
Industrial Verification Challenge 2015

Rafik HENIA, Laurent RIOUX
Thales Research & Technology

1 Avenue Augustin Fresnel, 91767, Palaiseau Cedex, France
{Rafik.Henia, Laurent.Rioux}@Thalesgroup.com

I. PRESENTATION OF THE VERIFICATION CHALLENGE

The use-case provided by Thales consists of an aerial video
system to detect and track moving objects, e.g. vehicles on a
roadway. Aerial video tracking systems are mission critical
real-time systems since they embed intelligence, surveillance,
reconnaissance, tactical and security applications characterized
by strict constraints on timing. The main system tasks consist
in:

• displaying high quality video images to the user

• following the tracked object even when it is
temporarily hidden from view (e.g. the vehicle
proceeds in and out of a tree obstructed area) through
motion prediction

• detecting patches of the image that may be moving
differently from the background by combining image
registration and motion prediction

Figure 1: Subsystems of the aerial video tracking system

For simplicity sake, the use-case is limited to two
subsystems of the aerial video tracking system, as represented
in Figure 1:

1. Video frame processing

2. Tracking and camera control

As suggested by its name, the first subsystem processes the
video frames sent by the camera. This includes embedding
tracking data into the video, converting the frames to the
required format and displaying a high quality video running at
25 frames per second on the monitor. The second subsystem
performs motion prediction for the tracked object. Based on
this prediction and the aircraft sensors data (position, direction,
speed, etc.) it calculates new camera angles and sends
instructions to control the camera.

In the following, we propose a timing verification challenge
related to each subsystem of the aerial video tracking use-case.

A. Challenge 1: Video Frame Processing

The functional view of the video frame processing
subsystem is illustrated in Figure 2. It consists of a sequence of
4 functions processing the video frames from the camera to the
display. The Pre-processing function removes reflections from
the frames and normalizes the intensity of the individual
particles images. The Processing function embeds tracking
information into the pre-processed frames and executes zoom
in & zoom out instructions. The Filtering function resizes the
processed frames and removes the noise. Finally, the D/A
converting function converts the frames from digital to analog
and sends them to the monitor.

Figure 2: Functional view of the video frame processing
subsystem

For simplicity, we assume that each of function is executed
by a single task, as illustrated in Figure 3. Each task is assumed
to be mapped to a distinct processor. Table 1 shows the
execution time for the tasks T1, T3 and T4 and the response time
for task T2.

Task Execution time

T1 [28ms,28ms]
T3 [8ms,8ms]
T4 1ms or 10ms

Task Response Time
T2 [17ms,19ms]
Table 1: Task execution time

Each frame sent by the camera activates the task T1. The
frames are sent strictly periodically, i.e. the time distance
between two consecutive frames sent by the camera is
constant. The exact value of the period is however unknown
since it may slightly vary from camera to camera. However, we
know that it ranges between 40ms + 0,01% and 40ms - 0,01%.

Figure 3: Architectural view of the video frame processing
subsystem

After each execution, T1 sends a frame through its output
that activates the task T2. The response time of T2 is given in
Table 1. A register is used for the communication between T2
and T3. At the end of each execution, T2 sends a frame through
its output that overwrites the register content.

When activated, the task T3 reads the current frame stored
in the register. For simplicity, we assume that there are no
conflicts between the read and write accesses to the register.
The activation of T3 is strictly periodic, i.e. the period value is
constant. Due to the clock drift, the exact period value is
unknown, however it ranges between 40/3ms + 0,05% and
40/3ms - 0,05%. Note that since the task T3 is activated more
frequently than the task T2, it will process the same register
content more than once.

At the end of each execution, the task T3 produces a frame.
Produced frames originating from the same register content are
identical copies and are therefore assigned identical indices.
The produced frames are sent to a buffer at the input of T4. The
buffer has a limited size n. For each frame, the following
conditions must be met, to be stored in the buffer:

1. The buffer is not full.

2. No other frame having the same index (i.e.
identical copy) was already stored in the buffer.

If one of the above mentioned conditions is not met, the
frame is discarded. The time required to discard a frame or to
store it in the buffer can be ignored.

The task T4 is activated strictly periodically, i.e. the period
value is constant. Due to the hardware clock drift, the exact
period value is unknown, however it ranges between 40ms +
0,01% and 40ms - 0,01%. Each activation of T4 leads to one
execution. In case the buffer is empty, the execution of T4 takes
1ms. In case the buffer is not empty, T4 consumes a single

frame from the buffer. In this case, its execution takes 10ms.
At the end of its execution, if a frame has been processed, the
task T4 sends a frame to be displayed on the monitor.

