Interference analysis of shared last-level cache on
embedded GP-GPUs with multiple CUDA streams

Gianluca Brilli, Paolo Burgio
University of Modena and Reggio Emilia, Italy
{gianluca.brilli, paolo.burgio} @unimore.it

I. INTRODUCTION, AND MOTIVATION FOR THIS WORK

The increasing demand for high-performance computational
capabilities at low size-weight and power (SWaP) of modern
embedded systems paved the way to the adoption of hetero-
geneous computing platforms with multi-core host and many-
core accelerators. Especially, integrated GPGPUs (iGPUs) [5],
[6] are today’s preferred to other acceleration paradigms,
e.g., based on FPGAs or application-specific integrated cir-
cuits (ASICs), in applications with data-parallel workloads,
such as computer vision and Al systems employing deep
neural networs. This is the case of advanced automotive
systems', where AI/DNN are increasingly being adopted as
reference for building partly- or fully- automated vehicles of
tomorrow. Unfortunately, these systems demand not only for
high peek performance, but also —and especially— worst case
performance, and the increased architectural complexity of
modern iGPUs makes it extremely cumbersome to perform an
effective non-pessimistic worst-case timing analysis of system.
Recently, researchers [2], [4], [7] proved that the main source
of unpredictability in such systems are contentions on shared
resources, such as memory banks, but yet only few works [3]
focused on shared GPU last-level cache (LLC) which also
is a major source of contention, that affects both host and
accelerator complexes. The reason for this lack of material is
that, hardware providers (in this case, NVIDIA) are too often
reluctant to disclose the internals of their highly-optimized
architectures and memory drivers, forcing researcher to a huge
effort of reverse engineering for understanding them [3]. This
is also interesting because last-level-caches are the closest
shared resources between cores, hence they are affected by the
whole memory traffic due to local caches misses, and deserve
a special attention.

CUDA streams. One of the main performance booster,
when adopting a host-accelerator paradigm, is the possibility
of overlapping multiple computation kernels and data transfers
between the CPU and the GPU. In NVIDIA GPGPUs, this is
possible thanks to the abstraction of CUDA streams, where
both execution and data transfer request are issued from the
application control running on the host. Unfortunately for RT
engineers, CUDA streams introduce an additional level of
parallelism, further increasing system complexity, and we will

IFigure 1 shows a simplified block diagram of a NVIDIA TX2, where an
esa-core host shares memory banks with two CUDA streaming multiproces-
sors (SM) of the Pascal family.

((

| Streaming
CORE

multiprocessor

Streaming

CORE multiprocessor

Last-level cache

cupa . Accelerator |

streams -
High-bandwidth system bus

Shared memory

Fig. 1. Reference iGPU architecture with key architectural bottlenecks

show how the complex mechanism for stream management
implemented in platform drivers enables an additional source
of contention in the system, negatively affecting predictabil-
ity, because they create interference not only on the shared
memory, but also on last-level cache. Circles with numbers in
Figure 1 highlight the two main contention points (LLC and
memory) in the considered system.

Platform modeling in industry. Another issue stems from
the fact that industrial-grade frameworks for software develop-
ment, such as Amalthea [1] for the automotive domain, too of-
ten rely on simplified platform model, practically inapplicable
and ineffective with the complex structure of iGPUs. Indeed,
there is no standard approach to modeling both the implicit
memory contention between host cores and GPU cores. Of
course, the situation gets even worse when CUDA streams are
included in the picture. Indeed, this year’s WATERS challenge
only focuses on single-stream applications.

Our work wants to be the first one in analyzing and mod-
eling, not only analytically but also with empirical evidence,
the contention on LLC introduced by the adoption of multiple
CUDA streams.

REFERENCES

[1] Amalthea Consortium. Amalthea. model based open source development
environment for automotive multi core systems, 2014.

[2] R. Cavicchioli, N. Capodieci, and M. Bertogna. Memory interference
characterization between CPU cores and integrated gpus in mixed-
criticality platforms. In 22nd IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA 2017, Limassol, Cyprus,
September 12-15, 2017, pages 1-10, 2017.

[3] B. Forsberg, L. Benini, and A. Marongiu. Taming data caches for
predictable execution on gpu-based socs. In DATE’19 — to appear, 2019.

(4]

(5]
(6]
(71

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo. WCET
derivation under single core equivalence with explicit memory budget
assignment. In 29th Euromicro Conference on Real-Time Systems, ECRTS
2017, June 27-30, 2017, Dubrovnik, Croatia, pages 3:1-3:23, 2017.
NVIDIA. Jetson TX2 Module, 2017.

NVIDIA. Jetson AGX Xavier Developer Kit, 2018.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
bandwidth management for efficient performance isolation in multi-core
platforms. IEEE Trans. Computers, 65(2):562-576, 2016.

