
Evaluation of Mixed-Criticality Scheduling
Algorithms using a Fair Taskset Generator

Saravanan Ramanathan, Arvind Easwaran
Nanyang Technological University, Singapore

Email: saravana016@e.ntu.edu.sg, arvinde@ntu.edu.sg

Abstract—The problem of scheduling mixed-criticality (MC)
task systems is known to be NP-Hard, and as a consequence
the performance of MC scheduling algorithms is frequently
assessed using experimental evaluations based on randomly
generated tasksets. It is therefore important to have a thorough
understanding of all the parameters that impact the algorithms
and a taskset generation procedure that is fair with respect
to those parameters. Although there are a few popular taskset
generators, there is no evaluation of the fairness properties of
those generators. In fact, there is no existing study on identifying
all the parameters that are relevant in the evaluation of MC
scheduling algorithms. We address this shortcoming in this paper,
and present a set of essential fairness properties for MC taskset
generators. We also develop a new taskset generator and show
that it satisfies those fairness properties. Finally, we evaluate the
performance of multi-core MC scheduling algorithms using the
generator, and provide new insights on the performance of those
algorithms with respect to several taskset parameters.

I. INTRODUCTION

Mixed-Criticality (MC) scheduling has received a lot of
attention in the real-time literature ever since Vestal proposed
the MC task model [1]. This is mainly because of the practical
relevance of MC systems in safety-critical industries such as
avionics and automotive. There have been several studies, both
on single- as well as multi-cores, focusing on the design
of scheduling algorithms for the MC task model; see [2]
for review. One way to evaluate algorithm performance is
analytical, wherein metrics such as speed-up bound [3] are
derived. For MC systems it has been shown that the scheduling
problem is NP-Hard [4]. Consequently, the only known ana-
lytical performance results are in terms of speed-up bounds.

Another mechanism to evaluate algorithm performance is
experimental, wherein a taskset generator is used to generate
a variety of MC task systems, and the algorithms are evaluated
by testing their schedulability on these task systems. The
driving principle behind such experimental evaluation is that
as long as the set of generated task systems is “fair”, meaning
not biased in terms of the parameters used to define the task
system, the resulting comparisons provide a fair assessment
on the relative performance of the algorithms. Although,
unlike speed-up bounds, these evaluations do not provide any
analytical guarantees, they are being increasingly used in the
evaluation of MC algorithms [5], [6], [7], [8]. This trend is
because of two factors: 1) For many algorithms such as those
based on heuristics or non-trivial schedulability tests (e.g.,
those derived from demand bound functions), it is extremely
hard, if not impossible, to derive these speed-up bounds. 2)

For algorithms with known speed-up bounds such as EDF-
VD, either the bounds are not very tight as in constrained-
deadline task systems, or the bounds are not representative
of the performance of the algorithm in practice. For exam-
ple, although EDF-VD has an optimal speed-up bound of
4/3 for dual-criticality implicit-deadline task systems [9], its
performance is shown to be relatively poor in experimental
evaluations [5]. Thus, in the absence of tight analytical results
on the performance of MC algorithms, it is important to design
taskset generators that enable a fair experimental evaluation.

There have been few studies on taskset generators for MC
systems ([5], [6], [7], [8], [10], [11]). Although they present
different taskset generation algorithms, there is no work which
methodically considers all the parameters that impact the per-
formance of MC algorithms. As a consequence, there is neither
any clear understanding of what constitutes a fair MC taskset
generator, nor is there any discussion in these studies on the
fairness properties of the generators themselves. Note that,
when compared to non-MC systems, a much larger number of
parameters affect the performance of MC algorithms. This is
because tasks in MC systems have additional parameters such
as resource utilization values at different confidence levels, and
further these parameters are known to have a significant impact
on algorithm performance. In this paper, we address this chal-
lenging problem by first presenting the principles that govern
the fairness of a MC taskset generator. We then present a novel
taskset generation algorithm for MC systems and show that it
satisfies these principles. Similar to the UUnifast algorithm
for single-core non-MC systems [12] and MRandFixedSum
algorithm for multi-core non-MC systems [13], we believe that
the taskset generation algorithm presented here can be used to
experimentally evaluate MC algorithms in a fair manner. Thus,
the contributions of this paper can be summarized as follows:

