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Abstract—Early performance prediction and evaluation of
applications on newer platforms is a crucial step and yet a key
challenge in embedded system design. Given that application per-
formance is highly dependent on the middleware, basic software
and hardware-dependent optimizations, simply executing them
on cycle accurate models is not sufficient for early performance
prediction. In this work we tackle this challenge with a machine
learning based approach by leveraging performance counters
provided by the platform and using them as features in our
model. Our model is trained to correlate the performance data
for a set of benchmarks applications between the host and the
target platform and then later the trained model is used to predict
the performance of newer applications on the target platform.
We highlight the shortcomings of existing approaches and tools
in extracting these features and propose a new library for the
same. Additionally we systematically identify that subset of all
available features that have a higher impact on the application’s
runtime. We also present our observations on how the granularity
of code instrumentation affects the derived runtime values. The
efficiency of our approach is validated by predicting the average
runtime of a new application on an identical as well as a new
target platform.

I. INTRODUCTION

Early performance prediction of applications is gaining
importance given the increasing complexity of processing
platforms and the need to select an efficient target platform
early in the system design phase. However, selecting such
a suitable target platform while considering the implications
on factors like runtime, power and memory usage is non-
trivial. In particular, runtime estimation in the absence of
upcoming commercial-of-the-shelf hardware platforms is very
difficult, given its dependence of numerous platform specific
microarchitectural effects. While cycle accurate models seem
like a good candidate for early performance estimation, they
present some drawbacks; they can be too slow when an
accurate estimation of the runtime is required and more so
in the case when there is a need to estimate the performance
of a wide spectrum of applications. A major blocker for
evaluating real application on multiple target platforms are
the dependencies of existing applications to middleware, basic
software and even hardware-dependent optimizations. Porting
complete applications to a new platform for performance
evaluation is not suitable in an integration platform use-case
were we not only have to integrate our software but also
integrate software from other suppliers and the customer.

A promising alternative is the usage of machine learning
techniques to estimate the runtime on a target platform [1]–
[3], wherein the application is executed on a host platform,
hardware performance events (features) are extracted on the

host and then a machine learning model is trained on the target
platform by computing a relation between the features of the
host and the target platform to estimate the runtime of an
application on the target. In addition to the implementation
itself, OS, compiler etc. platform specific effects like pipeline
hazards, instruction-set architecture, branch mispredictions,
cache-misses, etc. influence the application runtime. Modern
processors provide a set of programmable hardware perfor-
mance counters in order to count the occurrence of platform
specific hardware performance events.

The desired outlook is that by providing a set of small
training benchmarks to a semiconductor vendor, and retrieving
the hardware performance events, a machine learning network
can be trained to predict the runtime for larger applications and
therefore assist the early stages of the target selection process.
The training data for smaller benchmarks can also be derived
using cycle accurate models.

a) Contributions: In this work, we firstly propose a more
accurate instrumentation approach to extract the hardware
performance events. Secondly we overcome some of the
limitations of the earlier work carried out in [1]–[3] such
as either applications source code or binary executable is
supported for runtime prediction but not both. We further use
a methodology which allows us to systematically explore all
available hardware events and choose the subset that have a
higher impact on the runtime of an application; this is essential
to reduce the vast exploration space arising due to the presence
of numerous hardware performance events. We demonstrate
the applicability of our approach for predicting the runtime
when the host and target platform are i) identical ii) differ
in the memory subsystem (including caches) and the core
organization.

Since the worst-case execution time on a multi-core plat-
form is highly dependent on the co-running applications and
the associated interference effects, we currently only predict
the runtime of an application, running on an operating system
(Linux in our case) in isolation.

II. RELATED WORK

Learning based approaches have recently emerged for per-
formance prediction of different architectures [1] which tends
to be simpler and faster than simulation based approaches
such as cycle accurate models. However, they have a non-
negligible prediction error of more than 40% for small em-
bedded benchmarks. Phase level instrumentation approach [2]
uses LLVM compiler infrastructure to instrument at interme-
diate representation (IR) basic block level of each application



during compilation. This provides fine grain performance
prediction of programs and tends to reduce the prediction
error to below 3%. However, upon reproducing the same
approach, our analysis shows an overhead of more than 300%
in the instrumented values irrespective of the phase granularity.
Moreover, the approach requires availability of application
source code. Further details can be found in the subsection
IV-B.

