Model Interpretation for an AUTOSAR compliant
Engine Control Function

Sakthivel Manikandan Sundharam
University of Luxembourg
FSTC/Lassy
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
sakthivel.sundharam @uni.lu

Abstract—Model-Based Development (MBD) is a common
practice in the automotive industry to develop complex software,
for instance, the control software for automotive engines, which
are deployed on modern multi-core hardware architectures.
Such an engine control system consists of different sub-systems,
ranging from air system to the exhaust system. Each of these sub-
systems, again, consists of software functions which are necessary
to read from the sensors and write to the actuators. In this setting
MBD provides indispensable means to model and implement
the desired functionality, and to validate the functional, the
non-functional, and in particular the real-time behavior against
the requirements. Current industrial practice in model-based
development completely relies on generative MBD, i.e., code
generation to bridge the gap between model and implementation.
An alternative approach, although not yet used in the automotive
domain is model interpretation, the direct interpretation of the
design models using interpretation engine running on top of the
hardware. In this paper, we present a case study to investigate
the applicability of model interpretation, in contrast to code
generation, for the development of engine control systems. To
this end, we model an engine cooling system, specifically the
calculation of the engine-coolant temperature, using interpreted
model based development, and discuss the benefits and low-lights
compared to the existing code-generation practice.

1. INTRODUCTION

Model-Based Development (MBD), also frequently referred
to as Model-Driven Engineering (MDE), denotes the use of
models as the main artifacts to drive the development of
systems. It has been profoundly reshaping and improving
the design of software-intensive embedded systems specifi-
cally. Traditionally, model-driven development (based on code
generation) is deployed in the automotive industry. Code
generation is used to generate code from a higher level model
and create a working application.

As mentioned in [4], Model-Based Development is being
used for series development by a majority of the automotive
companies. Especially in development phases i.e., system
design and coding, the model-based design is used extensively.
As mentioned in [7], this kind of MBD used by automotive
suppliers and car manufacturers is called generative MBD,
since code and other artifacts are automatically generated from
the model.

The other fundamental approach to achieve applications
from models is interpreted MBD. Interpreted MBD can be

Sebastian Altmeyer
University of Amsterdam
CSA Group
Science Park 904
1098XH Amsterdam
altmeyer@uva.nl

Nicolas Navet
University of Luxembourg
FSTC/Lassy
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg
nicolas.navet@uni.lu

seen as a set of platform independent models that are directly
interpreted by an execution engine running on top of the
hardware, with or without an operating system.

The fact that models can be directly executable helps a great
deal as the development cycle time can be shortened; and
there is no distortion between the model and what is executed.
Though, to the best of our knowledge, the technique of model
interpretation remains unexplored in the automotive domain, it
can facilitate and speed up the development, deployment and
timing verification of applications with real-time constraints
running on potentially complex hardware platforms. Verifica-
tion also can be done more easily as defects will be caught
earlier in the process since there is no difference between the
model and the executable program. In this paper, we present
a case-study to evaluate how interpreted MBD can be applied
to an automotive software development scenario.

This paper is structured as follows. In Section II, we explain
the state of the industrial practice of automotive function
development. Section III describes an AUTOSAR-compliant
engine-coolant temperature calculation function used as case-
study. In Section IV, we discuss our modeling approach,
and Section V presents the case study. Finally, Section VI
summarizes the results and discusses the case study. Section
VII concludes the paper.

II. AuTtoMOTIVE FUNCTION DEVELOPMENT - STATE OF THE PRACTICE

We explain the state-of-the-art of the development of an
automotive function using an automotive engine management
software system, which are commonly developed using a
Model Based Development (MBD). The engine is controlled
by an Electronic Control Unit (ECU) that contains engine
functions for different sub-systems.

The requirements of the engine functions are specified in
one of the Application Life-cycle Management (ALM) suites
and traced until its realization as ECU. In ALM, different
tools are integrated to develop and maintain the software.
For example, IBM has an ALM suite called IBM Rational
Team Concert (RTC) where Rational DOORS is the require-
ments management tool that captures all the functional and
non-functional requirements. These requirements are analyzed
further to design the engine function. Popular Model Based

— ECU Engine

Vehicle Testing

Desktop Testing

Requirement System Test &
Analysis Calibration
Model meets
requirements?

