
Analysis and Simulation Tools for Probabilistic
Real-Time Systems

Dorin Maxim
Loria - University of Lorraine

dorin.maxim@loria.fr

Antoine Bertout
Inria de Paris

antoine.bertout@inria.fr

Abstract—In this paper we present two tools meant
to simulate and analyze probabilistic real-time task sets.
That is, tasks sets which have their timing parameters
represented by discrete probabilistic distributions. We
describe the main features of each tool and provide
configuration details necessary to use them. The two
tools are compared, pointing out the advantages and
disadvantages of each one, so that interested users can
make an informed choice regarding which tool best
fits their needs. Both tools are open source and freely
available. One of the main objectives of this paper is
to make these tools available to the real-time systems
research community, which is also invited to participate
in their improvements, by giving feedback and even
extending the implementations.

Keywords—Simulation, Probabilistic Real-Time Sys-
tems, Probabilistic Analysis, pWCET, pMIT

I. Introduction
In the real-time community, numerous theoretical anal-

yses have been developed to assess the capability of a
system to respect its timing constraint, in other words,
its schedulability. In that context, a system is generally
described as a set of tasks that are successively released,
each described by their worst-case parameters (execution
time, arrivals pattern, offset, etc). Analyses have been
proposed to compute if the system is schedulable or not.
Another way of checking the schedulability of the systems,
and at the same time having more details about the
execution of various tasks in a given interval (job response
time, starting executions date, etc.) is by simulating its
run-time execution. This is generally counterbalanced by
an accepted (empirical) margin of error introducing a
large amount of pessimism to compensate for the potential
optimism of the initial results.

Recently, a new trend has emerged for analyzing real-
time systems, in the form of probabilistic analysis [1]–[4].
That is, task parameters are described using probability
distributions (as opposed to single worst-case values) and
the analysis computes response time probability distribu-
tions from which it is possible to extract the probability
that a job may miss its deadline.

Probabilistic analyses of real-time systems provide levels
of confidence on the response time distributions, helping
to assess how safe its use is in practice. Nevertheless,
the analysis of some systems might be excessively hard
to compute especially considering multiple probabilistic
parameters (as probabilistic worst-case execution time and

probabilistic minimal inter-arrival time) and asynchronous
arrivals of jobs due to the complexity as well as the
amount of convolution operations required. An alternative
to analyzing a probabilistic task set is to simulate it and
gather the relevant information from the traces observed,
such as frequency of response times. Although there exist
currently several analysis methods for probabilistic real-
time systems, very few simulation tools have been proposed
by the community. In this paper, we present two tools
able to simulate probabilistic task set. The tools are freely
available for the community, with great potential to being
extended to enhance their capabilities.

Related works: Various simulators exist to evaluate
deterministic task sets (by deterministic we mean that
they are not probabilistic). For instance, MAST [5] and
Cheddar [6] both provide analysis and simulation. SimSo [7]
is focused only on the simulation of multiprocessor real-
time system with consideration of overhead. Also written
in Python, pyCPA [8] is an implementation of the Composi-
tional Performance Analysis approach to analyze worst-case
timing behavior of real-time distributed systems. CPAL [9]
is meant to be both an analysis and simulation tool, as well
as programming language for real-time systems, in the sense
that the simulated model can directly be deployed on the
hardware and the system obtained has the same (timing)
properties as the simulated one. An existing simulator that
can handle probabilistic execution times and probabilistic
inter-arrival times of tasks is RTSim [10]. We note that
RTSim is not specifically targeted towards probabilistic
simulations, but towards deterministic ones.

Organization of the paper: In Section II we describe
our system model composed of tasks with probabilistic
parameters. Section III is dedicated to the presentation of
PAnSim and of an extension of SimSo, two tools able to
simulate probabilistic task sets. We provide a comparison of
the two tools in Section IV before concluding in Section V.

II. Model

In this section, we present the task set model used
for the simulation and analysis of probabilistic real-time
systems.

We model the system as a set of n tasks {τ1, τ2, ..., τn}
scheduled by a preemptive algorithm. Each task τi generates
an infinite number of successive jobs τi.j , with j = 1, . . . ,∞.
All jobs are assumed to be independent of other jobs of the
same task and those of other tasks. We assume that a job

may miss its deadline and postpone the execution of the
next job of the same task.

