NTGEN: a Network-on-Chip Traffic Generator
toolkit for latency analysis

Ermis Papastefanakisﬁ, Laurent Georgei, Xiaoting Li*, Ken Defossez!
*ECE Paris, 75015 Paris, France
TThales Communications and Security, 92622 Gennevilliers, France
fUniversité Paris-Est, LIGM / ESIEE, Champs sur Marne, France
Email: ermis.papastefanakis @thalesgroup.com, laurent.george @univ-mlv.fr, xiaoting.li@ece.fr, ken.defossez@thalesgroup.com

Abstract—Characterizing Networks-on-Chip (NoCs)-based
Systems-on-Chip (SoCs) involves running many tests in software
simulated as well as in hardware emulated environments. Tests
help characterizing a platform and give metrics that can concern
many different aspects. Each metric provides useful information
for qualitative or quantitative conclusions. In this paper, we
present a new tool called NTGEN that covers all the chain of
actions for characterising latency on a Field Programmable Gate
Array (FPGA) NoC-based platform. The toolkit, can be used for
generating traffic scenarios that can be automatically launched.
It helps manipulating as well as analysing the results in order to
represent them into meaningful information.

Keywords—Network-on-chip, toolkit, traffic generator, NTGEN,
latency.

I. INTRODUCTION

Advances in semiconductor fabrication technologies allow
chip manufacturers to include more processing cores in each
new generation of products. Scalability has been an issue that
needed to be addressed and the NoC paradigm was proposed
as a solution to this problem [1]. It is now adopted in more
and more designs [2],[3].

The effort to continue increasing performance in computer
systems is leading to the adoption of highly parallel and het-
erogeneous platforms. Through parallelism we can distribute
calculations to different Processing Elements (PEs) inside a
manycore SoC and expect to obtain a high data flow rate.
In addition, heterogeneous accelerators, adapted for handling
specific workloads contribute to better exploit the parallel
nature of such architectures.

The role of the interconnect in parallel platforms is vital
in respect to their performance. As the number of PEs is
steadily increasing the traditional interconnect technologies
were not able to maintain scalability and started becoming a
bottleneck. The NoC approach is based in the concept of taking
mechanisms from computer networks and bringing them inside
a SoC. NoCs suggest using a modular architecture of routers to
handle the communication of PEs. This implies that in a NoC
we find familiar concepts like routers and network interfaces
transformed in respect to the constraints found inside a SoC
ecosystem. We also find concepts such as routing algorithms,
arbitration, flow control and buffering.

Initially NoCs were proposed as an alternative that would
solve the scalability limits, however this quickly evolved.
Researchers have been exploring NoC architectures to evaluate

their properties and capabilities in other aspects that are im-
portant to SoCs. Some examples are reconfiguration, security,
fault tolerance and determinism.

Since future generations of platforms for time-critical or
safety critical tasks will be most likely NoCs-based, research
on NoC architecture has produced concepts that are oriented to
these domains. Through this exploration emerges the need for
tools to validate models at a high level of detail and precision.
Since such thorough validation is time consuming there is an
interest for these tools to be optimised in order to perform those
tasks as efficiently as possible and at the same time demand
minimum human intervention and supervision.

In what concerns manycore architectures with real-time
capabilities, sufficient testing needs to be performed in order to
correlate theoretical results with the system model. Exhaustive
tests might be necessary to cover all the potential scenarios of
a use case while multiple use cases need to be considered in
order to validate the system’s timeliness.

Transaction-Level Modeling (TLM) allows to validate a
model from a functionality perspective very fast and also
provides insights in performance and timeliness as shown in
[4]. However, Register Transfer Level (RTL) modeling pro-
vides more accurate results and is synthesizable which allows
to also obtain realistic information on power consumption,
chip surface, clock distribution etc. These advantages of RTL
simulation come with the heavy cost of a rather high simulation
time and high development effort to describe the hardware
model. The first can be solved through emulation which allows
to run a model at speeds that are three to four orders of
magnitude higher than simulation. In this case the RTL model
is created using a Hardware Description Language (HDL) and
since emulation works on real hardware (FPGAs) it allows us
to obtain a more realistic model. The downside with HDLs
is the complexity in describing and debugging a model which
in simulation can be more intuitive and flexible if there is a
necessity to make changes.

