
STREAM: A Simulation Tool for Energy Efficient 

Real Time Scheduling and Analysis 

Mayuri Digalwar  Pravin Gahukar   Sudeept Mohan   Biju K. Raveendran 
Department of Computer Science and Information Systems 

Birla Institute of Technology and Science, Pilani, India 

 

Abstract: This paper proposes an automation tool - STREAM,   
for  simulation, testing and analysis of energy aware real time 
scheduling algorithms for periodic as well as mixed task sets on 
multi-core processor. The key features of STREAM include 
implementation of scheduling algorithms, synthetic task set 
generation, modules for doing performance analysis and 
generation of execution traces. The simulator design is made 
simple, understandable and flexible such that addition of new 
algorithms or modification to existing algorithms can be done 
with minimum efforts. Testing of modules is carried out on 
randomly generated task sets. STREAM facilitates the 
comparative performance analysis of different scheduling 
algorithms on uniprocessor, multiprocessor or multi-core 
processor platforms. A graph plotter is provided to visualize the 
performance analysis of different scheduling algorithms. 

Keywords: real time scheduling, simulation tool, dynamic voltage 
and frequency scaling, mixed task set. 

I. INTRODUCTION 

Real time systems are deterministic by nature where the 
real time tasks need to meet hard deadlines. The real time 
scheduling algorithms play major role for maintaining the 
timing constraints of the tasks. Therefore, correctness of these 
scheduling algorithms should be tested before deploying them 
on the real system. This validation can be carried out either 
theoretically, experimentally or using simulation. Simulation 
is one of the methods eventually used in real time systems 
community for validation of real time scheduling algorithms 
when formal analysis is not possible. 

 Majority of the researchers in real time systems 
community evaluate correctness of new algorithms by using 
simulation on randomly generated task sets. As a results,  
number of simulation tools have been developed in last few 
years, some of which are discussed in next section. Most of 
these simulators simulate scheduling algorithms that are 
energy aware and schedule independent periodic task sets [1, 
2, 4, 14, 16, 17, 19, 20]. A few simulators have capability of 
simulating energy efficient scheduling algorithm for mixed 
task sets containing a mix of periodic and aperiodic tasks on 
multi-core processor. Also in most of the simulators,  the 
quality of service (QoS) parameters such as good 
documentation, flexibility to add new modules, performance 
analyzer, task set generator etc are not incorporated. 

 This paper presents an easy to use and well documented 
simulation tool called STREAM that can simulate energy 
aware real time scheduling algorithms for mixed work load on 

multi-core processor by incorporating majority of QoS 
parameters. Energy optimization is carried using dynamic 
voltage and frequency scaling (DVFS) technique. STREAM 
stands for "Simulation Tool for Real time Energy efficient 
scheduling and Analysis for Multi-core processors".  It 
includes implementation of Earliest Deadline First (EDF), 
EDF with Deferrable Server (DS), EDF with Total Bandwidth 
Server (TBS), DVFS based EDF with DS (EEDFVS [25]) and 
DVFS based EDF with TBS algorithms for uniprocessor and 
multi-core processor platforms. It has modules to generate 
synthetic task set and to calculate various performance metrics 
such as energy consumption, aperiodic task's response times 
etc. The  analytical results of the algorithms can be visualized 
by plotting different graphs. 

 STREAM is written in java programming language that 
makes use of object oriented paradigm. The modules are 
organized in such a way that highly specific or similar objects 
are grouped inside a single package. This helps new 
programmers to quickly track the required module by 
navigating the group hierarchy. The Graphical User Interface 
(GUI) of simulator is very user friendly and is easy to explore 
and use. The use of abstract classes facilitate addition of new 
modules in the current version of simulator. 

Rest of the paper is organized as follows. Section II 
summarizes existing simulations tools. Section III briefly 
describes the system model which includes task, processor and 
energy models. Section IV presents the proposed simulator 
architecture that explains overall simulator design, task set 
generation method, details of simulation core  and 
performance analyzer. Section V provides description of all 
the entities and related modules. Finally, section VI concludes 
the paper and states the future directions. 

II. RELATED WORK 

Real time scheduling is well established in literature. 
Many of these algorithms are validated using simulation. This 
section presents the survey of existing simulation tools.  