The communication between all processors, the access to
the register between T2 and T3 and the access to the buffer
between T3 and T4 are considered to be timeless.

In the following, we present the video frame processing
timing verification challenge:

1. Compute the maximum latency for a frame sent
by the camera and reaching the display, for a
buffer size n = 1.

2. Compute the maximum latency for a frame sent
by the camera and reaching the display, for a
buffer size n = 3.

Due to the different clock drifts and the limited buffer size, all
frames with identical indices (i.e. all copies originating from
the same register content between T2 and T3) may be discarded
at the entrance of the buffer. I.e. no copy of the corresponding
frame produced by the camera will ever reach the display.

3. Compute the minimum time distance between two
frames produced by the camera that will be
discarded at the buffer entrance, assuming a buffer
size n = 1.

4. Compute the minimum time distance between two
frames produced by the camera that will be
discarded at the buffer entrance, assuming a buffer
size n = 3.

B. Challenge 2: Tracking and Camera Control

Figure 4: Functional view of the tracking and camera
control subsystem

The functional view of the tracking and camera control
subsystem is illustrated in Figure 4. It consists of 3 functions.
The Tracking control function processes the aircraft sensors
data (position, direction, speed, etc.), controls the whole
tracking process and generates alerts and various tracking data.
The Target position prediction function receives data about the

aircraft speed, position and direction from the Tracking control
function and performs motion prediction for the tracked object.
The Camera control function receives data about the position
of the tracked object from the Tracking control function and
calculates a new angle for the camera based on the aircraft
position, speed and direction and the tracked object motion
prediction.

Figure 5: Architectural view of the tracking and camera
control subsystem

For simplicity, we assume that each of function is executed
by a single task, as illustrated in Figure 5. All tasks are mapped
to a same processor GPP1 to which the task T2 belonging to the
video frame processing subsystem is also mapped. All tasks are
triggered by the arrival of data at their inputs. We assume fixed
priority preemptive scheduling on the GPP1 with the following
priority order:

T2 > T6 > T5 > T7

Figure 6: Sequence diagram of the functions on GPP1

Figure 6 represents the sequence diagram of the functions
on GPP1. The Tracking control function is activated
periodically every 100ms. Its periodic activation can however
deviate by a jitter value = j. As in Challenge 1: Video Frame
Processing, the Process function is activated strictly

periodically, i.e. the time distance between two consecutive
frames is constant. The exact value of the period is however
unknown since it may slightly vary from camera to camera.
However, we know that it ranges between 40ms + 0,01% and
40ms - 0,01%.

A first segment of the Tracking control function is executed
by the task T6. Then the Tracking control function performs a
synchronous call to the Target position prediction function and
is suspended waiting for the answer. At the end of the Target
position prediction function, the task T6 resumes executing a
second segment of the Tracking control function. An
asynchronous call is then performed to the Camera control
function executed by T7 while the last segment of the Tracking
control function is executed by the T6. All execution times by
the tasks of the individual functions and function segments are
given in Table 2.

Function
Corresponding Task

Execution time

Tracking
control

Segment 1 [4ms,4ms]
Segment 2 [9ms,10ms]
Segment 3 [4ms,5ms]

Target position prediction [4ms,7ms]
Camera control [11ms,14ms]

Processing [17ms,17ms]
Table 2: Tasks execution times

In the following, we present the tracking and camera
control timing verification challenge:

1. Compute the best-case and worst-case end-to-end
latencies from the activation of T6 to the
termination of T7 for a jitter value j = 0ms.

2. Compute the best-case and worst-case end-to-end
latencies from the activation of T6 to the
termination of T7 for a jitter value j = 20ms.

Let us now assume that T2 and T5 have access to a shared
resource (because the prediction requires information from
image). The resource is mutually exclusive and is protected by
a priority ceiling protocol. The access to the shared resource
takes 2ms for both tasks.

1. Compute the best-case and worst-case end-to-end
latencies from the activation of T6 to the
termination of T7 for a jitter value j = 0ms.

2. Compute the best-case and worst-case end-to-end
latencies from the activation of T6 to the
termination of T7 for a jitter value j = 20ms.

3. Compute the optimum priority assignment
minimizing the worst-case latency for a jitter
value j = 0ms and j = 20ms.