Concerning benchmark tools, we can cite [5] where the au-
thors present a Generic Mixed Criticality Benchmark (GMCB)
providing task execution times, task criticality levels, com-
munication patterns, and message sizes. In Milardalen bench-
marks [6], a benchmark is proposed to characterize the Worst-
Case Execution Time (WCET) of applications. For timing
analysis, the TACLebench [7] is a benchmark that can be used.

In the context of NoC, the MCSL benchmarks [8] can
also be used to experiment classical signal processing ap-

plications including a H264 decoder, Fourier transforms, and
Reed-Solomon encoders/decoders. With this benchmark, it is
possible to define flow parameters (message size, paths) and
the execution time of flows in the NoC. These applications
define execution times. It is also possible to generate statistical
traffic and use recorded traffic patterns. We are not aware of
an open source toolkit such as the one presented in this paper

Our contribution: We propose a Noc Traffic GENera-
tor (NTGEN) Verilog module that allows to produce flows
(source-sink) in a NoC and a toolkit that handles this procedure
by creating random test scenarios that cover the space we want
to explore. The toolkit also allows us to automate the execution
of all the tests, store and post-process the results. It finally also
provides visualization of the results designed specifically to
allow the user to add customized views for aspects of interest.

In section II, we describe the platform we use and provide
information on its flow profiles. In section III we express the
requirement for the toolkit and afterwards in section IV we
proceed to detail the implementation. In section V we present
the challenges we faced. Finally, we reach our conclusion in
section VI and finish the paper by proposing our future work
in section VII

II. NOC ARCHITECTURE

A. Platform

We consider a system based on a 4x4 2D mesh NoC where
each node consists of a router, a Network Interface (NI) and
an Intellectual Property (IP) element. Even though this is the
platform that the toolkit was conceived for we considered that
the effort to make it compatible with other platforms is small
and was not be a limiting factor.

Each router 2., possesses five links, four located at the
edges North, East, West, South (NEWS), used to connect with
neighbor routers and the fifth is used to connect with the Local
(L) IP,,,. At every input there is a buffer with the capacity of
containing four flow control digits (flits). A crossbar along with
an arbiter are handling packet transmission (XY dimension
routing) and flow control (Stop&Go). Virtual Channels (VCs)
are not implemented and this means that a packet cannot
bypass another packet that is already in an input buffer.

An illustration of a router R, is given in Figure 1.

Data
Stop&Go

Fig. 1. Architecture of a NoC router Ry

The NI is in charge of serializing and de-serializing pack-
ets. Packets are then split into smaller size flits in order to

travel in the NoC. When an IP element makes a request for a
memory location, the NI will encapsulate that into a packet,
split it into flits and send them one by one to the appropriate
router. When they reach their destination, the local NI will
reassemble the packet, de-serialize it and forward it to the IP
element that will handle the request. The same applies for the
response.

A packet containing a memory response can take up 64
bytes of data and is split in 8 flits of 8 bytes each. The NI
will add a header flit containing routing information making a
total of 9 flits. A packet containing a request can be as small
as one flit.

The IP element is the end point in the NoC. It can be a
PE, memory, General Purpose Processor (GPP) or a peripheral
(slave or a master). Consequently not all nodes in a NoC can
initiate traffic.

This platform is implemented in Verilog and is able to
synthesize on a FPGA (Xilinx Virtex-7). Measurements can
be taken through a cycle accurate simulator (Xilinx Vivado)
or through traces of the FPGA output stream passing through
gigabit ethernet.

B. Network model

We consider n periodic flows transmitted in the NoC.
A periodic flow 7; sends packets respecting two parameters:
1) the period T; which is the temporal interval between
the arrival of two consecutive packets, and 2) the maximum
transmission time C; which is the maximum time to transmit
all the flits of a packet on a router. In addition, the Average-
Case Traversal Time (ACTT) and Worst-Case Traversal Time
(WCTT) represent the average and worst-case time it took
packets to traverse their path.

Due to the dimension-order X-Y routing, each packet of
flow 7; follows a static path denoted P; which is composed
of the source and destination IPs as well as the input ports
of routers along this path. The first buffer of the source IP
is denoted first;, while the last buffer of the destination IP
is denoted last;. Then the path of flow 7; is represented by
Pi = {first;,...,last;}.