In order to overcome these mentioned problems, sampling
based technique [3] was introduced in which the instrumenta-
tion is performed at fixed time intervals of an application. One
of the key challenges in this approach is sample alignment
between the host and target platforms during training as
they correspond to different section of executed code. The
paper proposed a solution to this problem by introducing
stochastic dynamic coupling (SDC) heuristic. However we
think the matching can be quiet challenging and could lead
to inaccuracies in case the executed code differs a lot due to
different libraries or additional execution units in a modern
microprocessor. All the mentioned approaches are further
discussed in section IV-B.

III. PROPOSED APPROACH

Our proposed machine-learning based approach is separated
into the training phase and the prediction phase.

(a) Training Phase

(b) Prediction Phase

Fig. 1: Machine learning based cross-platform runtime predic-
tion framework

Training phase: As seen in Fig. 1a, applications are ex-
ecuted one at a time on the host and target platforms to
extract their respective features using Application Measuring
Library (AML) described in subsection IV-A. In this scenario,
features are set of hardware performance events which are
representative of source code or binary file of an application
such as instructions retired, branch predicted, L1 cache access,
L2 cache access, etc. These features are then used for training
statistical machine learning model in order to compute the
model coefficients which forms the basis of our analytical
model. We use ridge regression as the statistical machine
learning model as it tends to show better results when the data
suffers from multicollinearity that is independent variables
are highly correlated. On completion of training phase, an
analytical model is generated which essentially deduces the

association of applications executed in target platforms to the
one executed in host platform.

Prediction Phase: In this phase shown in Fig. 1b, a new
application which has not been used for training is executed
and instrumented only on the host platform. The retrieved
features are then fed into the analytical model which estimates
runtime of the application on the target platform.

IV. FEATURE EXTRACTION

Features of an application are extracted by using hardware
performance counters which are special purpose registers
provided by the processor to store the counts of hardware
related activities or performance events. These counters are
available per core for our host and target platform. There are
also events related to kernel activities that are not directly
measured by hardware performance counters.

Many tools and libraries such as Linux Perf [6], PAPI [4]
and Likwid [5] are available to read these performance
counters. Instrumenting these events is primarily achieved in
different ways i) leverage the perf event open system call
which is part of the Linux kernel since 2.6+. Examples of
tools that follow this method are Linux Perf and PAPI. ii)
implementing your own kernel module or iii) in a bare-
metal scenario, assembly code manipulating the right control
registers, can be executed in the supervisor, thereby bypassing
any kernel functionality.

However the problem with existing tools is that associated
overheads and memory footprint are high. Additionally ex-
isting tools need to be installed separately and can either be
used for instrumenting source code or binary files. To over-
come these limitations, we propose a more efficient approach,
called Application Measuring Library (AML) in Section IV-A.
Even when we have an accurate instrumentation method large
overheads can be introduced depending on the granularity of
the instrumentation(see Section IV-B).

A. Application Measuring Library (AML)
AML is a specialized library written for efficiently reading

hardware performance counters using the perf event open
system call. The proposed AML has a small code size and
memory footprint resulting in low overhead. It can be used
for instrumenting portion of code or whole program as well
as the binary executable.

1) Example usage of AML: In order to instrument a source
code, it is required to initialize instrumentation by providing
the list and number of hardware performance events (available
in processor’s datasheet [14]).

Listing 1: Example AML usage
i n t main ( ) {
u i n t 6 4 t e v e n t l i s t [ ] = {0x08 , 0x04 , 0x03 } ;
i n t fd = i n s t r u m e n t s t a r t ( e v e n t l i s t , 3 ) ;
<your code>
i n s t r u m e n t s t o p ( fd ) ;
}

A basic instrumentation outline is shown in Listing 1. The
instrument start is a wrapper that initializes the underlying
kernel structure with options like which events to monitor,
enable per core monitoring, etc., and sets the counter running.



Likewise, the counter values are finally assimilated in the
instrument stop function.

2) Comparison of AML with other tools: We perform
various experiments in order to compare the performance of
existing tools with AML. In the first experiment we calculated
the minimum and maximum deviation of total cycles for
instrumentation start followed by immediate instrumentation
stop sequence of PAPI [4] and AML over 1,000,000 iterations.
For PAPI, these values are obtained by using the PAPI built-
in utility papi cost whereas for AML, the instrumentation
start/stop sequence is executed 1 million times in a for-loop.
From Table I, it can been seen that the variation in minimum
to maximum cycles reported by PAPI are over 120 times more
than that of AML.

