
A time, energy and security coordination approach
Benjamin Rouxel

University of Amsterdam
benjamin.rouxel@uva.nl

Julius Roeder
University of Amsterdam

j.roeder@uva.nl

Sebastian Altmeyer
University of Amsterdam

altmeyer@uva.nl

Clemens Grelck
University of Amsterdam

c.grelck@uva.nl

Coordination is a well established computing paradigm with
a plethora of languages, abstractions and approaches surveyed
in [1]. Yet, we are neither aware of any adoption of the
principle in the broader domain of low-powered safety-critical
embedded systems, nor are we aware of time, energy and
security aware approaches to coordination.

We aim at contributing to the community by bringing
a coordination approach to real-time applications with the
establishment of a Domain Specific Language (DSL). Our
coordination workflow considers time and other non-functional
properties, such as energy and security, as first-class citizens in
application designs. We therefore aim at building a complete
toolchain and workflow to compile a coordinate application to
a final executable as presented by Figure 1.

An application organised according to the coordination
paradigm consists of a collection of interacting components.
Components, also known as actors or tasks, represent applica-
tion features, sequential building blocks of application, imple-
mented in a general-purpose programming language [2]. Given
the focus of the safety-critical embedded systems domain, we
exclusively work with the system-level programming language
C. Hence, a component is technically a callable C function
with certain restrictions on its functional behaviour, together
with a set of non-functional properties, i.e. timing, energy and
security.

The coordination language emphasizes communication,
concurrency and synchronisation (referred to by the term
coordination). It aims at describing component interactions
in terms of precedences and data exchange. In contradiction
with streaming languages such as StreamIT [3], a coordination
language is independent from the actual code, but it dictates, to
the scheduler, how this code should be executed. An example
is the coordination language S-Net [2]. However, like other
coordination approaches S-Net merely addresses the functional
aspects of coordination programming and has left out any non-
functional requirements, not to mention time and security, in
particular.

We target CPS platforms executing on COTS multi-core
heterogeneous processors where time, security and energy are
safety and mission-critical. Our approach is not yet to improve
timing analyses or scheduling policies themselves, but to make
those secure and efficient by controlling the whole design path
from specification to code generation. Hence, we describe how

This work is funded by the European Union Horizon2020 research and
innovation programme under grant agreement No. 779882 (TeamPlay).

Coordination file

Timing & energy
information file

Syntaxique & 
semantic 
analyses

Scheduling 
policy generator

Code 
generator

Components
object files

Target 
compiler & linker

Binary file

Config file

Coordination Compiler

Figure 1: Coordination workflow

to exploit our coordination language and how to integrate its
semantic into state-of-the-art scheduling techniques, e.g. [4].

For this session, we will describe our DSL design and
implementation. We will show how flexible and helpful our
DSL is to build secure and safe CPS with real-time, energy
and security constraints. We will present how we integrate
both time, energy and security as primary properties into our
application modelling. Then we will present the different tools
and technologies which are part of our toolchain, and motivate
our choices among the vast possibilities of existing tools. We
will finally demonstrate the viability of our approach on a
Drone use-case, given by the University of Southern Denmark
[5], while targeting a BIG.little ARM1 based platform.

REFERENCES

[1] G. Ciatto, S. Mariani, M. Louvel, A. Omicini, and F. Zambonelli, “Twenty
years of coordination technologies: State-of-the-art and perspectives,”
in International Conference on Coordination Languages and Models.
Springer, 2018, pp. 51–80.

[2] C. Grelck, S.-B. Scholz, and A. Shafarenko, “Asynchronous stream
processing with s-net,” International Journal of Parallel Programming,
vol. 38, no. 1, pp. 38–67, 2010.

[3] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A language
for streaming applications,” in Compiler Construction. Springer, 2002,
pp. 179–196.

[4] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut, “Hiding communication
delays in contention-free execution for spm-based multi-core architec-
tures,” in 31th Euromicro Conference on Real-Time Systems (ECRTS19),
2019.

[5] EU H2020, “TeamPlay Project,” https://teamplay-h2020.eu/.

1https://www.hardkernel.com/shop/odroid-xu4/