Each task τi is characterized by a probabilistic worst-
case execution time (pWCET) denoted by Ci and by a
probabilistic minimal inter-arrival time (pMIT) denoted by
Ti.

Each parameter is represented by a random variable
X having a probability distribution fX (·) with fX (x) =
P (X = x). The possible values of Xi belong to the interval
[Xmin, Xmax]. In this paper we associate the probabilities to
the possible values of a random variable using the following
notation:

X =

(
X0 = Xmin X1 · · · Xk = Xmax

fX (Xmin) fX (X1) · · · fX (Xmax)

)
where

∑k
j=0 fX (Xj) = 1.

The notions of pWCET and pMIT are defined as follows.
For more details about these concepts, the reader can refer
to [1].
Definition 1 (From [1]). The probabilistic execution time
(pET) of a job of a task describes the probability that the
execution time of the job is equal to a given value.
Definition 2 (From [1]). The probabilistic worst-case
execution time (pWCET) of a task describes the probability
that the worst-case execution time of that task is equal to
a given value.

A safe pWCET Ci is an upper bound on the pETs Cj
i ,

∀j and it may be described by the relation � as Ci � Cj
i ,

∀j. Graphically this means that the CDF of Ci stays under
the CDF of Cj

i , ∀j.

Following the same reasoning the probabilistic minimal
inter-arrival time (pMIT) denoted by Ti describes the
probabilistic minimal inter-arrival times of all jobs.
Definition 3 (From [1]). The probabilistic inter-arrival
time (pIT) of a job of a task describes the probability that
the job arrival time occurs at a given value.
Definition 4 (From [1]). The probabilistic minimal inter-
arrival time (pMIT) of a task describes the probability that
the minimal inter-arrival time of that task is equal to a
given value.

A safe pMIT Ti is a lower-bound on the pITs T j
i , ∀j

and it may be described by the relation � as T j
i � Ti, ∀j.

Graphically this means that the CDF of Ti stays above the
CDF of T j

i , ∀j.

A job of a task must finish its execution before its
relative deadline Di with Di = T min

i , i.e. the minimal
value of the Ti distribution. Hence, a task τi is represented
by a tuple (Ci, Ti, Di).

We assume that the pWCET and pMIT distributions
of two tasks τi and τj are independent [11]. In this
paper, we use the terminology of the probabilistic worst-
case response time analysis (pMIT and pWCET). The
reader interested in the probabilistic (non worst-case)
response time distributions can indistinctly use the same

reasoning with pIT and pET parameters. The simulators
later presented are agnostic of the chosen reasoning.

Existing probabilistic schedulability analyses [1], [3]
produce task worst-case response time distribution pWCRT,
counterpart of the deterministic worst-case response time
(WCRT) [12]). From the pWCRT, the deadline miss
probability (DMP) of a task can be deduced.

III. The proposed simulators
In this section, we describe the two probabilistic sim-

ulators and provide an example of use by applying them
on the task set depicted in Table I scheduled by a fixed-
task priority policy. This task set has 5 tasks, and each
task is represented by a pWCET distribution and a pMIT
distribution, with 10 values per distribution. For the sake
of simplicity all probabilities of appearance are equal to
0.1 and we omit them from the table. Task indexes give
their priorities, with task τ1 having the highest priority
and task τ5 having the lowest one. Throughout the rest of
the paper we are interested in analyzing and simulating
task τ5, unless otherwise specified.

A. PAnSim
PAnSim (short for Probabilistic Analysis and Simula-

tion) is a MATLAB implementation (released under the
CeCILL licence, compatible with GNU GPL) consisting of
a simulator and an analysis tool. In this regard, PanSim
is similar to MAST [5] or Cheddar [6]. The simulator
takes as input real-time task sets with parameters given
as discrete random variables: worst-case execution time
distributions and minimal inter-arrival time distributions.
Any of these distributions can be given as a single values
distribution, in which case the parameter is deterministic.
If all distributions are single values then the entire task set
is deterministic, which is a special case of the probabilistic
representation of real-time task sets. PAnSim supports fixed
priority preemptive scheduling (FPPS) policies, but the
simulator can easily be extended to dynamic scheduling
policies as well as non-preemptive execution. The simulator
also has two deadline miss policies: at the instance when a
job misses its deadline it can either be allowed to continue
or it can be stopped. The decision of stopping of continuing
execution past deadlines is system-wide, meaning that the
same policy is applied to all jobs that miss their deadlines
and to all tasks amd this can not be changed during the
simulation.

