
On the Evaluation of Schedulability Tests
for Real-Time Scheduling Algorithms

Robert I. Davis1,2,
1Real-Time Systems Research Group, University of York, UK

2INRIA, Paris, France

Outline
 Introduction

 Different ways of comparing schedulability tests

 Advantages and disadvantages of different
approaches

 Key aspects in Empirical Evaluation
 Task set generation

 Methods and pitfalls
 Taking a systematic approach

 Some suggestions
 Task set generation from case studies
 Questions and Open Discussion

Comparison of schedulability tests for
real-time scheduling algorithms
 Exact tests

 All task sets are correctly classified by the test as either
schedulable or unschedulable

 Comparison of exact tests is in effect a comparison of
the algorithms

 Sufficient tests
 May classify some task sets that are in fact schedulable

as unschedulable, but not vice-versa
 Often trade effectiveness for efficiency

 Evaluation
 Interested in guaranteed real-time performance – i.e.

from whatever tests are available

Comparison of schedulability tests for
real-time scheduling algorithms
 Theoretical methods

 Dominance relationships
 Utilisation bounds
 Resource augmentation bounds or

speedup factors
Typically give a worst-case comparison

 Empirical methods

 Comparisons using (many) task sets
Typically give an average-case
comparison

1/Ω

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Sc
he

du
la

bl
e

Ta
sk

se
ts

Utilisation

Theoretical methods
 Dominance relationships

 Show that one test / algorithm always
outperforms another

Advantages
 Dominant method always better
 Examples: Exact v. sufficient tests, EDF v. FP
Disadvantages
 Typically only applies to a simplified model e.g. no

scheduling overheads, no CRPD etc.
 Gives no indication how good the methods actually are

(dominant method may still have poor performance)

Theoretical methods
 Utilisation Bounds

 All task sets with utilisation no greater than the bound
are guaranteed to be schedulable

Advantages
 Illustrates worst-case behaviour for any implicit deadline

task set (D = T)
 Examples: EDF v. FP (U = 1 versus U = 0.69)
Disadvantages
 Worst-case behaviour may exist only for corner-cases

that are of little interest in practice
 Only applies to simple model, implicit deadlines, no

overheads etc.

Theoretical methods
 Speedup Factors

 Factor by which the speed of the system needs to be
increased, so that any task set that was schedulable
under algorithm B is guaranteed to become schedulable
under algorithm A

Advantages
 Illustrates worst-case performance relative to a different

algorithm (or test)
 Used to explore sub-optimality w.r.t an optimal algorithm
 Examples: FP v. EDF, constrained deadlines S = 1/Ω

Theoretical methods
 Speedup Factors

Disadvantages
 Worst-case behaviour may exist only for corner-cases

that are of little interest in practice
 May not discriminate well between tests
 Recent (as yet unpublished) work shows that speedup

factors for FP-P v EDF-P and FP-NP v. EDF-NP appear to
be the same when simple linear tests are used for FP as
they are when exact tests are used

Empirical methods
 Empirical evaluations

 Using synthetically generated task sets to evaluate schedulability
tests

 Simulations
 Using synthetically generated task sets to evaluate scheduling

algorithms via simulated execution

 Experiments
 Running real or synthetic task sets on real hardware

 Case studies
 Empirical evaluations or simulations, using tasks / task

parameters derived from real applications

 Main Focus of this talk is Empirical evaluations

Empirical methods: pros and cons
 Simulations

 Simulate the execution of a task set over a long time
period, repeat for multiple task sets

Advantages
 Useful to explore average case behaviour
 Useful as a form of necessary schedulability test:

deadline misses prove that the task set is not schedulable
(but no misses don’t prove schedulability)