We consider one diffusion path in the network which means
that when packets of different flows join one path, they do
not leave this path until they are transmitted to the same
destination (source-sink model). A real use case that illustrates
this concept can be found in memory hierarchies where the last
level, a common bottleneck in Multi-Processor Systems-on-
Chip (MPSo0Cs), is the Random Access Memory (RAM). This
assumption also comes from Avionics Full DupleX switched
Ethernet (AFDX) network flows and is related to our previous
work in [9].

III. TOOLKIT REQUIREMENTS

In order to be able to characterize the platform mentioned
above and thoroughly validate new features we proceed by
defining the requirements of the toolkit.

We took as input two use cases: a comparison between
two arbitration schemes (First-in First-out (FIFO) and Round-
Robin) as well as in validating our past work in [9]. Although
both use cases were used to define requirements, in this paper
we present how the toolkit was used to develop measurements

and visualization concerning the first use case of arbitration
comparison. The context of this paper being to present the
toolkit, we do not present the results of the use case here.

In Figure 2, we consider the NoC described in section
IT with 7 flows 7;...77 reaching one destination and where
each IP is indexed with the coordinates of its router. The
solid lines represent the paths that join to reach the desti-
nation node. We focus on flow 7, following the path P, =
{IP()(), ROO_L» ROl_Wa Rll_Na Rgl_N, IPQl}. The paths of the
other flows are:

P2 = {IPo3, Ros_r, Roo_g, Ro1_g, Ri1_n, Ro1_n, P21 }

Ps = {IPy, Roo_r, Ro1_w,IPo1}
Py = {IPa3,Ros 1, Ro1 g, 1P21}
Ps = {IPy3,Ro3 1, Rao g, Ro1_p,1P21}
Ps = {IP30,Rs0_r,R31w,Ro1_s,1P21}
Pr = {IPs3,R3o 1, R31_g, Ro1_s,1Pa1}
IS DS DSV
‘\Boo Roy Ro Ro3

Ll Dl B

R0} N R_ZTi i§ R23

UL ol Rl O

R30 R31 R3 R33

[
[

Fig. 2. NoC example of the case study

The FPGA used for the measurements already has an
interface that allows us to send commands and recover traces
using the gigabit ethernet port. Basic error detection is also
implemented allowing to react when frames are lost. An
NTGEN instance at each IP element should be addressable
and modeled in a way that would make it possible to receive
commands at runtime. In addition all NTGEN modules can be
synchronized and start their transmission simultaneously.

Concerning the scenario generation, we wanted to be able
to specify the desired average link utilization of the output
node (here the link Ro; to IP51) as well as the number of
traffic sources and obtain random periods to create such a
pattern. Automated deployment is available based on the list
of scenarios generated with minimum supervision. This means
that reinitialising the NoC at the beginning of each test is also
necessary. Assuming results are obtained we are able to process
them and filter the information that is necessary. Eventually for
the visualisation phase we exploit a framework allowing to plot
the results.

During all this process we also have non-functional require-
ments such as performance and resource usage that should
be contained in order to make this toolkit compatible with
an average computer. In addition the development languages

should be chosen based on their capacity to provide reusability,
readability and ease of maintenance. In the same context,
standard data formats should be chosen avoiding customized
structures that would pose a limit to compatibility. Finally the
toolkit should have a modular architecture that would make
it portable to other NoC models and would allow anyone to
replace or add modules to improve its functionality.

IV. TOOLKIT IMPLEMENTATION

Following the requirements specified we propose a toolkit
described in Figure 3. On the left we have the FPGA which
is connected through an Ethernet cable to a host computer on
the right. On the FPGA we have the synthesized bitstream of
the NoC architecture along with NTGEN which is present in
each node. On the host side we have all the software elements
that the toolkit consists of.

A. Traffic Generator Implementation

NTGEN, as illustrated in Figure 1 is connected to the NI
similarly to an IP element. Once configured, NTGEN can
inject 9-flit long packets to the NI destined to any of the
other nodes in the network. The corresponding NTGEN in the
destination node will receive the packet and send a message
through the Ethernet interface to the host detailing the packet’s
transmission. The length of the packet was intentionally chosen
to represent a cache line transfer. However, if supported by
the NoC model longer packets can be generated in order to
represent for example Direct Memory Access (DMA) modules.
This would reduce the number of messages sent to the host as
we would have a lower packet per flit ratio. When synthesized,
NTGEN takes around 200 Look Up Tables (LUTs) which
makes it light and capable to scale as the number of nodes
might increase.