Minimum Cycles Maximum Cycles
PAPI 13,328 73,304
AML 65 580

TABLE I: Comparison of overhead between PAPI and AML

Furthermore, we investigated the accuracy of prominent
hardware performance event values by using Linux Perf [6]
tool and AML. In order to do so, we instrumented the
small application in Listing 2. We observed that the Linux
Perf is unable to instrument small applications accurately
and the difference in values as compared to AML are non-
negligible shown in Table II. Furthermore, it highlights the
fact that AML requires negligible amount of instructions
to instrument an application. The large overhead of Linux
Perf can be attributed towards the high number of internal
operations performed in order to make the utility usable for
several general tasks such as software profiling and tracing.
In order to observe if the overhead is constant, we perform
another experiment by using a standard benchmark application
bitcount from [9] which is comparatively a larger application.
The instrumentation values from this benchmark application
Table II shows that the difference in reported cycles by the two
tools is only 1%. However, the L1 data cache miss, L2 cache
access and L2 cache miss reported are drastically different and
cannot be neglected.

The values in Table I and Table II use the target platform
with the configurations described in Section VI-B.

B. Instrumentation Granularity

Instrumentation of an application is possible at i) program
level (after the complete execution of an application [1]) ii)
phase level (after intermediate representation (IR) basic block
level [2]) iii) fixed time intervals [3] or iv) fixed number of
instructions retired event which is detected using the hardware
counter overflow interrupt.

Listing 2: Small Application
i n t main ( ) {
i n t a = 1 ;
re turn 0 ;
}

Although phase level instrumentation provides fine-grained
information regarding an application execution, it does so at

the cost of higher instrumentation overhead. On comparing
the overhead of instrumenting the bitcount benchmark [9] at
the program level and the phase level, there was an increase
of 300-700% in total cycles consumed by the phase level
approach as seen in Fig. 2. This is attributed to the addition
of instrumentation function calls after each IR basic block
using the LLVM compiler infrastructure. For example when
the granularity is 1000, the instrumentation is performed after
execution of 1000 basic blocks, however, the instrumentation
function is still called after every basic block in order to check
granularity condition of whether 1000 basic blocks have been
executed. Moreover it can been seen in the Fig. 2, the reduction
in granularity results in further increase of overhead due to the
increased instrumentation needed.

Fig. 2: Comparison of program level and phase level instru-
mentation using different tools

A sampling based approach [3] was introduced to overcome
the problems caused by phase level instrumentation. In this
approach, the hardware performance counters are read at fixed
time intervals. However, a challenge of this approach is the one
to one correspondence of host and target platforms samples
as they correspond to different sections of the executed code
due to different execution times of the two platforms. The
paper [3] proposed a solution to this problem by introducing
stochastic dynamic coupling (SDC) heuristic assuming that
total instructions for an application in two architectures are
micro-architecture independent and dependent only on the
Instruction Set Architecture (ISA). However, the approach
is complex and can introduce inaccuracies in the measured
values after alignment. In case special instructions (e.g. SIMD)
are only available in one platform, the code may drift away
during execution, leading to inaccuracies. Therefore, after
reviewing all the possible granularities we concluded to use
instrumentation of applications at the entire program level
together with the assumption that the analytical model is able
to predict larger applications based on the information learned
from several smaller applications.

V. FEATURE SELECTION

Incorporating all available features into the machine learn-
ing algorithm does not necessarily generate the best analytical



Application Tool Cycles Instructions Branches L1D CA L1D CM L2 CA L2 CM
Code in Listing 2 Linux Perf 1,269,511 477,096 82,977 211,552 41,778 46,166 4,393
Code in Listing 2 AML 253 32 6 12 3 9 2
MiBench Bitcount Linux Perf 1,667,608,360 1,401,635,278 138,813,834 762,541,168 10,928 161,008 7,228
MiBench Bitcount AML 1,650,329,450 1,396,698,720 137,814,203 760,505,252 233 1,405 160

TABLE II: Comparison of PMU event values between Linux PERF and AML

model. In fact, the prediction error can become large in case
of severe multicollinearity as it increases the variance of the
regression coefficients, making them unstable. This issue of
multicollinearity can also possible exist in our scenario as
multiple features theoretically have impact on each other. One
example of such a case is number of branches executed is
related to total number of instructions executed which on turn
have relation to L1 instruction cache access.