Disadvantages
 Typically no guarantee that worst-case behaviours are

seen unless the worst-case scenario is known
 Worst-case scenario may be very different for different

algorithms e.g. FP and EDF

Empirical methods: pros and cons
 Experiments

 Running real or synthetically generated tasks on real
hardware

Advantages
 As per simulation (useful to explore average case

behaviour, and acts as a necessary test)
 Includes all overheads on the actual hardware
 Can be used to collect overhead measurements to include

in a model
Disadvantages
 Typically no guarantee that worst-case behaviours are

seen unless the worst-case scenario is known

Empirical methods: pros and cons
 Case Studies

 One or more example task sets taken from industry
 Typically the case study provides specific parameter

values, or they may be obtained from the code
Advantages
 The parameter values used are realistic
 Detailed information available via analysis of code
Disadvantages
 Is the case study representative?
 Limited coverage of the parameter space (e.g. one task

set) may hide issues elsewhere

Empirical methods: pros and cons
 Empirical evaluation

 Generate large numbers of task sets with parameters
chosen in an appropriate way

 Evaluate schedulability test performance on these task
sets

Advantages
 Can provide good coverage of the parameter space
 Can provide a fair (unbiased) comparison, but care is

needed to achieve this
Disadvantages
 Are the parameter values covered representative of real

systems?
 What about overheads?

Sporadic task model: as an example
 Sporadic task model

 Static set of n tasks τi with priorities 1..n

 Bounded worst-case execution time Ci

 Sporadic/periodic arrivals: minimum inter-arrival time Ti
 Relative deadline Di

 Utilisation Ui = Ci / Ti
 Independent execution (no resource sharing)
 Independent arrivals (unknown a priori)

 Processors
 m processors (multiprocessor)
 m = 1 (uniprocessor)

Empirical evaluation
 Basic approach

 Generate large numbers of task sets with parameters
chosen in an appropriate way

 Determine the performance of different schedulability
tests on these task sets

 Plot graphs e.g. success ratio, weighted schedulability,
frequency distributions etc. to illustrating performance

 There are a number of key aspects to this

Optimal
Priorities

Random
Priorities

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Fr

eq
ue

nc
y

Breakdown Utilisation

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Sc
he

du
la

bl
e

Ta
sk

se
ts

Utilisation

Empirical evaluation: key aspects
 Systematic approach

 Ensure adequate coverage of full range of realistic
parameter setting (i.e. avoid cherry-picking)

 Avoid bias and confounding variables
 Examples: unintended bias in distributions of execution

times, periods etc.
 Some methods can confound variables, correlating them

 Statistical confidence
 How might the results have changed with a different

random seed
 Standardisation of methods

 Enables direct comparison between results in different
research papers (transitivity), aids reproducibility etc.

Empirical evaluation
 Aim

 Generate a large number of task sets with different
parameter settings that cover in an unbiased way, the
range of possible task sets that could occur in practice

 Basic framework
 Baseline approach to task set generation
 Extensible as further parameters are needed

Task set generation:
a systematic approach
 Primary inputs

 Task set cardinality n, and Utilisation U
 Utilisation

 Given n and U for the task set generate a set of n
unbiased utilisation values for the tasks that add up to U

Uunifast – for single processor systems
Uunifast-discard – for multiprocessor (n > 2m)
RandFixedSum – for multiprocessor

 Avoids bias and confounding variables

Iteratively creating task sets by adding a task to a previous
task set confounds (correlates) utilisation and the number of
tasks, making it difficult to see the influence of these
individual factors on schedulability

Task set generation: Uunifast
 What does it do

 Utilisation values produced have the same distribution as
obtained by choosing sets of n values at random from a
uniform distribution [0,U] and then only taking those sets
that sum to U

 Code

Task set generation: Uunifast-discard
 Problem with Uunifast

 For U > 1 Uunifast can generate utilisation values >1
which are invalid for individual tasks

 What does Uunifast-discard do
 Simply throws away task sets with invalid tasks, proven to

produce an unbiased uniform distribution of utilisation
values

 Works well for n > 2m, but too many discards (invalid
tasks) for smaller n

 For n closer to m need to use a more general method
provided by Randfixedsum

Task set generation: Randfixedsum
 What does Randfixedsum do

 General algorithm derived by Roger Stafford for creating
vectors uniformly distributed in an n-1 dimensional space
whose components sum to a constant value

 Can be used to generate utilisation values for
multiprocessor task sets

 Efficient since no random values need to be excluded
 Open source MatLab implementation available

Task set generation: Task Periods
 Periods can be selected from some distribution

 Which distribution(s) should we use?
 Limit periods to a range between a min and max value

 Uniform?