Domain expert |

Function Development

—,

System designer | Verification &

Validation

—

Software developer ‘

—, s

Software integrator |

o .
= - Model Design Model | |
=

E — Code Generated code Model — |
= L— Actual HW Model | |
E Code on target

Fig. 1. Engine function development flow - Illustration of verification techniques, involved stakeholders and development phases.

Design (MBD) tools are MATLAB/Simulink (MLSL) from
Mathworks, ASCET-MD from ETAS, and SCADE Suite from
ANSYS. These industrial MBD tools further generate code for
engine functions using code generators. Each engine control
function is further (unit-) tested and integrated into the ECU.

Figure 1 shows the software function development flow
practiced in the automotive industry. The system model of
the engine captures the ideas and requirements. The model is
an executable specification and can be simulated and rapid-
prototyped to explore different design options. In the existing
approach, the modeling environment is primarily used to
describe the domain problem, in this case the engine function
to be developed against the functional requirements. Domain
experts and software designers are involved in this phase. The
controller model is tested in a simulation environment (which
includes the plant model, i.e. the engine) and this testing
is called Model-in-the-Loop (MiL) testing to ensure that the
model meets the requirements.

In the next step, the code is generated from the model
using a code generator. Then, the code is verified under an
engine model. This phase is referred to as Software-in-the-
Loop (SiL) testing. Software developers are involved to test
each engine function individually using unit testing. Next, the
function is integrated with other existing engine functions in
the integration phase by the Software integrators, typically a
tier-one supplier. The complete engine software is then ported
to the ECU hardware, which can be verified using a Hardware-
in-the-Loop (HiL) testing system, such as PT-LABCAR, which
realistically emulates vehicles 1/Os.

In the current practice [3], the execution environment on
the target is different from the execution within the modeling
environment in terms of I/Os, scheduling and even in terms
of generated code. Indeed, the target-generated code will be
optimized towards the platform and thus be as efficient as
possible. On the negative side, the build tool-chain must be
available, and it takes a substantial amount of time to produce
an executable program from the designed model (build time

can require several 10s of minutes). Simulink and its block
sets (like Simscape, Stateflow etc.) are examples for modeling
environment and Embedded Coder is an example of the code
generator for production code generation on a specific target
processor. The generated code can be further customized to
meet the requirements (e.g., with respect to safety). In the au-
tomotive software development, there is a high probability for
mixed-mode development, where generated code is integrated
with manually-developed functions.

III. AUTOSAR-COMPLIANT ENGINE FUNCTION

The engine cooling system is an important part of the
vehicle. It is responsible for maintaining optimum operating
temperature. The coolant is circulated through the engine block
with the help of an electric water pump. The coolant will
reduce the temperature of the engine block and then will run
through the radiator equipped with a fan to remove waste heat.

T tu
enslpera re14> Electrical-
ensor Raw Signal ElecRaw
th
Engine Coolant
Low Pass
Filter (LPF) ElecBascFild

Engine Control
Unit (ECTU)

Fig. 2. Physical layout of an AUTOSAR compliant engine-coolant system
function - Engine coolant temperature sensor connected to an ECU

Figure 2 shows the physical layout of the engine-coolant
temperature calculation which is considered as the use case to

present our modeling approach. The engine-coolant tempera-
ture sensor plays an indispensable role in the engine cooling
system. Precise information about the temperature is essential
due to various reasons: the data are used by the engine control
unit to adjust the fuel injection and ignition timing. Further,
the temperature value is used to control the cold starting of
the engine, to control the calculation of the fuel quantity,
and to control the fan speed of the electric cooling radiator.
This data is also used to provide readings of the coolant
temperature gauge to the dashboard to protect the engine from
over-heating.