Listing 1 details how to define, simulate and analyze a
probabilistic task set using a preemptive fixed-task priority
scheduling policy with PAnSim, and the main functions of
the tool are as follows:

Declaring tasks and task sets: In PAnSim a task is
represented as a cell containing two arrays. The first array
is the pWCET distribution and the second array is the
pMIT distribution. Each of the two array has two lines of
equal size, the first line being the possible values that the
respective parameter can exhibit and the second line being
the occurrence probabilities of these values. The minimal
value of the pMIT distribution is consider to be the deadline
of the task. This can be extended to the case of arbitrary

Table I. Probabilistic task set

task

τ1 pWCET 134 137 140 143 146 149 152 155 158 161
pMIT 3565 3637 3709 3781 3853 3925 3997 4069 4141 4213

τ2 pWCET 311 318 325 332 339 346 353 360 367 374
pMIT 7784 7940 8096 8252 8408 8564 8720 8876 9032 9188

τ3 pWCET 2879 2949 3019 3089 3159 3229 3299 3369 3439 3509
pMIT 26226 26751 27276 27801 28326 28851 29376 29901 30426 30951

τ4 pWCET 5540 5675 5810 5945 6080 6215 6350 6485 6620 6755
pMIT 19617 20010 20403 20796 21189 21582 21975 22368 22761 23154

τ5 pWCET 3403 3486 3569 3652 3735 3818 3901 3984 4067 4150
pMIT 32313 32960 33607 34254 34901 35548 36195 36842 37489 38136

deadlines or even probabilistic deadlines, but for the sake
of simplicity we only present the case of implicit deadline
here.

Once all tasks have been declared, the task set can be
formed by adding all tasks to a cell array. The order in
which the tasks appear in the cell array gives the priority
ordering of the set, i.e. taskSet(1) has a higher priority than
taskSet(2) which has a higher priority than taskSet(3) and
so on.

1) Simulation tool:
Simulating the task set: The functions

simulatePastDeadline and simulateStopAtDeadline are
used to perform the simulation of the given task set with
two different strategies for deadline misses, i.e. continue
the execution of jobs even past their deadlines, respectively
abort jobs when they arrive at their deadlines without
finishing execution. The simulation returns three outputs.
The first output is a cell array containing vectors of
observed response times for each task in the set (one vector
per task). The other two outputs are used to plot the
gantt chart of the run-time execution that was simulated.

The parameter numberOfJobsToSimulate specifies
how many consecutive jobs of the task on the lowest priority
should be simulated. This is done in order to guarantee that
the desired number of traces are obtained. An alternative
way is to specify the length of the time interval to be
simulated, but this does not guarantee an exact number of
traces due to the probabilistic nature of the periods.

Plotting the results: The gantt chart of the sim-
ulated jobs can be plotted by calling the function
plotExecutionSchedule. This plotting is meant for small
number of jobs in order to obtain intuition from the
visual representation of the run-time execution and it
is recommended that the function be deactivated (by
commenting it) when a large number of jobs is simulated
as the gantt chart becomes difficult to read.

2) Analysis tool: In order to analyze the task set, the
function probabilisticWorstCaseResponseT ime needs to
be called. This function takes as input four parameters. The

first parameter is the task set itself. The second parameters
specifies if the analysis should stop once there are no more
preemptions that can modify the deadline miss probability
(i.e. include only preemptions which arrive before the
deadline of the task). The final two parameters specify if re-
sampling is performed on the pWET and pMIT respectively.
The re-sampling technique used is ’Uniform Spacing’ as
described in [13] and [1]. When the re-sampling parameter
is zero then re-sampling is not performed, otherwise the
parameter needs to be an integer k and in this case re-
sampling will be performed every time the result of a
convolution is larger than k.