Table I summarizes over 21 simulation tools existing in 
the literature. Some of these simulators support only periodic 
task model [1,2,5,6,7,8,10,11,13,14,15,17,18,20,26] and others 
[3,4,9,12,16,19] support mixed task model. Similarly 
simulators in [1,2,3,6,7,8,11,15,19] are made for uni-processor 
platform and in [4,5,9,10,12,13,14,16,17,18,20,26] are made 
for multiprocessor/distributed platform. Task set generation 



module implemented in FORTAS [14], YARTISS [16], 
RTMultiSim [17], ERTSim [19], GEN4MAST [20] and 
SimSo [26] made use of UUniFast and UUniFast-Discard 
algorithms [21] for generating task sets. SimDVS [8], STORM 
[13], SPARTS [14] and YARTISS [16]  support energy 
optimization as well. Simulators in 
[5,6,9,10,11,13,14,15,16,18,20,26] are open source and rest 

are not open source. Table I shows additional details about 
these simulators such as  programming language, design 
methodology, processor model, performance analysis etc. It 
can be observed from table I that none of the simulators takes 
care of all the parameters. The proposed simulator, STREAM,  
deals with all the parameters except that it is not open source.

TABLE I. SUMMARY OF EXISTING SIMULATORS 

Sr.

No. 

Simulator Year Language Design Performance Analysis Scheduler Profiling 

1 STRESS [1] 1994 Domain 

Specific 

Language 

Pseudo code design  N N 

2  Generic 

Simulator [2]  

1996 C++ Complex, Non-Modular, Redundant , No 

flexibility to add new module 

N N 

3 GHOST [ 3] 1997 C Simple, Modular design, Flexibility to 

add new module 

N Trace Generator 

4 MAST [4] 2001 ADA-ayacc Modular, flexible to add new component Y Y 

5 RTSim [5] 2001 C++ - N N 

6 Java Simulator 

[6]  

2002 Java Modular, Concurrent programming, 

Independent Component design 

N N 

7 YASA [7] 2003 ANSI C Modular and Flexible, supports RT-

Linux and RTEMS 

Y N 

8 SimDVS [8] 2003 - 

 

Modular design, Flexible Energy  

Management  

N 

9 Cheddar [9] 2004 ADA Modular, Flexible, allows integration of 

third party components 

N N 

10 TORSCHE [10] 2006 Matlab/ 

Simulink 

Routine based design Timing Analysis N 

11 Realtss [11] 2007 C/C++/TCL Modular, flexibility to add new scheduler N N 

12 STORM [12] 2010 Java  OOPS design, Modular, Flexible, 

Extensible, Reusability 

N Statistical information: 

deadline miss count, power 

consumption etc 

13 FORTAS [13] 2011 Java Modular, flexible, Follows OOPS 

paradigm 

Comparison between 

different scheduler 

performance 

N 

14 SPARTS [14] 2011 Java Modular, flexible, Follows OOPS 

paradigm 

Execution time Vs. Task Set 

size, Simulation time 

analysis 

Scheduler overhead statistics 

15 omNET [15] 2012 C++ Modular CPU Utilization Vs. 

deadline size and deadline 

stolerance 

N 

16 Yartiss [16] 2012 Java  OOPS design, Modular, Flexible, 

Extensible, Reusability 

N Tracking Preemption points 

17 RTMultiSim 

[17] 

2012 - Follows STORM like design CPU utilization, parallelism 

degree 

N 

18 RealtssMP [18] 2013 C/C++/TCL Modular, flexibility to integrate new 

scheduler 

Y Tracking Preemption points, 

migration points, Deadline 

miss points 

19 ERTSim [19] 2013 C/C++ Modular and Structural paradigm of 

C/C++ 

Utilization upper bound test, 

Response Time Analysis, 

Processor Demand Analysis  

N 

20 GEN4MAST 

[20] 

2014 Python Modular, flexible CPU Utilization Analysis N 

21 SimSo [26] 2014 Python Modular Comparison between 

different scheduler 

performance 

Overhead calculation such as 

context switches, scheduling 

decisions, cache related 

preemption delays  



 

III. SYSTEM MODEL 
The system model includes task, processor and energy 

models used by different energy efficient real time scheduling 
algorithms. The real time scheduling algorithms that are 
implemented in STREAM consider multi-core system 
composed of m homogeneous processor cores and mixed task 
model which consist of preemptive and independent periodic 
as well as aperiodic tasks. Each periodic task is described by 
four attributes: arrival time, worst case execution time, period 
or inter-release time and deadline. All periodic tasks have 
implicit deadlines. An aperiodic task is described by two 
attributes: arrival time and worst case execution time.  