 Using a uniform distribution has some issues
 Want to be able to vary range of task periods, since this is

an important parameter w.r.t. non-preemptive scheduling
and complexity of some schedulability tests

 With a period range of [10, 1,000,000] then roughly 99%
of periods are in [10,000, 1,000,000] i.e. 2 orders of
magnitude when we expected 5

 Uniform distribution not effective in showing differences
due to range of periods

Task set generation: Task Periods
 Log-Uniform?

 Random selection from a log-uniform distribution: random
pick from a uniform distribution between the logs of the
min and max periods and then raise the base of the log to
the power of the value chosen to obtain the period

 Expected number of tasks in any order of magnitude
range is the same e.g. [10,100], [100,1000] etc.

 Avoids previous issues with uniform distribution

 Note Fixed Priority scheduling is more effective when
there is a larger spread of periods, hence FP is more
effective with Log-Uniform than with Uniform distributions
with the same period range

Task set generation: Task Periods
 Harmonics

 Task periods in real systems tend to be chosen from a set
(or sets) of harmonic values

 This can be simulated using the bag of primes method
 Bag of primes method

 A set of small prime numbers (with some repeats) are
chosen as a basis (e.g. 2,2,2,2,3,3,3,5,5…) and placed in
the bag

 A number of values are then selected at random from the
bag without replacement

 The product of the values chosen gives the task period
 The LCM of task periods is limited to the LCM of all values

in the bag

Task set generation: Task Periods
 Harmonics – alternative method

 Simply specify a set of possible values, for example as
may be used in automotive systems (5,10,20,50,100, 250,
1000ms)

 Chose values at random from the list
 Again the hyperperiod is limited to the LCM of the values

specified

 Notes
 Since harmonic and non-harmonic periods can differently

impact schedulability (e.g. FP has a utilisation bound of 1
for harmonic task sets, and 0.69 for non-harmonic) best
practice would be to repeat expts with both distributions

Task set generation: Task Deadlines
 Deadlines

 Implicit deadlines equal to period
 Constrained deadlines
 Chosen at random between C and T
 Varied in lock step as a proportion of period

Evaluation Framework: Baseline
 Baseline settings

 Determine realistic settings as defaults for parameter
values and vary utilisation

 Success ratio plots

 Typically need about 1000 task sets per utilisation level

Evaluation Framework:
Weighted schedulability
 Varying parameters

 Need to vary parameters to cover a wide range of
possible parameter values

 Important to do this as some schedulability tests /
algorithms may be sensitive to a particular parameter e.g.
range of task periods, number of tasks, etc.

 Typically not possible to cover the whole parameter space
via simple success ratio plots – too many combinations
(1000s of plots)

 Can vary one parameter while holding others constant at
default values

 Use weighted schedulability plots to illustrate variation
w.r.t. each parameter

Evaluation Framework:
Weighted schedulability
 Weighted schedulability

 Combines results for all of the task sets generated for all
of a set of equally spaced utilisation levels (i.e. from a line
on a success ratio plot)

 Effectively the area under the success ratio curve but
weighted by utilisation – gives more emphasis to
scheduling high utilisation task sets

 Reduces multiple success ratio plots to a single weighted
schedulability graph

∑
∀

=
τ τ

ττ
)(

)().(
)(

U
US

pZ y
y

Evaluation Framework:
Weighted schedulability
 Examples of weighted schedulability graphs

 Typically need about 100 task sets per utilisation level,
since there are usually at least 10 utilisation levels that
make up each data point

Evaluation Framework:
Frequency distributions
 Frequency distribution of breakdown utilisation

Optimal
Priorities

Ad-hoc
Priorities

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Fr
eq

ue
nc

y

Breakdown Utilisation %

35% or less v 80% or more

Evaluation Framework:
Confidence intervals
 How confident are we the picture wouldn’t change if

we run the experiment again with a different random
seed?
 Multiple runs to show percentiles for each data point

Evaluation Framework:
Difference measures
 One line being above another does not imply

dominance
 Can plot number of task sets schedulable with test A but

not with test B and vice-versa to show incomparability

Evaluation Framework:
Variability: box and whisker plots
 Schedulability is a binary result (yes/no)