The output of the analysis is the response time prob-
ability distribution of the last task in the input task set.
In order to analyze a different task, then the input needs
to be given in the form taskSet(1 : k) to analyze, e.g.,
task k in the set. Note that this function assumes that
jobs are allowed to continue execution past their respective
deadlines, and this is an upper-bound on the case when
jobs are dropped at deadline. Also, computing response
time distributions in the case when jobs are stopped at
deadline is still an open problem.

The obtained theoretical response time distribution can
be plotted alongside the empirical distribution of response
times observed during simulation in order to compare the
two results, as it is exemplified in the final lines of Listing 1.
Also, from the theoretical distribution it is possible to
extract the deadline miss probability of the task in order
to check if it is lower than a given threshold.

PAnSim was used in the experimental section of [1] for
the analytical evaluation and in [2] for doing the simulations
necessary in the experimental evaluations. PAnSim is freely
available online1 for the benefit of the real-time systems
research community.

1https://github.com/dorinmaxim/PAnSim-Tool

https://github.com/dorinmaxim/PAnSim-Tool

Listing 1 Simulation and analysis of a probabilistic task
set with PAnSim
% Main file to run the PAnSim tool

%% declare task-set.
% Priorities are given in the order in which tasks are placed in the

set, e.g. taskSet{1} has the highest priority and taskSet{end}
has the lowest priority. The sheduling policy is FP (fixed
priority preemptive scheduling)

↪→
↪→
↪→

c5=[3403, 3486, 3569, 3652, 3735, 3818, 3901, 3984, 4067, 4150; 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];↪→

t5=[32313, 32960, 33607, 34254, 34901, 35548, 36195, 36842, 37489,
38136 ; 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];↪→

tau5={c5, t5};

%% Similar way of defining other tasks not repeated here for the
sake of conciseness↪→

taskSet={tau1, tau2, tau3, tau4, tau5};

%% perform the simulation
%number of jobs of the lowest priority task to simulate
numberOfJobsToSimulate = 10;

% there are two possible approaches regarding what happens when a
job misses a deadline: to continue the job or to abort it. The
appropriate function below should be activated while the unused
one should be commented

↪→
↪→
↪→

%[responseTimes, grafic, jobs] = simulateContinuePastDeadline(
taskSet, numberOfJobsToSimulate);↪→

[responseTimes, grafic, jobs] = simulateStopAtDeadline(taskSet,
numberOfJobsToSimulate);↪→

%% plot the execution schedule; comment the next line to disable the
gantt chart↪→

plotExecutionSchedule(jobs, grafic)

%% analyze the task-set
stopAnalysisWhenDeadlineIsReached=1;
pWCETresampling = 0;
pMITresampling = 0;
pWCRT = probabilisticWorstCaseResponseTime(taskSet,

stopAnalysisWhenDeadlineIsReached, pWCETresampling,
pMITresampling);

↪→
↪→

%% plot the results for the least prioritary task in the set
% plot theoretical distribution in 1-CDF form
uCDF=unuMinusCDF(pWCRT);
figure; hold all;
plot(uCDF(1,:),uCDF(2,:));

% plot empirical distribution observed during simulation
plotEmpiricalDistribution(responseTimes{end})

B. Probabilistic SimSo

We propose here a probabilistic extension for the
real-time simulator SimSo [7] (short for Simulation of
Multiprocessor Scheduling with Overheads).

1) SimSo: is an open-source multiprocessor simulator
of real-time scheduling written in Python released under
the CeCILL licence. It provides the main task generators,
uniprocessor and multiprocessor scheduling policies and
a convenient and concise way to specify new scheduling
policies. SimSo also integrates different cache models to
evaluate the overhead due to cache misses. Jobs that miss
their deadlines can be stopped or allowed to continue
(with the abort_on_miss boolean option in Listing 2) their
execution and then eventually postpone further jobs. SimSo
relies on a discrete-event simulation which allows it to
deal with long intervals of simulation. SimSo is divided
between the core and the graphical user interface (GUI).