Energy consumption of a DVFS enabled CMOS-based 
processor consists of two components: dynamic energy 
(Edynamic) due to switching activities and static energy (Estatic) 
due to leakage current. Edynamic is a convex function of 
processor speed and contributes to the largest part of total 
energy consumed during instruction execution [22]. It can be 
expressed as follows: 

                       
                    (1) 

                       
             (2) 

 where, Pdynamic is dynamic power consumption,  Cef is 
the effective switching capacitance, Vdd is the supply voltage 
and f is the clock  frequency. For the DVFS scheduler, the 
frequency and voltage transition overheads are assumed to be 
negligibly small. The sum of dynamic energy consumption of 
the individual cores is taken as the total dynamic energy 
consumption of the multi-core processor. Table II shows the 
voltage and frequency settings of a synthetic processor which 
is used for the simulations. The voltage and frequency values 
of this synthetic processor are derived based on values taken 
from Intel Core i3-530 dual core processor [23] whose 
maximum frequency  is 2.93 GHz, voltage variation ranges 
from 0.6500V to 1.400V and maximum power consumption is 
101W. However, STREAM provides the flexibility to change 
the frequency/voltage settings as per user's requirement. 

 

TABLE II. FREQUENCY/VOLTAGE SETTINGS OF SYNTHETIC PROCESSOR 

Level Frequency (GHz) Voltage (V) 

0 2.93 1.4 

1 2.64 1.3 

2 2.05 1.1 

3 1.47 0.9 

4 1.17 0.8 

5 0.73 0.65 

 

IV. SOFTWARE ARCHITECTURE OF STREAM 

Software architecture of STREAM provides the overall 
view of the system. It describes modeling and relationship 
between the different software entities in the system. These 
software entities are categorized into four subsystems: system 
modeler, task set generator, scheduler/controllers and 
performance analyzer/scheduling profiler. System modeler 
provides necessary working environment to facilitate and 
bring together the sound and flexible execution behavior of 
the simulator. It encapsulates task model, multi-core processor 
model, partition manager and energy model. Task set 
generator is a separate sub system that is responsible for the  
generation of periodic and aperiodic tasks. It makes use of 
basic building blocks of system modeler. Performance 
analyzer/scheduling profiler provides the facility to analyze 
and view various statistical results of the scheduler such as 
scheduler log traces, analytical graphs etc. 
Scheduler/controller is surrounded by other three subsystems. 
Task set generator produces a task set which is given as input 
to scheduler/controller subsystem. It schedules the task set, 
generates the output and calculates the energy consumption. 
The results are shown with the help of performance analyzer. 
Figure 1 shows the architecture of STREAM in which 
relationship between different entities is broadly shown to 
visualize the overall flow of the system. 

 

 

 

 

 

 

 

 

 

Figure 1. Software Architecture of STREAM 

V.   ENTITY AND MODULE DESCRIPTION: 

The subsystems mentioned in the previous section are 
composed of different entities. This section presents the 
details of all these entities including their attributes, modules 
and relationships among them.  

A. System Modeler:  

This subsystem includes task model, processor model, 
energy profiler model and partition manager. The algorithms 
implemented by STREAM use a mix of periodic and aperiodic 

 



tasks. Hence task model includes the characteristics of both 
types of tasks and state transition details. The task state 
diagram shown in figure 2 gives the details of all the states in 
which a task may exist during execution. Tasks begin with a 
state called Zombie where it lives in static list of suspended 
tasks outside the execution environment. Upon arrival, it 
advances to a Ready state where it enters the ready queue of 
the system. Upon getting a turn, scheduler makes it eligible for 
execution on the processor (Running). This is depicted by a 
transition from Ready state to Running state. While running, a 
task may get preempted by arrival of a high priority task in 
which case the scheduler brings it back to Ready state and 
gives chance to a high priority task. On termination, a task is 
moved back to a Zombie state, where it waits until its next 
invocation (in case of periodic task) or it marks its finished 
status (in case of aperiodic task). Few scheduling algorithms  
may allow tasks to migrate from one processor core to another 
on preemption, for reasons such as reducing the response time. 
This state is depicted in dotted lines (indicating that it’s a 
scheduler specific implementation) and is called as Migrated 
Ready.  On migration, it follows the same fundamental state 
behavior as explained above. 