• We present the fairness properties (Section III-A) for any
MC taskset generator based on all the parameters that
affect the performance of MC scheduling algorithms. We
identify some new parameters that influence schedulabil-
ity, which were not considered in the existing generators.

• We propose a MC taskset generator that generates
tasksets satisfying the above fairness properties (Sec-
tion III-B).

• We present extensive experimental evaluation for multi-
core MC scheduling algorithms with the proposed taskset
generator (Section IV).

II. SYSTEM MODEL

In this section we define our system model. We restrict our
model to a dual-criticality system (namely LO and HI).

Tasks: We consider a sporadic taskset τ , in which each MC
task τi is characterized by a tuple (Ti,χi, ~Ci,Di), where
• Ti ∈ R+ is the minimum release separation time,
• χi ∈ {LO,HI} is the criticality level,
• ~Ci ∈ R+ is the vector of Worst-Case Execution Time

(WCET) values - one for each criticality level. CLi
and CHi are the LO- and HI-criticality WCET values
respectively; we assume CLi ≤ CHi and,

• Di ∈ R+ is the relative deadline; for implicit deadlines
Di = Ti and for constrained deadlines Di ≤ Ti.

Taskset: We consider a dual-criticality sporadic taskset τ with
n tasks, where a task τi represents an infinite number of job re-
leases. LO- and HI-criticality utilization of a task τi is defined
as uLi

def
= CLi /Ti and uHi

def
= CHi /Ti respectively. System-level

normalized utilizations are defined as ULL
def
=

∑
τi∈τL u

L
i /m,

ULH
def
=

∑
τi∈τH u

L
i /m and UHH

def
=

∑
τi∈τH u

H
i /m, where m is

the number of cores.
MC Modes: The system is said to be in LO-criticality

mode or LO-mode if all the tasks τi ∈ τ signal completion
before exceeding LO-WCET. The system is said to be in
HI-criticality mode or HI-mode if any HI-task τi ∈ τH
executes beyond its LO-WCET and signals completion before
exceeding its HI-WCET. Mode switch is defined as the change
in criticality level of the system from LO to HI. All LO-tasks
are immediately discarded by the system at mode switch. We
focus on the above MC model because this is the standard
model in many studies on MC scheduling.

III. FAIRNESS AND TASKSET GENERATOR

In this section we describe the fairness properties that are
essential for any MC taskset generator. We also describe our
new taskset generator MC-FairGen, and compare its fairness
properties against several existing generators.

A. Essential Fairness Properties

The performance of MC scheduling algorithms depend on
several taskset parameters. Among them, the most important
include task periods and deadlines, proportion of LO- and
HI-criticality tasks, maximum individual task utilization, and
system utilization parameters |UHH − (ULH +ULL)|, |ULH −ULL |
and |UHH −ULH |. The minimum required number of tasks in the
system is m+1. The total utilization (UB = max(UHH , U

L
H +

ULL)) must range across all possible values. Thus, the essential
fairness properties can be summarized as follows.

1) Period: Task periods must be chosen from a wide range
and should have an appropriate distribution that is not
biased. One way to achieve this is by choosing periods
using uniform or log-uniform distribution. It has been
shown that fixed-priority algorithms perform well when
periods are chosen using log-uniform distribution [13].

2) Deadline: Task deadlines, in the case of constrained-
deadline tasksets, must also be drawn from an appropriate

distribution that is not biased. For example, drawing
deadline values from a uniform distribution between CHi
(or CLi) and Ti is one way to achieve this.