The engine-coolant temperature sensor is connected to the
engine ECU through an analog to digital pin. The electrical
output is obtained from the sensor that monitors the tem-
perature of the engine-coolant. As per AUTOSAR design
pattern [2] catalogue for standard sensors, the overall system
consists of 3 modules as depicted in Figure 3. Sensor/Actuator
Components are special AUTOSAR software components
which encapsulate the dependencies of the application on
specific sensors or actuators. The AUTOSAR architecture
takes care of hiding the specifics of the micro-controller (this
is done in the micro-controller abstraction layer, MCAL, part
of the AUTOSAR infrastructure running on the ECU) and the
ECU electronics (handled by the ECU-Abstraction layer, also
part of the AUTOSAR Basic Software).

|m—— e ——— - - Application Layer
| Application Software ASW |
----------------- ! (Consold)
Consold Estimd
I Virtual Device Driver Layer : DevSnsrvirt
Measd Raw
r-r—-r——=—=—="="="="=-=-=-=-= A
I Sensor Device Driver Layer | DevDrvrSnsr
ElecBascFild ElecRaw

________________ -

Electrical Device Driver Layer | DrvrSnsrElec

Sensor

N

Fig. 3. AUTOSAR design pattern for a standard sensor

The architecture of the engine-coolant temperature calcula-
tion function involves 3 AUTOSAR software components:

Electrical Device Driver Layer (DrvrSnsrElec):
The electrical value from the temperature sensor is
read through the input pin and stored in the variable
ElecRaw. The raw electrical signal (ElecRaw) is
rugged against signal faults using the Low Pass
Filter (LPF) and the filtered raw electrical signal
(ElecBascFild) is obtained.

Sensor Device Driver Layer (DevDrvrSnsr):
At this stage, the raw electrical signal is converted
into its physical temperature value (Raw) using a
lookup-table, where the corresponding value is pro-
vided. The temperature value of the filtered electri-
cal signal (ElecBascFild) is also obtained from the
lookup-table and is provided to the next layer.

Virtual Device Driver Layer (DevSnsrVirt):
In this layer, the possible signal range check, elec-
trical errors, cable interruption and sensor faults that
may occur are identified. This is done in order that
incorrect values from the sensor are not taken into
account for the calculation in case of sensor malfunc-
tioning. Other errors such as a cable interruption,
short circuit to battery or sensor voltage saturation
can also be detected and appropriate flags will be
set:

o ElecBascFildbit - The electrical validity bit
shows that the sensor raw value is electrical
valid.

o ElecBascFildbitCommon - The common validity
bit shows that the engine-coolant temperature as
a whole is valid and can be transfered to the ap-
plication Layer. Based on the temperature values
calculated in this layer, the obtained temperature
value (Measd) is compared with the estimated
value (Estimd) from the application layer. This
comparison determines the validity of the calcu-
lated value. If valid, the final temperature value
(Consld) is sent to the application layer.

IV. FUNCTION DEVELOPMENT - PROPOSED APPROACH

To the best of our knowledge, model interpretation for
automotive function development has not been explored and
experimented in the past. In case of model interpretation,
a generic model-interpretation engine is implemented which
executes the model of the engine function. As shown in
Figure 4, the modeling environment includes the execution
environment. Hence, the executable artifacts (i.e., model and
execution engine) are available within this environment. The
model interpretation can be launched within the development
environment or on a target platform. In the latter case, the
interpretation can run on top of an OS or directly on the hard-
ware. There are two possible interpretation modes: simulation
and real-time. Simulation mode is suited for the use in the
design phase, where execution should be as fast as possible,
which implies that the activation frequencies of the processes

are not respected and they execute (conceptually) in zero time.
Typically, executing in simulation mode is several orders of
magnitude faster than in the real-time mode. Real-time mode
is for the execution of the program with the actual desired
temporal behavior of the application.