The task model is represented as generic class which is 
extended to add specific task type such as periodic and 
aperiodic task type. In order to perform the state transitions 
during execution, different functionalities are implemented. 
They are getArivalTime(), getWCET(), getPeriod(), 
getNextDeadline(), isRunning(), isPreempted(), isFinished() 
etc. 

Processor model represents virtual processor entity, the 
instance of which represents one processor core. It maintains a 
static list of periodic tasks and dynamic list of periodic as well 
as aperiodic jobs. It performs important functionalities such as 
calculation of core utilization at each scheduling point (here 
scheduling point refers to either arrival of a higher priority job 
or completion event), maintaining the record of execution 
frequency, count of idle and busy time etc. Some of these 
functionalities are named as: getTaskset(), getReadyList(), 
populateReadyList(), getLocalTime(), getCoreUtil() and 
getCurrentFrequency(). It also includes an abstract energy 
profile class which is a Map like structure providing <key, 
value> construct. The key is represented as frequency level 
while the value is represented by the corresponding voltage at 
that frequency level. This class can be extended to provide an 
energy profile of a real energy specification or synthesized 
energy specification of standard processor model of intel, 
ARM, AMD etc. The functionalities of energy profile class 
include getVoltage(), getNearAbsoluteFrequency(), 
getEnergyProfile(), getCapacitance(), getUnitEnergy() etc. 

In order to apply partition scheme, partition manager class 
is written that provides different partitioning schemes such as 
first fit, worst fit, best fit [24] etc. Algorithms implemented in 
STREAM follow partition approach for periodic tasks and 
global approach for aperiodic tasks in which aperiodic job can 
migrate to other core upon its preemption. In addition, one 
more abstract method is written which can be overridden to 
provide custom implementation of the partition scheme. 

 
Figure 2. Task State Transition Diagram 

B. Task set Generator:  

Task set generator is a separate subsystem which is 
responsible for generating synthetic task sets.  Figure 3 shows 
the implementation of synthetic task set generation. The 
attributes of task set generator class are shown in a separate 
box in the flow chart in figure 3. The task set generation 
algorithm is responsible for generating periodic and aperiodic 
tasks. Each iteration in the flow chart generates one mixed 
task set. For generating periodic/aperiodic tasks, it makes use 
of two algorithms: RandFixedSum and UUniFast-Discard 
[21]. RandFixedSum algorithm generates a vector of 
uniformly distributed utilization values such that the sum of 
those utilization values is equal to periodic/aperiodic load. 
UUniFast-Discard algorithm is used to discard those 
utilization values that are exceeding 1 in case of periodic task. 
Period of each periodic task is chosen to be a random number 
such that it is a natural factor of a given hyper period value. 
Rest of the task attributes are calculated using UUniFast 
algorithm. Arrival time of the aperiodic task is obtained as a 
random number over a hyper period and the minimum inter-
arrival time between two aperiodic tasks is not more than 5% 
to 10% of hyper period. The WCET of aperiodic task is 
calculated as a product of utilization value and the time left till 
the hyper period from its arrival. The synthetic task generator 
generates periodic tasks for a wide range of utilization: 30% to 
80% and aperiodic tasks utilization is based on the remaining 
utilization of processor. The number of periodic tasks in a task 
set are ranging from 2 to 20 and aperiodic tasks in a task set 
ranges from 2 to 5 for the purpose of simulation but STREAM 
has the flexibility to generate even more number of tasks. For 
each class of fixed number of tasks and utilization, 100 task 
sets are generated.  

Task set generator is implemented as a generic interface 
that provides the flexibility of adding new task set generator 
algorithms. 