3) Criticality: The percentage of HI-criticality tasks in a
taskset must also have an appropriate unbiased distri-
bution (e.g., uniform across the scale from 0 to 100).
The performance of algorithms (such as criticality-aware
partitioning [7]) tend to vary when there are very few LO-
or HI-criticality tasks in a taskset. Therefore it is essential
to consider the boundary cases for this parameter.

4) Maximum Task Utilization: Maximum individual task
utilization, max{maxi(uLi),maxi(uHi)}, must be fairly
distributed across the range (0, 1].

5) System Utilization: The normalized utilizations of a MC
taskset include UHH , U

L
H and ULL . The three important

parameters related to these utilizations are total utilization
difference (|UHH − (ULH + ULL)|), LO-mode utilization
difference (|ULH − ULL |) and HI-criticality utilization dif-
ference (|UHH − ULH |). Most of the algorithms tend to
perform relatively poorly as these parameters increase in
value. It is therefore essential that these three parameters
are fairly distributed across the range [0, 1].

6) Independence of Parameter Distributions: To gain further
insights into behaviour of MC algorithms, beyond what
could be obtained from the overall schedulability evalu-
ations, it is necessary to evaluate them against specific
parameters independent of remaining parameters. There-
fore, it is essential that for each parameter, the remaining
parameters are fairly distributed across possible values.

In the past, studies have used other parameters such as
‘criticality factor’ ([14], [5], [15], [6], [8], [11]) and ‘number
of tasks’ [14] in their generator. Criticality factor is defined
as the ratio of HI-mode to LO-mode utilization of a HI-
task. Varying the criticality factor indirectly impacts the HI-
criticality utilization difference (|UHH − ULH |). This variation
in utilization difference is captured by the system utilization
property. Further, by fixing the criticality factor, the maximum
task utilization max(uHi) is restricted as a function of uLi . It
is therefore reasonable to choose system utilization parameters
rather than criticality factor. Whereas, varying the number of
tasks impacts the individual utilization of tasks. This parameter
is captured by the maximum task utilization property.

Extension to Multi-Criticality: These properties can also
be generalized to multi-criticality systems. The period and
deadline properties remain the same. Extending criticality
property to multi-criticality requires all possible values of
task criticality to be considered for each criticality level.
Extending the maximum task utilization property is quite
straightforward; it needs to consider task utilizations across all
the criticality levels. To extend the system utilization property
one needs to consider all combinations of system utilization
differences. For example, the property on total utilization
difference (|UHH − (ULH + ULL)|) needs to be expanded to
consider the utilization difference between all pairs of adjacent
criticality levels.

Algorithm 1 MC-FairGen

Input: m,umin,umax
Output: Taskset τ

1: for UHH ∈ [0.1, 0.2, ..., 1.0] do
2: for ULH ∈ [0.05, 0.15, ..., UHH] do
3: for ULL ∈ [0.05, 0.15, ..., 1− ULH] do
4: for PH ∈ [0.1, 0.2, ..., 0.9] do
5: Minimum required total HI-tasks, NH

min = d(UHH ∗m/umax)e
6: Minimum required total LO-tasks, NL

min = d(ULL ∗m/umax)e
7: Minimum required total tasks, Nmin = max(m+ 1, d(NH

min/PH)e, d(NL
min/(1− PH))e)

8: Total tasks, N = uniform[Nmin, 10 ∗m]
9: Total HI-tasks, NH = max((PH ∗N), NH

min)
10: Total LO-tasks, NL = N −NH
11: ∀i ∈ N , the period Ti = uniform[5, 100]
12: HI-task HI-utilizations {uHi } = MRandFixedSum(UHH ∗m,NH , umin,umax)
13: HI-task LO-utilizations {uLi } = BoundedUniform(ULH , U

H
H ,m,NH , umin,{uHi })