The GUI adorns the core with a display of the gantt chart
and scheduling results of the simulation 2. A scheduling
configuration (task set, scheduler, etc.) can be described
through an XML file, but it can also be directly written in
Python using the core component. The separation of the
core from the graphical user interface allows SimSo to be
called and run as a Python module in a script which is
very useful to process the scheduling results. In this regard,
SimSo interestingly keeps record of a very complete set of
scheduling metrics, such as job response times, number of
context-switches, number of preemptions, job migration,
etc. that are meaningful information for a later evaluation.

Beyond its very practical usage, SimSo relies on a
modular architecture which makes it possible to provide
extensions for it, such as the probabilistic extensions that
we propose in this paper. In the following, we detail the
major additions that have been made to extend the core
component of SimSo from a deterministic to a probabilistic
behaviour.

2) Probabilistic extension:

a) pWCET: We added the possibility to use pWCET
by using the concept of SimSo called Execution Time
Models (ETM). An ETM is a class that determines the
duration of the jobs during the simulation. By default, it can
deal with WCET value but it can also dynamically change
the execution time of a task during the simulation, taking
into account some time overhead (e.g timing penalties
coming from cache misses). We implemented a new ETM
that draws at each execution the WCET from the pWCET
distribution defined.

b) pMIT: SimSo allows to define periodic but also
sporadic behaviour of tasks by describing the arrival
time instants in the configuration files in the interval of
simulation chosen. We used this feature to add a step to
the parser to generate a set of arrivals drawn from the
pMIT defined in the configuration files.

Listing 2 details how to describe and simulate a
probabilistic task set using a preemptive fixed-task pri-
ority scheduling policy (here Deadline Monotonic). The
probabilistic parameters are defined by a vector of tuples
corresponding to each random variable and its probability
of appearance. The other parameters of the simulation are
similar to those of the original SimSo tool and their use is
straightforward and commented in the Listing 2. In partic-
ular, the logs object contains a set of scheduling metrics as
the job response times. The complete set of the available
metrics can be found on the SimSo documentation. The
whole configuration file can be simply executed as a Python
script. The probabilistic extension is fully compatible with
the features (scheduling policies, performance metrics, etc.)
of the standard core version of SimSo. In this respect, the
extension benefits from the documentation of SimSo.

The probabilistic extension of SimSo is freely available
online3 and was recently used in [14].

2A simpler and intuitive web version of SimSo is also available
online http://projects.laas.fr/simso/simso-web which is especially
useful for educational purposes

3https://github.com/abertout/simso

http://projects.laas.fr/simso/simso-web
https://github.com/abertout/simso

Listing 2 Simulation of a probabilistic task set with the
extension of SimSo
import sys
from simso.core import Model
from simso.configuration import Configuration

def main(argv):

configuration = Configuration()

configuration.cycles_per_ms = 1

configuration.etm = "pwcet"

configuration.duration = 381360 * configuration.cycles_per_ms

Add tasks:

configuration.add_task(name="t5", identifier=4,
activation_date=0,
pwcet=[(3403,0.1),(3486,0.1),(3569,0.1),(3652,0.1),

↪→
↪→

(3735,0.1),(3818,0.1),(3901,0.1),(3984,0.1),(4067,0.1),(4150,0.1)],
pmit=[(32313,0.1),(32960,0.1),(33607,0.1),(34254,0.1),(34901,0.1),
(35548,0.1),(36195,0.1),(36842,0.1),(37489,0.1),(38136,0.1)],
deadline=32313,
task_type = "Probabilistic",
abort_on_miss=False)

Similar way of defining other tasks not repeated here for the
sake of conciseness↪→

Add a processor:
configuration.add_processor(name="CPU 1", identifier=1)

Add a scheduler:
configuration.scheduler_info.filename =

"../simso/schedulers/DM_mono.py"↪→

Check the config before trying to run it.
configuration.check_all()

Init a model from the configuration.
model = Model(configuration)

Execute the simulation.
model.run_model()

Print logs.
for log in model.logs:

print(log)

main(sys.argv)

IV. Comparison between the two simulators
In this section, we compare both tools over their

modularity and extensibility, their environment and their
functionality.

Modularity: The extension of SimSo is based upon a
powerful and modular simulator. For example, the scheduler
is an option in the configuration file and there is no need
to modify any line of code related to other functionality
of SimSo to implement a new one. Adding a scheduling
policy (PanSim implements fixed-task priority preemptive
scheduling) in PAnSim is not a burden but requires to
modify the core source code.