CPAL Editor

Domain expert view
EI :m@ Display m ? _funime enironment.
al Termi

Architecturé Tasks

Real-time / Simulation

E>modewfemunan Tl

64
65
66
67 }
68}
69
70

}
processdef physicallayer(in float32: eraw,out 1

adcvalue=data-320;
data=0;
flag=0'

= »u T ST
72 state main
2

if(uint32.as(eraw)!=0)

74

FEI

76 var float32: volts; var float32: ohms; ve
77 var float32: a = 0.002197222470870;

78 var float32: b = 0.000161097632222;

79 var float32: c = 0.000000125008328;

8 var float32: tl; var float32: c2; var flc

var float32: tempc;

var time64: timel; var time64: time2;

/*log variables*/

var float32: taylor. s=0.0;

var float32; temp=0

var uint32: i=0

var float32; temp _pow=0

volts=(eraw*3.7)/

ohns=((1 G/volts]*2900 b)- 1006-07 /+3300°
mel = time6d.time

e e P 88
Modeling environment 89
Gant-chart of tasks activations o> %
91 o println(*NTC Thermistor resistance:%f'
92 /*log calculation*/
Compiled code/Parse while(true)
ar errors window| s 95
Parse success
AST generated ln file "/tmp/cpal_editor1902628727656799295.ast"

taylor_s=taylor_s+temp;

Fig. 4. An integrated environment, here the CPAL-Editor, with the code of
the model, the Gantt chart of the processes activations and the possibility to
execute the models in simulation and real-time mode both locally or on a
target.

To ensure that simulation reflects the real-time behavior on
the target platform, timing annotations (e.g., execution time
latencies, jitters, etc) can be introduced in simulation mode.
Those timing annotations can be derived from measurements
on the target architecture, from WCET analysis and, possi-
bly, by schedulability analysis if other software components
can interfere with the function under development. Timing
accurate simulation thus provides benefits to identify faults
in design phase itself, earlier, thus than with the traditional
design process.

As the model itself can be executed, no additional artifacts
are needed, and, unlike in the traditional generative MBD, no
target specific code is generated. Instead, the specifics of the
platform are taken care by the interpretation engine. Further
steps of the application development, such as compilation of
source code to object code and the linking stage to produce
the executable program, are not required.

V. A CASsE STuDY - ENGINE-COOLANT TEMPERATURE CALCULATION

The model of the engine-coolant system is developed in the
CPAL (Cyber Physical Action Language, see [1, 6]), which is
a new language to model, simulate, verify and program Cyber
Physical Systems. CPAL' is a language jointly developed
by our research group at the University of Luxembourg and
the company RTaW. Many industrial use-cases are demon-
strated [5] using CPAL in the past.

The model-based environment of CPAL consists of a single
integrated development environment, i.e., the CPAL-Editor.
The CPAL editor, combines the design, simulation, execution

!The CPAL documentation, graphical editor and the execution engine for
Windows, Linux and Raspberry Pi platforms are freely available from http:
/[www.designcps.com.

(both locally and on a target), visualization of the functional
architecture and execution chronogram in one integrated envi-
ronment. The model-interpretation engine is specific to the
target platform. This interpretation engine can be executed
on top of an operating system or without an operating sys-
tem, the latter being called Bare-Metal Model Interpretation
(BMMI). CPAL BMMI is available on the NXP Semiconduc-
tors Freedom-K64F, a low-cost development platform which
is form-factor compatible with the Arduino R3 pin layout.
The experiments in this study are performed on a Raspberry
Pi equipped with a multi-core ARM Cortex-A7 processor
operating at 900 MHz running Raspbian OS.

A typical engine-coolant temperature sensor can measure
in the range —40°C to +150°C. In our case study, we have
considered a Negative Temperature Coeflicient (NTC) type
sensor with an operating voltage as 3.3V. Figure 5 shows the
experimental setup which aims to mimic the engine cooling
system. The MCP3008 is an external ADC interface which
is connected to the sensor. Since the sensor operates with
the thermistor principle, a voltage divider circuit with 3.3V
reference is added. ADC data from MCP3008 is communi-
cated to the processor using the Serial Peripheral Interface
(SPI). The sensor software component is modeled according
to the AUTOSAR design catalog described in Section III. The
speed of the electric fan is controlled based on the measured
temperature.