14: LO-task utilizations {uLi } = MRandFixedSum(ULL ∗m,NL, umin,umax)
15: ∀i ∈ N , the execution requirement CLi = uLi ∗ Ti
16: ∀i ∈ NH , the execution requirement CHi = uHi ∗ Ti
17: ∀i ∈ NL, the relative deadline Di = uniform[CLi , Ti]
18: ∀i ∈ NH , the relative deadline Di = uniform[CHi , Ti]
19: end for
20: end for
21: end for
22: end for

B. MC-FairGen Taskset Generator

The taskset parameters considered in our generator are
described as follows:

• Minimum and maximum individual task utilization umin
(= 0.0001) and umax (= 0.99). umin is required to
guarantee all possible values for the percentage of HI-
criticality tasks in a taskset. umax is required to ensure a
reasonable execution time for many schedulability tests,
particularly those based on demand bound functions.

• m ∈{2, 8} denotes the total number of cores.

MC-FairGen is described in Algorithm 1. The minimum
required total HI-tasks(NH

min) and total LO-tasks(NL
min) in

the system is given by Steps 5 and 6 in Algorithm 1. The
ceiling of utilization bound ensures individual task utilization
to be ≤ 1. The division by umax allows task utilizations
to be bounded by umax. The minimum required total tasks
in the system Nmin is given by Step 7, which ensures the
percentage of HI-criticality tasks PH . Further, it lower bounds
the number of tasks in the system by m+1. The total number
of tasks in the system is then drawn uniformly at random from
[Nmin, 10 ∗m]. The upper bound(10 ∗m) on the number of
tasks in the system is to allow for all possible values of PH .
HI-task HI-utilizations {uHi } and LO-task utilizations {uLi }
are obtained using MRandFixedSum algorithm [13].

HI-task LO-utilizations {uLi } are obtained using Bounde-
dUniform shown in Algorithm 2. BoundedUniform sorts the
{uHi } values in descending order, and for each uHi it assigns
uLi subject to two conditions: (1) sum of the total allocated uLi

and total minimum remaining uLi do not exceed the utilization
bound(m ∗ ULH) and (2) each uLi ≤ uHi .

Algorithm 2 BoundedUniform

Input: ULH , UHH ,m,NH , umin,{uHi }
Output: {uLi }

1: Sort {uHi } in decreasing order
2: UremL = ULH ∗m
3: UremH = UHH ∗m
4: Nrem

H = NH − 1
5: for ui ∈ {uHi } do
6: UremH = UremH − ui
7: uLi = uniform(max(umin, U

rem
L −

UremH),min((UremL − (Nrem
H ∗ umin)), ui))

8: Nrem
H = Nrem

H − 1
9: UremL = UremL − uLi

10: end for

C. Fairness Properties of MC-FairGen

1) Period, Deadline and Criticality: MC-FairGen explicitly
considers these fairness properties in the taskset gener-
ation process. All the three parameters are drawn from
uniform distribution.

2) Maximum Task Utilization: Given system utilization val-
ues and number of tasks, MRandFixedSum draws task
utilization values uniformly from the given range [13].
Since we consider all possible combinations of system

Fig. 1: Utilization distribution of MC-FairGen

utilization values, the resulting tasksets have a folded nor-
mal distribution for max{maxi(uLi),maxi(uHi)} with
mean (ν) 1.0 and standard deviation (σ) 0.46. We propose
classifying the tasksets into two equal-sized classes based
on the value of maximum task utilization. That is, tasksets
with maximum task utilization no more than ν(1 −
3σ/4) = 0.655 would be categorized into the “small”
class, and those with value greater than this bound would
be categorized into the “large” class. Figure 2a shows the
performance of MC algorithms for values of maximum
task utilization. We can observe that the variation in
performance is not uniform across the parameter values;
the performance drop is significant for larger values
when compared to smaller values. This is consistent with
the classification presented above; algorithm performance
is more or less stable when maximum task utilization
values are in the small class, and only decrease when
these values are in the large class. Hence, based on this
classification, we can claim that MC-FairGen satisfies the
fairness property for this parameter.