B. Scenario generation tools

For the host side of the toolkit, the starting point is the
random generation of periods [10] for each of the source nodes
in a scenario. The input information is the number of source
nodes, the desired utilization and the total number of random
scenarios that are going to be generated. The algorithm in
[10] is called to generate a set of periods and also calculate
the necessary amount of cycles (one hyperperiod equal to the
least common multiple of flow periods) that each scenario
needs to run. This file is then taken by a script that aggregates
multiple lists of different utilizations, source and destination
nodes based on user input provided to the script. The final
file generated is passed to the command interface that can
interpret it and launch each of the scenarios sequentially. It
will configure NTGEN in each of the source nodes using a
library that transforms each line of the list to commands for the
FPGA. This tool also manages the initialization of the FPGA
before each scenario, the launch of each scenario as well as
its termination when the hyperperiod is reached.

At the same time, the response interface (the counter-part
of the control interface) receives traces from the FPGA and
performs a preliminary post-processing that allows to filter a
big part of the information and keep the necessary parts that are
then saved in a file. This file is taken by the visualisation tool
whose goal is to transform the raw information into objects.
Then we can easily exploit them to produce visualization

graphs that can then be used to obtain an insight on the
temporal behavior of the model.

We can understand that the user is required to interact with
the toolkit mainly at the early stages as we tried to keep the
configuration parameters simple. If necessary, we can obtain a
finer configuration granularity by intervening inside the scripts.

TGEN
Library

Gigabit Command
Ethernet / Interface ¢

Response I @ > |Post processlngl >
ﬂlnteﬂace [& Plotting @@
& python
Host Computer K matploti Graphs

Scenario Channel Utll\zatlon
Generator Randomization
4M \|| AB

& python

Virtex-7

Fig. 3.
C. FPGA interfacing

Toolkit software architecture

Concerning the command and response mechanisms that
manage the tests on the FPGA and store the results, we can
see a top-level state diagram in Figure 4. Both interfaces
are launched and reach an idle state. The user launches the
command to execute test scenarios and the command interface
resets and configures NTGEN. The NoC model possesses a
reset mechanism that enables the command interface to put it in
an initial state that is consistent and allows us to perform each
test with fixed initial conditions. After NTGEN is configured
for the first scenario the command interface passes at a “wait
state” during which it is polling a pipe that is established for
communication between the two interfaces. When the scenario
is over, the response interface will send a message in that pipe
and the command interface will reset the FPGA and configure
NTGEN to continue with the next scenario. In this current
version of the toolkit, managing errors is not supported, in the
case that a packet is lost, the response interface will send a
message in the pipe and both programs will exit.

reset TGEN

received

received
packet

Wait for Process
Hyperpedicd Packet

packet
lost

Exit with Error

end of all
scenarios

Fig. 4. Toolkit state machine

D. Visualisation

When results have been stored, we can use the visualisation
script in order to plot the information into graphics (using
matplotlib library). That way, we can get a better understanding
on the behavior of the model in addition to having raw
information.

The plotter of the toolkit provides mainly pre-coded graph-
ics that: will automatically be plotted based on the results

(see below) and allow the verification of the precision of the
tested scenarios. The capability for the user to code his/her
own graphs that can visualize additional aspects of the results.

In figures 5, 6, 7, 8, 9, 10, we present some of the graphs
that are provided by default in the toolkit.

In figure 5 we can see all the scenarios executed and
the worst case latency in each. In figures 6, 7 we have all
the scenarios grouped in relation to the link utilization at the
destination node. In figure 6 we see the average time it takes
packets to traverse the NoC. In figure 7 we have the worst
case of the worst traversal time of the scenarios with the same
link utilization. This will allow us to perform side to side
comparison between two features, being arbitration, routing
etc. In figure 8 we obtain the histogram for a specific node so
that we can observe its behavior. Finally in figures 9, 10 we
have information on the precision of the tests we performed.
This can be used to easily to verify that the traffic generation
does indeed produce correct utilization patterns.

Worst Case Transition Time (WCTT) in cycles), Tile: 0

I:I Round Robin
:] FIFO

160

140

Overview of all scenarios

i
5]
S

Transition time (cycles)
5 3 3

N
S

o

Fig. 5.