Environment: PanSim is written in MATLAB lan-
guage and take advantages of the MATLAB environment.
The latter proposes an interactive system that comes
with the ability of plotting functions and data. This is
particularly useful to compare probabilistic distribution.
SimSo benefits from the large support of Python third party
libraries (e.g numpy, matplotlib, etc.) but representing data

0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0

0.2

0.4

0.6

0.8

1

Response time value

Ex
ce

ed
an

ce
pr

ob
ab

ili
ty

pWCRT
Simulated pWCRT
WCRT

Figure 1. Response time distributions of τ5 obtained in three different
ways

is less straightforward.
Functionality: While SimSo is a general purpose

simulator PanSim goes along with an analysis tool. The
first has the advantage to provide a rich set of scheduling
metrics of the simulations but the latter provides analytical
distributions which may be useful for comparison purpose.
PAnSim also does the analysis of the input task set. When
the pMITs are single-values, then the analysis is reduced
to the Diaz analysis presented in [3]. If both pWCET and
pMIT are deterministic the analysis returns the same result
as the state of the art deterministic worst-case response
time analysis introduced by [12]. With both tools, defining
and simulating a probabilistic task set is concise as shown
in Listings 1 and Listing 2 for respectively PAnSim and
SimSo.

The main differences between the two proposed simula-
tors are summarized in Table II and in the rest of the paper
we show the type of results that the tools can produce.

Table II. Main differences between the proposed tools

PAnSim pSimSo

Language MATLAB Python

Scheduling policies FPPS Several priority schemes

Performs analysis Yes No

Joint usage: We illustrate the possibilities offered
by the joint usage of SimSo and PAnSim in Figure 1 and
in Figure 2.

Figure 1 depicts the response times of task τ5 (the task
on the lowest priority in Table I) obtained in three different
ways:

• the dashed curve represents in the form of inverse
cumulative distribution function (1-CDF) the prob-
abilistic worst-case response times of the task in
the synchronous case (i.e. worst-case conditions)

0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0

0.2

0.4

0.6

0.8

1

Response time

Ex
ce

ed
an

ce
pr

ob
ab

ili
ty

pWCRT (τ5.1)
Simulated τ5.1
Simulated τ5.2

Figure 2. Worst-case response time distributions of τ5

computed using the probabilistic response time
analysis of Maxim and Cucu [1] implemented in
PAnSim.

• the solid line is an empirical 1-CDF distribution
obtained by simulating the probabilistic task set
and recording the observed response times for 5 ·
105 consecutive jobs of τ5 using the probabilistic
extension of SimSo.

• for completeness, we have also added the deter-
ministic worst-case response time obtained using
the analysis in [12]. We may note that this value
is the largest of the probabilistic response time
distribution and represented as a dotted vertical
line.

We used the probabilistic extension of SimSo in a
different way in Figure 2. We simulated 106 times the
execution of the two first instances of τ5, i.e τ5.1 and
τ5.2 to obtain their empirical worst-case response time
distribution respectively represented as a solid curve and as
a dotted curve. For comparison purpose, we also depicted
the analytical probabilistic worst-case response times of the
task in the synchronous case (first job). As expected, we
can observe that the pWCRT computed with the analysis
is an upper bound on the simulated pWCRT of the two
first jobs of τ5. Interestingly, the simulation provides an
approximation of any job pWCRT whose no theoretical
analysis yet exists [14].

V. Conclusion
In this paper, we presented an extension of SimSo,

a well known academic tool, and PAnSim, an in-house
MATLAB implementation. These two tools are dedicated
to the simulation and analysis of probabilistic task sets.
We presented their characteristics and how they can be
used, with strengths and weaknesses for each one of them.
Another objective of this paper is to make the tools
available to the real-time systems research community.

Many advancements and improvements can be made on
each of the tools, such as adding new scheduling policies
to PAnSim or adding the probabilistic interface to the
graphical version of SimSo. The community is invited to
participate in the improvement of these tools, either directly,
e.g. by adding extensions and new implementations, or
indirectly, by giving feedback to the authors of the tools.

Acknowledgements
This work was partially supported by the RETINA

Eurostars Project E10171.