 Interesting to look at other metrics and consider their
variability

Empirical evaluation: Task sets from
case studies / benchmarks
 Case studies / benchmarks:

 Typically provide a small number of tasks / task sets
 Can provide other detailed information e.g. WCETs,

memory accesses, UCBs, ECBs used in CRPD analysis etc.
 However, large numbers of task sets are needed for

evaluation purposes
 Making task sets from benchmarks

 Random selection of tasks from (larger) benchmark set
 Chose utilisation values using Uunifast etc.
 Compute period = C/U (can therefore use real WCETs)

Empirical evaluation: Task sets from
case studies / benchmarks
 Advantages:

 More detailed and realistic information input into task set
generation

 Task parameters take on real values e.g. WCETs of actual
code

 Disadvantages

 All task sets generated share similarities since they are
generated from the same limited set of benchmarks, so
only representative of the input benchmarks

 Period distribution correlates with WCET distribution
 May need to exclude some benchmarks to control range

of task periods (e.g. when investigating non-preemptive
algorithms)

Empirical evaluation: Task sets from
case studies / benchmarks
 Example with task set generation using data from

Malardalen benchmarks

Empirical evaluation: Recap
 Empirical evaluation

 Investigates schedulability test / scheduling algorithm
performance w.r.t. large number of synthetically
generated task sets

 Evaluation framework:

 Baseline results using success ratio plots (from realistic
default values)

 Weighted schedulability results varying each relevant
parameter over a broad range, keeping other parameters
constant at default values

 Consider statistical confidence in results
 Use other metrics to illustrate specific properties

Empirical evaluation: A suggestion
 A de-facto standard: If we all used the same

framework for evaluation this would:
 Make it easier to review / assess different work
 Make reproducing results easier
 Facilitate direct comparison between results in different

papers
 Provide a set of expts we expect to see in papers

 Would need to agree on the set of experiments expected,
and some de-facto standard details such as defaults,
parameter ranges etc.

Open discussion
 More complex task models needed

 Presentation deliberately restricted to a simple task model
 Many other attributes need to be modelled
 Interaction / communication between tasks
 Multiprocessor – cross core contention – memory demand

and processor demand

Open discussion
 Few real benchmarks available to build upon

 Use of synthetic task sets v. case studies, both have their
pros and cons

 Useful to build task sets from benchmarks - some caveats
in doing so

Open discussion
 Is some form of standard framework useful?

 Use the same task set generators?

Open discussion
 Can we improve how we evaluate schedulability tests

for real-time scheduling algorithms?

Questions?

	On the Evaluation of Schedulability Tests for Real-Time Scheduling Algorithms
	Outline
	Comparison of schedulability tests for real-time scheduling algorithms
	Comparison of schedulability tests for real-time scheduling algorithms
	Theoretical methods
	Theoretical methods
	Theoretical methods
	Theoretical methods
	Empirical methods
	Empirical methods: pros and cons
	Empirical methods: pros and cons
	Empirical methods: pros and cons
	Empirical methods: pros and cons
	Sporadic task model: as an example
	Empirical evaluation
	Empirical evaluation: key aspects
	Empirical evaluation
	Task set generation: �a systematic approach
	Task set generation: Uunifast
	Task set generation: Uunifast-discard
	Task set generation: Randfixedsum
	Task set generation: Task Periods
	Task set generation: Task Periods
	Task set generation: Task Periods
	Task set generation: Task Periods
	Task set generation: Task Deadlines
	Evaluation Framework: Baseline
	Evaluation Framework:�Weighted schedulability
	Evaluation Framework:�Weighted schedulability
	Evaluation Framework:�Weighted schedulability
	Evaluation Framework:�Frequency distributions
	Evaluation Framework:�Confidence intervals
	Evaluation Framework:�Difference measures
	Evaluation Framework:�Variability: box and whisker plots
	Empirical evaluation: Task sets from case studies / benchmarks
	Empirical evaluation: Task sets from case studies / benchmarks
	Empirical evaluation: Task sets from case studies / benchmarks
	Empirical evaluation: Recap
	Empirical evaluation: A suggestion
	Open discussion
	Open discussion
	Open discussion
	Open discussion
	Questions?

