instance, off-chip DRAMs memories are in particular
very sensitive to the locality of accesses. They are organized
into different banks to store data and use for each bank
an internal caching mechanism which determines whether a
new request is accessing an active (i.e open) row leading to
small access latencies or if a new row has to be activated
leading to larger access latencies. Consequently, the analytical
models of MPSoCs must take also the arrival and processing
order of memory accesses into account - otherwise only very
pessimistic or no guarantees can be given.

II. MODELS OF ACCESSES
Compositional Performance Analysis (CPA) [1] framework

makes use of three main components: resources, tasks, and
event models. A model of MPSoCs can be constructed using
CPA as depicted in Fig.1, where resources are used for the

modeling of processing or network nodes (e.g. CPUs, router
ports, control units) and tasks are mapped to resources and
compete for the service provided by them. The allocation of
the service depends on the selected scheduling policy.

The analysis for an MPSoC system starts with the defi-
nition of access models for running applications. To capture
the dynamics of the systems behavior, tasks accesses to the
memory are abstracted using event models which define arrival
functions η−(∆t) and η+(∆t). These models provide a lower
and upper bounds on the number of events (memory accesses)
in any half-open time interval. Consequently, they allow to
capture all possible event arrival patterns/scenarios within
interval bounds. Correspondingly, the minimum and maximum
distance functions δ−(n) and δ+(n) are counterparts of event
arrival functions η+ and η− respectively defining a lower and
upper bound on the time interval between the first and the last
event in any sequence of n occurrences of events. An overview
of the methods for obtaining typically used behavioral models
is available in [1].

Access to memory in MPSoCs are modeled by CPA using
a directed graph. In such setup, edges symbolize depen-
dencies and nodes denote tasks consuming service provided
by resources (e.g. router’s hop latency or processing time
of memory controller). Consequently, temporal service of a
resource varies per activation between best- and worst-case
execution/transmission time. The jitter (the difference between
maximum and minimum response times) allows to derive new
output event models. An output event model of a task on
a particular resource becomes the input event model for its
dependent task(s) on another resources e.g. each router in the
path influences the input models of its neighbors.

III. INTERCONNECT ANALYSIS AND DERIVED METRICS
In the MPSoCs context, each memory access must firstly

traverse the interconnect before it gets served by the memory
controller. However, each of them may be further divided
into sub-resources (i.e., sub-arbiters). For instance, many mod-
ern MPSoCs are equipped with Networks-on-Chip (NoCs).
Commonly used wormhole-switched NoCs with multi stage
arbitration are not designed to meet the real-time and/or safety
requirements but rather to deliver high average case per-
formance. In such networks, ongoing transmissions compete
for link bandwidth (output ports) and buffer space (virtual
channels). NoCs resources are not reserved in advance, i.e.
packets are switched as soon as they arrive, and all traffic
receive equal treatment.

Each router is conducting its arbitration locally and in-
dependently of each other. Therefore, for obtaining the worst-
case end-to-end latencies the CPA is analyzing each router iter-
atively and propagating the event models (i.e. jitters) along the
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Fig. 2: Effect of memory locality on the total transmission
latencies for MPEG-4 module using TDM and RMs, based
on [2].

Fig. 3: Worst-case latency for a 256-bytes request on DDR3
devices (a) with 8-bit wide interfaces and (b) with 32-bit wide
interfaces, from [3].

path. However, depending on the selected arbitration method
traversing a router may require acquiring its several internal
resources, see [4]. As an example, in case of the popular
iSLIP arbiter, we model each router as a processing system
with shared resources. The time necessary for the transfer of a
packet through the output port of a router is then modeled as
the execution of a task on a processing resource. The arrival
of a packet at the input port of the router corresponds to a task
activation formally described via event models. Forwarding of
a packet requires access to the output port of the router what
can be modeled with a mutually exclusive shared resource
for every input port of a router. The arbitration scheme used
at the output port corresponds to a scheduling policy at the
computational resource, while the input arbitration corresponds
to a shared resource locking protocol. Consequently, a packet’s
latency is composed of the time required for

• physical transfer of throughout interference,
• blocking due to other packets stored in buffers (e.g.

FIFO),
• blocking due accesses from other input ports to the

same output ports,
• backpreassure blocking.

This results in a complex spectrum of direct and indirect
interferences between data streams which may endanger the
system safety. Therefore we define in [3] a global and dynamic
control layer for NoCs which decouples admission control
from arbitration in routers. It considers the NoC as a single
shared resource and allows to guarantee the access to an
entire transmission without any low-level packet interference

which simplifies the analysis and also preserves the locality
of memory accesses and performs better than commonly used
TDM based approach, see Fig2.

IV. MEMORY LATENCY
Worst-case memory latency can be obtained following a

similar procedure as in the case of the interconnect. Firstly, we
must obtain input access arrival curves for memory controller
resulting from the worst-case propagation jitter of a memory
access in an on-chip interconnect denoted by the difference
between its worst- and best-case network latency.

The memory scheduling is complex due to the stateful
structure of DRAMs. Memory accesses are translated by the
memory controller into internal DRAM commands e.g. activate
(load a row into a buffer), write (write row to the buffer), read
(read a row into the buffer), pre-charge or refresh. Timing
depends on the sequence of the commands i.e. history of
accesses. Therefore, for achieving the worst-case guarantees
two approaches are possible.

Firstly, it is possible to eliminate the correlation between
latency and locality of accesses, through the design of memory
controller i.e. custom predictable memory controllers. These
approaches rely on a close-row policy where a memory row
is always precharged (i.e closed) after it has been accessed,
thereby releasing the timing dependencies between requests
accessing the same bank. The interleaving between memory
requests is statically managed where requests are transformed
into memory access patterns defined as bundles of reads
and writes targeting the same row. However, the close-page
policy reduces the performance of the system as it does
not take advantage of the DRAM internal level of caching
thereby significantly increasing the degree of pessimism for
applications where subsequent requests are targeting the same
row.

Unlike customized predictable DRAM controllers,
commercial-off-the-shelf (COTS) memory controllers in
general-purpose systems are optimized for the average-case
performance and for this they rely on the open-row policy.
Consequently, the analysis must for each memory request
consider the locality of accesses. As reported in [2], the
introduced control layer allows to provide isolation at the
NoC and memory level and to preserve the locality of accesses
allowing the use of COTS DRAMs [3]. This combination
allows to provide better or comparable performance than
close-page policy customized predictable controllers, as
depicted in Fig 3.
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