3) System Utilization: Figure 1 shows the distribution of
three system utilization differences for our generator. It
can be seen that all the distributions are either normal or
folded normal, as in the case of maximum task utilization.
Therefore, we again classify each of these parameters
into two classes, “small” and “large”, as above. The cut-
off values for this classification are as follows: 0.2 for
|UHH − (ULH + ULL)|, 0.2 for |ULH − ULL | and 0.35 for
|UHH −ULH |. To verify that this classification is reasonable
in terms of ensuring fairness with respect to the existing
algorithms, we present the variation in schedulability as
a function of |UHH − (ULH + ULL)| in Figure 2b. As can
be observed, the variation in performance is significant
when the parameter value is less than 0.2, and minimal
when the parameter value is greater than 0.2. That is, the
variation is not uniform across this parameter. Although
we do not present figures for the other two parameters
due to lack of space, similar results have been observed.
Thus, based on this classification of the system utilization
parameters, we can claim that MC-FairGen satisfies the
corresponding fairness property.

(a) Maximum Individual Task Utilization

(b) Total Utilization Difference (|UH
H − (UL

H + UL
L)|)

Fig. 2: Varying taskset parameters

4) Independence of Parameter Distributions: To evaluate
the schedulability performance of an algorithm against a
particular parameter, it is necessary to negate the impact
of all the other parameters. Let us consider the parameter
|UHH − (ULH +ULL)| whose metrics are shown in Table I.
50.41% of the tasksets are in the small class and 49.59%
of the tasksets are in the large class with respect to this
parameter. In each of these two classes, the distribution
of tasksets for the remaining parameters are also well
distributed. Note that for task periods, deadlines and
criticality distribution, since we choose them indepen-
dently using uniform distribution, they would also be
fairly distributed in these two classes. Similar metrics
have been observed for the remaining parameters as well,
but we do not present them here for brevity. Thus, we can
conclude that MC-FairGen also satisfies the independence
of parameter distribution property.

Discussion on uniform distribution: In MC systems, it is
extremely challenging, if not impossible, to have a uniform
distribution across system utilization and maximum task uti-
lization parameters. This is due to the constraints between the
parameters.

The three system utilizations UHH , ULH and ULL characterize a
MC system. Any valid MC system should satisfy the following
two conditions: 1) UHH ≥ ULH and 2) ULH+ULL ≤ 1. Satisfying
the above two conditions restricts the range of values for some
utilizations. Given an UHH value, ULH is bounded by UHH , and
given an ULH value, ULL is bounded by 1-ULH . Say, we want
to have a uniform distribution for the |UHH − (ULH + ULL)|
parameter. Lets fix UHH for a given |UHH − (ULH +ULL)| value.

TABLE I: Total System Utilization Difference |UHH − (ULH + ULL)|

Parameter Classification % of Tasksets Classification Classification
Small Large Small Large Small Large

|UH
H − (UL

H + UL
L)| Small 50.41

|UL
H − UL

L | |UH
H − UL

H | max(max(uH
i),max(maxL

i))

43.65 56.35 51.46 48.54 51.15 48.85
Large 49.59 45.36 54.64 43.10 56.90 48.51 51.49

Then we have two choices when picking (ULH +ULL). Picking
ULH or ULL decides the other parameter. One thing to consider
here is that ULH value is restricted by UHH . This in turn restricts
the ULL value, thereby affecting the distribution of the other
two parameters |ULH − ULL | and |UHH − ULH |. Therefore, it is
reasonable to consider a normal distribution for the parame-
ters rather than a uniform distribution, particularly given the
performance variation of existing scheduling algorithms.