References
[1] D. Maxim and L. Cucu-Grosjean, ‘‘Response time analysis for

fixed-priority tasks with multiple probabilistic parameters,’’ in
Real-Time Systems Symposium (RTSS), 2013 IEEE 34th. IEEE,
2013, pp. 224–235.

[2] D. Maxim, F. Soboczenski, I. Bate, and E. Tovar, ‘‘Study
of the reliability of statistical timing analysis for real-time
systems,’’ in Proceedings of the 23rd International Conference
on Real Time and Networks Systems, ser. RTNS ’15. New
York, NY, USA: ACM, 2015, pp. 55–64. [Online]. Available:
http://doi.acm.org/10.1145/2834848.2834878

[3] J. Diaz, D. Garcia, K. Kim, C.-G. Lee, L. Lo Bello, J. Lopez,
S. L. Min, and O. Mirabella, ‘‘Stochastic analysis of periodic
real-time systems,’’ in Proceedings of the 23rd IEEE Real-Time
Systems Symposium (RTSS’02), Austin, Texas, USA, December
3-5, 2002, 2002, pp. 289–300.

[4] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Var-
danega, L. Kosmidis, J. Abella, E. Mezzetti, E. Quinones, and
F. J. Cazorla, ‘‘Measurement-based probabilistic timing analysis
for multi-path programs,’’ in Real-Time Systems (ECRTS), 2012
24th Euromicro Conference on. IEEE, 2012, pp. 91–101.

[5] M. G. Harbour, J. G. García, J. P. Gutiérrez, and J. D. Moyano,
‘‘Mast: Modeling and analysis suite for real time applications,’’
in Real-Time Systems, 13th Euromicro Conference on, 2001.
IEEE, 2001, pp. 125–134.

[6] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, ‘‘Cheddar: a
flexible real time scheduling framework,’’ in ACM SIGAda Ada
Letters, vol. 24, no. 4. ACM, 2004, pp. 1–8.

[7] M. Chéramy, P.-E. Hladik, and A.-M. Déplanche, ‘‘Simso: A
simulation tool to evaluate real-time multiprocessor scheduling
algorithms,’’ in Proc. of the 5th International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time
Systems, ser. WATERS, 2014.

[8] J. Diemer, P. Axer, and R. Ernst, ‘‘Compositional performance
analysis in python with pycpa,’’ Proc. of WATERS, 2012.

[9] ‘‘Cpal,’’ https://www.designcps.com/, accessed: 2017-04-14.
[10] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni, G. Bolognini, and

P. Ancilotti, ‘‘An object-oriented tool for simulating distributed
real-time control systems,’’ Software: Practice and Experience,
vol. 32, no. 9, pp. 907–932, 2002.

[11] L. Cucu-Grosjean, ‘‘Independence-a misunderstood property of
and for probabilistic real-time systems,’’ In Real-Time Systems:
the past, the present and the future, pp. 29–37, 2013.

[12] M. Joseph and P. K. Pandya, ‘‘Finding response times in a
real-time system,’’ Comput. J., vol. 29, no. 5, pp. 390–395, 1986.

[13] D. Maxim, M. Houston, L. Santinelli, G. Bernat, R. I. Davis, and
L. Cucu-Grosjean, ‘‘Re-sampling for statistical timing analysis
of real-time systems,’’ in Proceedings of the 20th International
Conference on Real-Time and Network Systems, ser. RTNS
’12. New York, NY, USA: ACM, 2012, pp. 111–120. [Online].
Available: http://doi.acm.org/10.1145/2392987.2393001

[14] A. Bertout, D. Maxim, and L. Cucu-Grosjean, ‘‘Average proba-
bilistic response time analysis of tasks with multiple probabilistic
parameters,’’ in Real-Time Systems Symposium (RTSS), 2016
IEEE. IEEE, 2016, pp. 367–367.

http://doi.acm.org/10.1145/2834848.2834878
https://www.designcps.com/
http://doi.acm.org/10.1145/2392987.2393001

	Introduction
	Model
	The proposed simulators
	PAnSim
	Simulation tool
	Analysis tool

	Probabilistic SimSo
	SimSo
	Probabilistic extension

	Comparison between the two simulators
	Conclusion
	References