Fig. 5. Experimental set-up - Sensor interfacing to hardware

Out of the two possible CPAL execution environments
(i.e., bare-metal or hosted by an OS), we use the interpre-
tation engine on top of an OS (Raspbian on Raspberry Pi)
which can also execute in real-time, although with a lesser
real-time predictability than the bare-metal implementation.
The engine-coolant temperature is calculated by the sensor
software component modeled in CPAL. Figure 6 shows the
sample run-time environment where simulation and real-time
execution are performed. Both interactive and non-interactive
executions are possible. The interactive mode of execution is
useful in program analysis and debugging. In interactive mode,
the user has different execution options, such as a step-by-

step execution, or uninterrupted execution for a pre-defined
duration.

pi@raspoerrypi -/cpal/caolan

Fig. 6. CPAL model and execution environment under real-time mode

Since it is an interpretation-based execution environment,
the user can list and change the values of global variables
at run-time, as well as execute additional code statements.
In non-interactive mode, the program is executed indefinitely
or for a specified duration without requiring additional user
inputs.

VI. REsuLrs AND DiscuUssIONS

From the case-study experience, we present our proposed
development flow for function development. Figure 7 shows
the development flow of model interpreted approach to develop
an engine function.

Functional, Non
functional timing
requirements

Design / Build
Models

\ ’
’

Model is code / No
code generation

Fig. 7. Model interpreted engine function development flow - steps and
stakeholders involved

a) Model interpreted development steps: In the first step
all functional, non-functional including timing requirements of
the engine function are collected. These are further analyzed
by domain experts. The specifications are implemented in
CPAL (step 2 - system design in Figure 7). During the
development, as soon as the function model is updated the
functional architecture, and other views created out of the
model such as execution Gantt charts, are automatically up-
dated too (step 3) which is done in the background along with
the modifications. This allows the designer to immediately
visualize and understand the effects of the changes made,

without the need for building the executable and running it
in debug mode. The latest version of the model is always
available to execute, be it in simulation mode or real-time
mode, locally or on a target. Typically performed once the
simulation is satisfactory (step 4), the execution in real-time
mode (step 5) helps the designer to assess the performances
on the target, enabling rapid-prototyping. If simulation or
execution in real-time mode highlights faults, the model is
refined in an iterative process. From the development of
the engine-coolant temperature calculation function, we here
summarize the benefits and differences against the existing
generative MBD approach.

b) Adapting to requirement changes is faster: The
most important benefit of model interpretation is that
changes in the model do not require an explicit regenera-
tion/rebuild/retest/redeploy step. This shortens significantly the
turnaround time and, in some scenarios, the overall change
management process (how changes in the requirements are
implemented). Although it is not available in CPAL yet, it
would be possible for models to be updated at run-time, with-
out the need to stop the running application, hence improving
productivity. Also, since no artifacts are generated, the build
times can be also reduced. Depending on the specific use
case, an interpreter combined with model can even require
less memory than generated code.

¢) Finding failures in model is easier: Failures during the
testing phase, after all modules have been integrated, expose
problems that are clearly in the model, since the model itself is
executed. Unlike with code generation, there is no need to trace
back from the generated artifacts where the failure occurred in
the model, which is often hard. On the other hand, debugging
models at run time is possible. Since the model is available at
run-time, it is possible to debug function models by stepping
through them at run-time (e.g., we can add breakpoints at
the model level). When debugging at model level is possible,
domain experts can debug their own models (e.g., step-by-step)
and adapt the functional behavior of an application based on
this debugging. This can be very helpful when, for example,
complex control or data-flows are involved.

d) Portability and hardware independence: Portability is
another advantage of model interpretation. An interpreter in
principle creates a platform independent target to execute the
model. By rewriting only the hardware-specific components,
it is possible to develop an interpreter which runs on multiple
platforms, as it is the case for CPAL. In case of code
generation, we need to make sure we generate code that is
specific to the platform. In case of model interpretation, the
interpreter handles the platform-specific adaptation.

A notable advantage of the model interpretation is that it
hides the complexity of the hardware platform away from the
programmer making it easier to configure the run-time envi-
ronment and deploy the application. Indeed, easier deployment
is an important difference. When code generation is used, we
often see that we need to open the generated source code in
an Integrated Development Environment (IDE) to analyze the
program and build it from there to create the final application.