D. Comparison of Existing Generators

In this section we evaluate the existing MC taskset gen-
erators in terms of the fairness properties presented in Sec-
tion III-A. We classify the existing set of generators into two
major categories. The group of generators that consider the
same utilization bound for both LO- and HI-mode utilizations
(ULH + ULL and UHH) fall under the first category. The group
of generators that consider independent utilization bounds for
LO- and HI-mode fall in the second category (denoted as class
D). We further classify the first category into three classes
(denoted as A,B and C) based on their taskset properties.

All the existing generators consider the period and deadline
property. Class A generators [8] do not consider the maximum
task utilization property. They have the property that all the
generated tasksets are confined to small system utilization
values. Like Class A, Class B generators ([14], [5], [6], [15],
[11]) also do not satisfy the maximum task utilization property.
Unlike Class A however, the generated tasksets of these class
of generators are not confined to small system utilization
values. Class C generators ([10], [16]) consider all the fairness
properties except the system utilization properties through a set
of different experiments. However, these class of generators
have a high taskset discard ratio when the utilization bounds
are small. Class D [7] is a reasonable generator for MC
systems because it considers independent utilization bounds
for LO- and HI-mode utilization. It however considers a fixed
number of HI-criticality tasks in the generation process, and
hence does not satisfy the criticality property. None of the
above generators satisfy the system utilization properties. Thus,
it is reasonable to conclude that none of the existing generators
adhere to all the fairness properties listed in Section III-A.

IV. EXPERIMENTS AND RESULTS

In this section we evaluate the schedulability performance
of multi-core MC scheduling algorithms using MC-FairGen.
These include global fpEDF [16], partitioned EDF VD [16],
global fixed-priority [15], global fluid [10], an extension
of GREEDY [5] with first-fit packing strategy [7], another

(a) m = 2

(b) m = 8

Fig. 3: Overall Schedulability (implicit,uniform)

extension of GREEDY with both worst-fit and first-fit strat-
egy [7] and MPVD with heavy low-critical task aware alloca-
tion [8] represented as GLO-EDF VD, PAR-EDF VD, GLO-
FP, GLO-FLUID, PAR-FF, PAR-WF FF and PAR-MPVD
respectively. All the results presented are for implicit dead-
line task systems with uniform distribution of task periods
and deadlines. Similar results were obtained for constrained
deadlines. We also evaluated for log-uniform distribution of
periods and deadlines, and found that there was not much
variation in the performance of the algorithms except for FP
scheduling. We therefore do not present them here for brevity.

In Figure 3 we present the overall schedulability of the
algorithms. We plot the acceptance ratios of the algorithms
i.e., fraction of schedulable tasksets, versus total utilization
UB varying over m ∈ {2, 8}. Each data point corresponds
to at least 5000 tasksets. For m = 2, the partitioned demand
bound function (DBF) based tests perform better than the other
algorithms as shown in Figure 3a. The results obtained are
consistent with the results from previous studies except for
the partitioned algorithms [10].

When normalized utilization nears 1.0, the performance
of PAR-FF and PAR-WF FF algorithms drop significantly
compared to PAR-MPVD. The reason is that the partitioning

(a) Total Utilization |UH
H − (UL

H + UL
L)| (b) LO-mode Utilization |UL

H−UL
L | (m = 2) (c) HI-Crit. Utilization |UH

H − UL
H | (m = 2)

Fig. 4: System Utilization Difference Distribution (implicit,uniform)

heuristics of these algorithms fail to successfully allocate
the tasks. In case of PAR-FF, the tasks are allocated using
first-fit strategy independent of its criticality. The problem
with the first-fit is that the task utilizations are not balanced
among the cores. In case of PAR-WF FF, the HI-criticality
tasks are allocated first using worst-fit approach and then the
LO-criticality tasks are allocated using first-fit approach. The
problem with this approach is that when there are heavy low-
critical tasks in the system, it fails to get allocated to the core.
Whereas, in case of PAR-MPVD, due to heavy LO-critical
task aware partitioning and WF FF bin packing approach, it
performs well.