I
Average Case Traversal Time (ACTT) in cycles), Tile: 0

3 Round Robin
3 FIFO

50 —

60

Traversal time (cycles)
w P
S S

N
S

10

0.4 0.5 0.6 0.7 0.8 0.9 Lo
Scenario Utilization (%)

Fig. 6. Bar graph for the ACTT

V. CHALLENGES
A. Implementation of HDL traffic generator model

HDL is quite different from software development as
it requires to keep the model synthesizable and to always
take into account the way the synthesis tool generates the

Worst Worst Case Traversal Time (WCTT) in cycles), Tile: 0

0 Round Robin
- [FIFO

160

140+

120 [

100

80 F

60

Traversal time (cycles)

a0

20

0.4 0.5 0.6 0.7 0.8 0.9 10
Scenario Utilization (%)

Fig. 7. Bar graph for the WCTT
4.0 le221 Histogram of tile 0
n
8
g
5
o]
o
20 40 60 80 100 120 140 160
Traversal Time (Cycles)
Fig. 8. Distribution of Traversal Time of node 1Pgg

110

100

90

80

70

. “*1 |

40

Measured utilization (%)

o

30
0

100 200 300 400 500 600 700
Scenario id number

Fig. 9. Precision validation between theoretical and measured values for each
scenario

Channel Utilization Precision

+ +

+ +
N
5 +

+ + +

o e a2

+ ¥

Measured utilization precision (%)
=
G
"

+

0.4 0.5 0.6 0.7 0.8 0.9 10
Theoretical utilization (%)

Fig. 10. Relative precision validation for each utilization set of scenarios

bitstream based on the code. For example, a modulo counter
implemented using the % symbol (usual in languages such as
C) will use much more resources compared to implementing
the module through a register. Validation can be challenging as
we can choose between two worlds, cycle accurate simulation
or emulation on FPGA, each having its own advantages. With
simulation we can have a very high degree of visibility of
the model’s behavior, monitor or alter any part of it and
pause the simulation at any point. The downside is that
simulation is very slow and can become inefficient in long
scenarios. Emulation on FPGA can be significantly faster as
the model is running in real-time. However, synthesizing the
bit-stream can take long (30-120 minutes) and needs to be
repeated at every modification. As a result emulation is more
suitable for long scenario validation while simulation is very
efficient in short fine grained validation as well as for the
development/debugging phase.

B. Implementation of scenario generator

The challenges in scenario generation relate to producing
enough scenarios to cover all the channel utilization needed for
testing during a sufficient duration (at least one hyperperiod).
At first we needed to produce random scenarios with a specific
bandwidth output. This was achieved by using Randfixedsum
algorithm [10] to generate each source’s transmission period.
The goal was to obtain periods that would cause the link at
the destination node to have a desired average utilization rate.
In addition, the total duration of each scenario, defined by its
hyperperiod should not be too large to test it. As a result from
all the scenarios generated, we only keep the ones that do not
exceed 1 billion cycles.

C. Implementation of communication software with the FPGA

The main challenge here relates to performance and more
specifically to the reception of packets from the FPGA. The
objective is to be able to process and store packets fast enough
to avoid dropping them due to congestion. Depending on the
channel utilization, the FPGA would output packets to the host
computer at different rates. For higher utilization scenarios the
bandwidth would reach as much as 600 MBit/s and storing this
information would generate files that as much as 8GBytes per
scenario. Considering that we would need to execute multiple

tests of hundreds of scenarios, archiving the information would
limit the capacities in testing. As a result there would have to
be some processing at the reception of each packet in order
to keep the useful parts of the information and reduce storage
requirements.

A new challenge emerges here as the amount of processing
resources is limited by the packet reception rate. The process-
ing time should not exceed the time between packets as it
will end up filling the input buffer to a point that packets will
eventually be dropped. To resolve this issue various mecha-
nisms were implemented. Firstly the CPU/memory trade-off
was shifted and the memory used for the input buffer was
maximised in order to be able to absorb more packet pressure
giving the possibility to the CPU to complete the processing.
Secondly, the processing task was attached to a specific core;
avoiding migrations to other cores would optimize the resource
usage. Finally, to ensure that there would be no other tasks
sharing the core with the processing task, creating context
switching and preemption overhead, we masked the core
making it solely available to the toolkit.