In case of BMMI, we just have to upload the model and reset
the target, or, when the interpreter is hosted by an OS, execute
it within the development environment or in command-line
(possibly on a target through a script). Hence, it is much easier
for domain experts to deploy and test an application, instead
of only modeling it.

e) Benefits of single integrated environment: The impor-
tant difference between interpreted approach and generative is
that domain experts and software developers can work together
around a single integrated environment and on a single model.
As shown in Figure 8, the integrated modeling environment
provides a graphical view of the architecture of the designed
function model. This model can be used by domain experts for
functional analysis and verification, and by software engineers
to do function development and testing from day one on.

1] coolantgit.cpal home/pi/cpal/coolant) - CPAL Editor @raspberrypi

Fig. 8. Software architecture of the coolant temperature calculation

VII. CoNCLUSIONS

Code generation is the standard practice in the industry for
MBD of embedded systems, and this holds true in particular
for engine function development. In this paper, we discuss a
model-interpretation development flow that is exemplified with
the development of an engine coolant temperature calculation
by an AUTOSAR compliant software architecture. By com-
parison with the usual development chains relying on code-
generation and based on the case-study, we discuss the benefits
of model interpretation which includes simplicity, productivity
and early-stage verification possibility, specifically in the time
dimension. For instance, CPAL, the model-based development
environment that we have chosen for our case study, already
provides the basic mechanisms to offer timing-realistic sim-
ulation early in the design process. Our ongoing work is on
a method to automate the derivation of the temporal quality-
of-service required by a software module and, leveraging on
model-interpretation, enforce it at run-time.

Although model-interpretation brings advantages, it is not
going to cover all use-cases. The main reason is that model
interpretation is intrinsically slower than compiled code. There
are ways to mitigate this drawback in production code such as

calling binary code from interpreted code (e.g., legacy code
or specialized functions) or, possibly, selectively generating
code for the computation-intensive portions of the model.
Interpretation and code generation are often seen as two

alternatives, not as a continuum. However, one may also
imagine relying on model-interpretation, and benefits from the

associated productivity gains, until the function/ECU meets all
functional requirements, and then switch to code-generation
for production code. This remains to be investigated in the
future works.

ACKNOWLEDGMENT

This research is supported by FNR (Fonds National de la
Recherche), the Luxembourg National Research Fund (AFR
Grant n°10053122).

REFERENCES

[1] S. Altmeyer, N. Navet, and L. Fejoz. Using CPAL to
model and validate the timing behaviour of embedded
systems. In 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems
(WATERS), Lund, Sweden, July 2015.

[2] AUTOSAR consortium. AUTOSAR design catalogue.
http://www.autosar.org/fileadmin/files/releases/4-2/
application-interfaces/general/auxiliary/ AUTOSAR
TR _AlDesignPatternsCatalogue.pdf.

[3] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda,
and D. Ratiu. Seamless model-based development: From
isolated tools to integrated model engineering environ-
ments. Proceedings of the IEEE, 98(4):526-545, 2010.

[4] M. Broy, S. Kirstan, H. Krcmar, B. Schitz, and J. Zim-
mermann. What is the benefit of a model-based design
of embedded software systems in the car industry? Soft-
ware Design and Development: Concepts, Methodologies,
Tools, and Applications: Concepts, Methodologies, Tools,
and Applications, page 310, 2013.

[5] L. Fejoz, N. Navet, S. M. Sundharam, and S. Altmeyer.
Applications of the CPAL language to model, simulate
and program cyber-physical systems. In Demo Session
of 22nd IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2016), 2016.

[6] N. Navet, L. Fejoz, L. Havet, and S. Altmeyer. Lean
model-driven development through model-interpretation:
the CPAL design flow. In Embedded Real-Time Software
and Systems (ERTSS2016), January 2016.

[7] N. Tankovic, D. Vukotic, and M. Zagar. Rethinking
model driven development: analysis and opportunities. In
Information Technology Interfaces (ITI), Proceedings of
the ITI 2012 34th International Conference on, pages 505—
510. IEEE, 2012.