The performance of PAR-MPVD shown here is contradict-
ing to the one presented in [11]. PAR-MPVD is known to
perform better when there are heavy LO-critical tasks. As the
generator in [11] generates tasksets only in low utilization
ranges, it negatively affects the performance of PAR-MPVD.

To provide further insights on how algorithms perform with
respect to specific parameters, we also present the performance
results varying individual parameters. For brevity, we only
present the schedulability results based on varying system
utilization parameters i.e., |UHH −(ULH+ULL)|, |ULH−ULL | and
|UHH − ULH | in Figure 4. All the algorithms perform well in
the first class, where the three parameter values are small, and
perform poorly when the values become large. GLO-FLUID
algorithm performs well when |UHH − (ULH +ULL)| is large as
it mainly optimizes HI-mode execution, and performs poorly
when |ULH − ULL | or |ULH − ULL | becomes large. All DBF
based tests have more impact on |ULH − ULL | and |UHH − ULH |
parameters when compared to |UHH − (ULH + ULL)|.

V. SUMMARY

Taskset generators are an important tool in the evaluation of
MC scheduling algorithms, mainly due to the hardness of these
algorithms and the lack of quantifiable metrics such as speed-
up bounds. In this paper we identified the factors that affect
the schedulability of MC scheduling algorithms and presented
the fairness properties that govern any MC taskset generator.
We also proposed a new generator called MC-FairGen capable
of generating tasksets that satisfy the fairness properties. We
evaluated the performance of multi-core MC algorithms using
the proposed generator. These evaluations have provided some

new insights on how individual taskset parameters affect the
existing algorithms, and could be used to develop improved
algorithms in the future.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium (RTSS), 28th IEEE International, Dec 2007.

[2] A. Burns and R. I. Davis. (2013) Mixed Criticality Systems - A Review.
http://www-users.cs.york.ac.uk/burns/review.pdf.

[3] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoy-
ance [scheduling problems],” in Foundations of Computer Science, 1995.
Proceedings., 36th Annual Symposium on, Oct 1995.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality jobs,”
Computers, IEEE Transactions on, vol. 61, no. 8, Aug 2012.

[5] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in Real-Time Systems (ECRTS), 24th Euromi-
cro Conference on, July 2012.

[6] A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic
tasks on one processor,” in Real-Time Systems Symposium (RTSS), 34th
IEEE International, Dec 2013.

[7] P. Rodriguez, L. George, Y. Abdeddaim, and J. Goossens, “Multi-
criteria evaluation of partitioned edf-vd for mixed-criticality systems
upon identical processors,” in Workshop on Mixed Criticality Systems
(WMC), December 2013.

[8] C. Gu, N. Guan, Q. Deng, and W. Yi, “Partitioned mixed-criticality
scheduling on multiprocessor platforms,” in Design, Automation and
Test in Europe Conference and Exhibition (DATE), March 2014.

[9] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems,” in Real-
Time Systems (ECRTS), 24th Euromicro Conference on, July 2012.

[10] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee,
“MC-Fluid: Fluid Model-Based Mixed-Criticality Scheduling on Mul-
tiprocessors,” in Real-Time Systems Symposium (RTSS), 35th IEEE
International, Dec 2014.

[11] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multi-
processors using task grouping,” in Real-Time Systems (ECRTS), 27th
Euromicro Conference on, July 2015.

[12] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, may 2005.

[13] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WA-
TERS), July 2010.

[14] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in Real-Time Systems Symposium (RTSS), 32nd
IEEE International, Nov 2011.

[15] R. Pathan, “Schedulability analysis of mixed-criticality systems on
multiprocessors,” in Real-Time Systems (ECRTS), 24th Euromicro Con-
ference on, July 2012.

[16] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, vol. 50, no. 1, 2014.