The setup described in Section VI-B comprises ARM Cor-
tex A53 cores [14] which have 58 measurable events, but
provides only 6 32-bit hardware performance counters and a
dedicated 64-bit cycle counter. This adds to another level of
complexity as we can only read 7 out of total 58 hardware
performance events [14] at any given time. We solve this
limitation by re-executing the same benchmark application
in isolation, each time reading 6 different set of hardware
performance events. The small size of the training applications,
execution in isolation and using AML enables insignificant
variation in measured values and thus they can correspond to
each other as if they are read at the same instance.

Furthermore, it is important to understand the impact of pre-
diction accuracy on the number of features used for generating
analytical model. In order to do so, we propose an Exhaustive
search technique to learn and identify the hardware perfor-
mance events that best reflects the runtime of applications.
The exhaustive search technique involves the use of every
possible combination of hardware performance events as input
and fixing the event to be predicted as output in to the machine
learning model (ridge regression algorithm). Thus, one of the
key challenge is the enormous computation time required to
compute all the combinations. Therefore the goal is to reduce
the number of possible combinations.

a) Feature reduction: The reduction of features are done
in two-step process. Firstly, we computed the correlation
matrix in Fig. 3 of the features which is a standard practice
to find the level of dependency and association among all
features. Multicollinearity can result in increases of prediction
error, therefore, we can eliminate one of the features whose
correlation coefficient is close to 1 with the combination of
expert knowledge [13]. For example the correlation coefficient
is 1 between L1 data cache refill and L2 cache access shown
in Fig. 3, but we cannot remove it for our hardware setup
(described in subsection VI-B) in which each core has a
private L1 data cache private whereas the L2 cache is shared.
Thus, these two hardware performance events provide different
insights into the executing application and therefore cannot be
eliminated. However, the bus cycles event whose correlation
coefficient is also 1 shown in Fig. 3 can be eliminated as
the occurrence of this event is exactly half the occurrence
of total cycles event because the bus frequency is half the
CPU frequency. This implies that the event bus cycles provides

redundant information and need not be used as input feature
to the machine learning algorithm as long as the event cycles
is provided as output. In this way at the first step of feature
reduction process, we eliminated 12 features.

Fig. 3: Heatmap showing the correlation coefficient values of
selected hardware performance events with each other.

Secondly, features reporting a value of 0 are also eliminated
as their contribution to the analytical model is insignificant. We
find 13 hardware performance events showing zero numeric
values for all our applications (described in subsection VI-A)
and hence they are removed from the feature set. After
following these two steps, we are left with only 33 out of
the 58 available features which reduces the computation time
required for exhaustive search technique by a factor of 78. We
can now continue by applying the exhaustive search technique
on the reduced set of these 33 features.

VI. EVALUATION OF RUNTIME PREDICTION

A. DataSet

We use applications written in C and C++ taken from
various embedded benchmarks (MiBench [9], Mälardalen
WCET benchmark [10]) and solutions of various programming
contests (ACM-ICPC International Collegiate Programming
Contest [11]). In total, we use 226 applications where 202 are
used for training and the rest for prediction. We use smaller
programs (taking 25 seconds on average on the host platform)
for the training set and longer programs (taking 600 seconds
on the host platform) for the final test set. The idea is that
the longer applications can be predicted based on the learned
information from several smaller applications.



B. Setup

To evaluate our approach we use a Raspberry Pi 3B [8]
as the host platform and the NXP S32V234 [12] as the
target platform. Both platforms have 4 ARM-Cortex A53
cores [14] with different clock frequencies. They differ in the
core organization and the memory hierarchy. The Raspberry Pi
3B has one cluster consisting of 4 cores each with their private
L1 data and instruction caches and a shared L2 cache. The
NXP S32V234 on the other hand is organized into 2 clusters
with 2 cores in each cluster. Each core within a cluster has
its own private L1 data and instruction cache and the 2 cores
share a L2 cache. In our case the observed application and
the OS are running together in one cluster on different cores.
The host platform runs a 64 bit openSUSE Linux OS while
the target platform runs 64 bit Linux Board Support Package
(BSP) version 19.0 provided officially by NXP. Applications
are cross-compiled using the gcc-linaro-6.3.1-2017.05 targeted
for aarch64-linux-gnu.

C. Prediction on the Same Platform

As a first test, we considered the problem of predicting
the execution time (cycles) on the same platform (Raspberry
Pi). The analytical model is computed by executing 202
training applications and later tested with 24 test applications.
Only 33 selected features (hardware performance events) are
extracted from these applications using AML at program level
granularity. Cycles count of the platform is used as output
in the machine learning model (ridge regression algorithm)
while the input features are identified using the exhaustive
search technique that results in the least observed worst case
prediction error for the test applications.