C.  Schedulers, Servers and Controllers: 

In the proposed simulation tool, various flavors of 
dynamic priority schedulers have been implemented. Though 
the current version of STREAM do not focus on fixed priority 
scheduling techniques, it provides the flexibility to add new 
schedulers. The schedulers currently implemented in 
STREAM are all based on EDF scheduling policy. The 
aperiodic servers currently implemented are TBS and DS. To 



make these schedulers energy efficient, a dynamic energy 
optimization technique namely, DVFS is implemented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Task Set Generator Flow Chart 

The flexible design of simulator allows execution of 
different schedulers separately as well as they can execute in 
combination with different aperiodic servers and energy 
controllers depending upon the user requirement. For 
example, if a user wants to execute non energy aware 
scheduler for hard real time tasks, then EDF can be selected or 
if a user wants to execute energy aware scheduler for mixed 
task set, then a combination of EDF, TBS and DVFS can be 
selected. The scheduler, aperiodic server and energy controller 
are implemented as java interface that makes them easy to add 
new scheduling policy, another aperiodic server or any other 
energy optimization policy (e.g. Dynamic Power 
Management).  

Figure 4 shows the detailed class diagram of the 
simulation core which includes scheduler, server and energy 
controller. EDF scheduling policy is implemented with two 
different aperiodic servers: TBS and DS. Utilization update 
[27], a DVFS technique is implemented for optimizing 
dynamic energy of cores. Aperiodic jobs are executed at 
maximum frequency in case of DVFS and are allowed to 
migrate to a processor core with minimum utilization in order 
to achieve minimum response time.  

D.  Results, Performance Analyzer and Profiler: 

A separate subsystem is made for displaying the results, 
scheduler profiling and performance analysis. Scheduler 
profiler is used to test the validity and correctness of the 
scheduler. It generates the log traces in the background of the 
scheduler and records the details of every single scheduler 
event. This log trace provides the detailed action of events 
which happened at a particular time within one hyper period. 
Besides this, it generates per-core execution flow by tracking 
down all the state transitions of tasks at every unit of time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Simulation Core 

This per-core execution flow is useful to find out various 
statistical information such as idle/busy percentage of 
processor time. It also generates energy statistics according to 
the employed energy scheme. For example, in case of DVFS, 
detailed information of frequency-voltage scaling is recorded 
for every scheduling decision over a hyper period. 

Analyzing the performance of scheduler output is very 
important in order to study behavior and working of 
schedulers. STREAM provides many run time analysis 
options that makes the whole design attractive and easy to 
handle. It also provides a visual plotter tool to display the 
analysis graphically. Figure 5 shows sample output from 
STREAM. Following are the different runtime analysis 
options that can be switched on or off as per requirement.  

- Task runtime execution and behavior analysis: This 
includes tracking state of the tasks at various points of 
execution, counting task’s decision points such as arrival 
points, completion points, preemption points etc., 
measuring the response time of tasks etc. 
- Processor Runtime Statistics: This includes tracking 
of processor busy/idle time statistics, logging the 
operational state (e.g. powered, shutdown, suspended etc.) 
of individual core at various points of schedule, logging 
run time energy consumption statistics for individual core 
as calculated by specified energy model, logging per-core 
cache memory behavior for its hot access and cold access 
over the entire schedule.  

 

 



- Scheduler overhead analysis: This includes 
measuring the extra cost of execution incurred by a 
scheduler program in addition to above two analysis. This 
extra cost includes the time taken by scheduler program to 
invoke various scheduling decisions such as time required 
for task’s state transition, to handle preemption, to change 
processor parameters like frequency/voltage settings, 
cache impact detection, ready job queues etc. 

 

 

 

 

 

 

 

 

Figure 5. Example graph produced by plotter tool: Normalized Energy 
Consumption Vs. Utilization 

VI. CONCLUSION 

This paper proposed a simulation tool - STREAM, for 
simulation of energy efficient real time scheduling algorithms 
for mixed task set on multi-core processors. It provides 
simulation of different real time scheduling techniques for 
periodic as well as mixed task set. It also has a separate 
module for generation of mixed task set. Efficient visual 
display is provided to view scheduler log traces and profiling 
results. A graph plotter is provided to visualize the 
performance analysis of different schedulers. The energy 
efficient schedulers implemented in this simulator currently 
does not take care of static energy optimization. The future 
work focuses on implementation of leakage aware scheduling 
algorithms for mixed task set. 
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