Through this challenge we are able to identify that the
major factor of scalability for the toolkit is the destination
node. Since messages to the host computer are sent each time
a packet is received, it is obvious that scaling to more cores
or adding virtual channels will not affect the volume of data
we receive at each scenario. However adding more destination
nodes will have an impact, but again only in high bandwidth
scenarios. At this case slowing the operational frequency of
the FPGA is a rather feasible solution that will add more
emulation time for intense scenarios but remain more efficient
than simulation and keep the tool scalable. Another possibility
is to offload part of the post-processing to the FPGA and
receive information that, requiring little or no processing, is
ready to be stored and exploited. This solution needs to be
evaluating its complexity in implementation and maintenance.
However, given the gain of processing in FPGAs it can have
a very high potential.

Secondary challenges involve the FPGA communication
protocol stack that we implemented in order to provide a layers
of abstraction, making the toolkit able to be adapted to other
platforms.

D. Implementation of data analysis and representation

The JSON library in Python opens data files and parses all
the content into memory in a single operation. This results in
the creation of multiple objects holding information in RAM
that is not immediately necessary but still occupies memory
space. In fact for a rather small amount of results the memory
occupied by object was so big that made us realize that the
analysis would be impossible for the full scenarios list. This
was another reason that made processing necessary before
storing the data to disk. Currently the scenario file size after
partially processing results, allows Python’s JSON parser to
cope without problems. However, in order to anticipate for
future scenarios yielding more voluminous results a more solid
solution needs to be implemented.

VI. CONCLUSION

In this paper we propose a new toolkit called NTGEN for
a FPGA NoCs platform performance analysis. This toolkit

can be used to perform tests to validate platform features
and functionalities and characterize the latency of flows sent
through the NoC. NTGEN can automatically generate traffic
scenarios and perform analysis to present them in useful
valuable information.

VII. FUTURE WORK

At first in order to take an orientation for a more mature
simple set of tools, we envision to converge the different
programming languages and file formats. Secondly, we plan
to enable support for traffic generation and visualization for
more than one destinations. This way the toolkit will be able
to handle more use cases and take a more general character.
Thirdly, there is an interest to be able to generate realistic
traffic patterns in addition to random ones. We intend to look
into this subject so that for example, we can record real
applications and replay them to simulate traffic.

Another interesting aspect would be to support results
acquired from simulation in addition to emulation. The effort is
minimal and it will allow to use the toolkit for small scenarios
that still need visualization.

Finally, in the long term we would like to provide a
Graphical User Interface (GUI) making the toolkit easier to
use. Scenario generation will be easier, as well as following
the progress of testing scenarios. In addition, by being able
to chose subsets of data through a user interface will make
managing the visualisation of the results much faster.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Design Automation Conference, 2001.
Proceedings. 1EEE, 2001, pp. 684—689.

[2] B.D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss
et al., “A clustered manycore processor architecture for embedded and
accelerated applications.” in HPEC, 2013, pp. 1-6.

[3] A. Varghese, B. Edwards, G. Mitra, and A. P. Rendell, “Program-
ming the adapteva epiphany 64-core network-on-chip coprocessor,”
International Journal of High Performance Computing Applications,
p- 1094342015599238, 2015.

[4] L. S. Indrusiak, J. Harbin, and O. M. Dos Santos, “Fast simulation of
networks-on-chip with priority-preemptive arbitration,” ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), vol. 20,
no. 4, p. 56, 2015.

[5] J. Harbin, T. Fleming, L. S. Indrusiak, and A. Burns, “Gmcb: An
industrial benchmark for use in real-time mixed-criticality networks-on-
chip,” in Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS), 2015.

[6] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mélardalen
wcet benchmarks: Past, present and future,” in OASIcs-OpenAccess
Series in Informatics, vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2010.

[7] “Taclebench website,” http://www.tacle.eu/index.php/activities/taclebench,
2016, [Online; accessed 26-May-2016].

[8] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, and
Z. Wang, “A noc traffic suite based on real applications,” in VLSI
(ISVLSI), 2011 IEEE Computer Society Annual Symposium on. 1EEE,
2011, pp. 66-71.

[9] E. Papastefanakis, X. Li, and L. George, “Deterministic scheduling
in network-on-chip using the trajectory approach,” in Real-Time Dis-
tributed Computing (ISORC), 2015 IEEE 18th International Symposium
on. IEEE, 2015, pp. 60-65.

[10] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in proceedings 1st International Workshop

on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010), 2010, pp. 6-11.