Runtime prediction results for subset (Mibench [9]) of
test applications are shown in Fig. 4a. By using only six
features which are the result of the exhaustive search technique
shown in Table 4c, an average error of 3.8% for all the test
applications is obtained. By increasing the number of features
used for generating the analytical model, the observed worst
case percentage prediction error can be reduced as shown
in Fig. 4b. The main reason for prediction improvement is
due to the availability of more information we incorporate in
the form of features during the training phase. This results
in the generation of a more generalized analytical model
that improves the prediction of new and previously unseen
applications. Furthermore, it highlights the fact that it is
reasonable to use hardware performance events as feature
representative of the application.

Table 4c shows one of the best combinations of input
features while fixing the number of hardware performance
event to six. Furthermore, it can be observed that the obtained
combination consist of a mixture of prominent and some un-
expected (such as event numbers 0xE4, 0xE5, 0xE7) hardware
performance events, which are not previously used in machine
learning based techniques [1]–[3].

D. Cross Platform Runtime Prediction

We next predict the runtime (cycles) on the target (NXP
S32V234) while running the application only on the host
(Raspberry Pi). We follow the same methodology as used

(a) Runtime prediction for individual test applications by using only 6 hardware
performance events for subset of test applications

(b) Observed worst case runtime prediction error over all the test applications

Event Number Event mnemonic
0x07 ST RETIRED
0x12 BR PRED
0x14 L1I CACHE
0xE4 -
0xE5 -
0xE7 -

(c) Best observed combination of input fea-
tures for six events

Fig. 4: Same platform results

earlier except that we use all the 32 features plus cycles on
the host as input and the cycles on the target as output of the
ML algorithm. Features are extracted using AML at program
level and subsequently selected using the exhaustive search
technique described in Section V.

Cross-platform runtime prediction results for subset
(Mibench [9]) of test applications are shown in Fig. 5a with
an average error for all the test application to be 1.1%. From
Fig. 5b, it can be observed that the prediction results for cross
platform shows similar pattern as for same platform Fig. 4b.
However, the observed worst case prediction error is much
less than as that of same platform due to the availability of
an additional input feature (total number of cycles executed in
the host platform). Cycles are the most comprehensive repre-



(a) Runtime prediction for individual test applications by using only 6 hardware
performance events plus one cycle event for subset of test applications

(b) Observed worst case runtime prediction error over all the test applications

Event Number Event mnemonic
0x11 CPU CYCLES
0x02 L1I TLB REFILL
0x86 EXC IRQ
0x0C PC WRITE RETIRED
0XC0 -
0XCA -
0xE7 -

(c) Best observed combination of input features for
seven events

Fig. 5: Cross platform results

sentative of an application and incorporates all the information
about an application execution state. Therefore, we can also
observe in Table 5c a different combinations of input features
to the one shown in Table 4c.

VII. LIMITATIONS AND FUTURE WORK

At present, we cross compile our application using the same
compiler with same configurations. Since the efficiency of
the language implementation or a different compiler directly
affects the number and combination of instructions and the
resulting runtime, we plan to extend our learning model to
applications compiled with a different compiler version or
implemented in another language like Python or Java. Another
direction is to predict parameters other than the runtime like

memory bandwidth utilization, cache behaviour etc. Further
currently, the prediction is made for single application execut-
ing in isolation in the multicore domain. However, we plan
to extend our work for the prediction of multiple concurrent
applications on the target platform by providing additional
information of per core performance events during the training
phase.

VIII. CONCLUSION

This paper discuss the limitation of previous approaches
and presents a novel machine learning based cross-platform
runtime prediction methodology to circumvent these flaws.
The key components of our approach consists of the use of
AML for feature extraction, the two-step elimination process
for feature reduction and exhaustive search techniques for
final feature selection. Our specialized AML tooling extracts
the features of an application with negligible overhead and
minimum disturbance on the state of a hardware platform. The
two-step elimination process adopted for features reduction
decreased the total feature space from 58 to 33. This helped
in the reduction of computation time for exhaustive search
technique, thus making it possible to identify the key features
and quantify the impact of number of features on the prediction
accuracy. Hence, by using only 7 features (six hardware
performance events in addition to cycles event) of the host
platform as input features (which are also within the hardware
limitation), we are able to predict the runtime of an application
on the target platform with an average prediction accuracy of
98.9% and observed worst case prediction accuracy of 96.7%.
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