
STREAM: A Simulation Tool for Energy Efficient

Real Time Scheduling and Analysis

Mayuri Digalwar Pravin Gahukar Sudeept Mohan Biju K. Raveendran
Department of Computer Science and Information Systems

Birla Institute of Technology and Science, Pilani, India

Abstract: This paper proposes an automation tool - STREAM,
for simulation, testing and analysis of energy aware real time
scheduling algorithms for periodic as well as mixed task sets on
multi-core processor. The key features of STREAM include
implementation of scheduling algorithms, synthetic task set
generation, modules for doing performance analysis and
generation of execution traces. The simulator design is made
simple, understandable and flexible such that addition of new
algorithms or modification to existing algorithms can be done
with minimum efforts. Testing of modules is carried out on
randomly generated task sets. STREAM facilitates the
comparative performance analysis of different scheduling
algorithms on uniprocessor, multiprocessor or multi-core
processor platforms. A graph plotter is provided to visualize the
performance analysis of different scheduling algorithms.

Keywords: real time scheduling, simulation tool, dynamic voltage
and frequency scaling, mixed task set.

I. INTRODUCTION

Real time systems are deterministic by nature where the
real time tasks need to meet hard deadlines. The real time
scheduling algorithms play major role for maintaining the
timing constraints of the tasks. Therefore, correctness of these
scheduling algorithms should be tested before deploying them
on the real system. This validation can be carried out either
theoretically, experimentally or using simulation. Simulation
is one of the methods eventually used in real time systems
community for validation of real time scheduling algorithms
when formal analysis is not possible.

 Majority of the researchers in real time systems
community evaluate correctness of new algorithms by using
simulation on randomly generated task sets. As a results,
number of simulation tools have been developed in last few
years, some of which are discussed in next section. Most of
these simulators simulate scheduling algorithms that are
energy aware and schedule independent periodic task sets [1,
2, 4, 14, 16, 17, 19, 20]. A few simulators have capability of
simulating energy efficient scheduling algorithm for mixed
task sets containing a mix of periodic and aperiodic tasks on
multi-core processor. Also in most of the simulators, the
quality of service (QoS) parameters such as good
documentation, flexibility to add new modules, performance
analyzer, task set generator etc are not incorporated.

 This paper presents an easy to use and well documented
simulation tool called STREAM that can simulate energy
aware real time scheduling algorithms for mixed work load on

multi-core processor by incorporating majority of QoS
parameters. Energy optimization is carried using dynamic
voltage and frequency scaling (DVFS) technique. STREAM
stands for "Simulation Tool for Real time Energy efficient
scheduling and Analysis for Multi-core processors". It
includes implementation of Earliest Deadline First (EDF),
EDF with Deferrable Server (DS), EDF with Total Bandwidth
Server (TBS), DVFS based EDF with DS (EEDFVS [25]) and
DVFS based EDF with TBS algorithms for uniprocessor and
multi-core processor platforms. It has modules to generate
synthetic task set and to calculate various performance metrics
such as energy consumption, aperiodic task's response times
etc. The analytical results of the algorithms can be visualized
by plotting different graphs.

 STREAM is written in java programming language that
makes use of object oriented paradigm. The modules are
organized in such a way that highly specific or similar objects
are grouped inside a single package. This helps new
programmers to quickly track the required module by
navigating the group hierarchy. The Graphical User Interface
(GUI) of simulator is very user friendly and is easy to explore
and use. The use of abstract classes facilitate addition of new
modules in the current version of simulator.

Rest of the paper is organized as follows. Section II
summarizes existing simulations tools. Section III briefly
describes the system model which includes task, processor and
energy models. Section IV presents the proposed simulator
architecture that explains overall simulator design, task set
generation method, details of simulation core and
performance analyzer. Section V provides description of all
the entities and related modules. Finally, section VI concludes
the paper and states the future directions.

II. RELATED WORK

Real time scheduling is well established in literature.
Many of these algorithms are validated using simulation. This
section presents the survey of existing simulation tools.

Table I summarizes over 21 simulation tools existing in
the literature. Some of these simulators support only periodic
task model [1,2,5,6,7,8,10,11,13,14,15,17,18,20,26] and others
[3,4,9,12,16,19] support mixed task model. Similarly
simulators in [1,2,3,6,7,8,11,15,19] are made for uni-processor
platform and in [4,5,9,10,12,13,14,16,17,18,20,26] are made
for multiprocessor/distributed platform. Task set generation

module implemented in FORTAS [14], YARTISS [16],
RTMultiSim [17], ERTSim [19], GEN4MAST [20] and
SimSo [26] made use of UUniFast and UUniFast-Discard
algorithms [21] for generating task sets. SimDVS [8], STORM
[13], SPARTS [14] and YARTISS [16] support energy
optimization as well. Simulators in
[5,6,9,10,11,13,14,15,16,18,20,26] are open source and rest

are not open source. Table I shows additional details about
these simulators such as programming language, design
methodology, processor model, performance analysis etc. It
can be observed from table I that none of the simulators takes
care of all the parameters. The proposed simulator, STREAM,
deals with all the parameters except that it is not open source.

TABLE I. SUMMARY OF EXISTING SIMULATORS

Sr.

No.

Simulator Year Language Design Performance Analysis Scheduler Profiling

1 STRESS [1] 1994 Domain

Specific

Language

Pseudo code design N N

2 Generic

Simulator [2]

1996 C++ Complex, Non-Modular, Redundant , No

flexibility to add new module

N N

3 GHOST [3] 1997 C Simple, Modular design, Flexibility to

add new module

N Trace Generator

4 MAST [4] 2001 ADA-ayacc Modular, flexible to add new component Y Y

5 RTSim [5] 2001 C++ - N N

6 Java Simulator

[6]

2002 Java Modular, Concurrent programming,

Independent Component design

N N

7 YASA [7] 2003 ANSI C Modular and Flexible, supports RT-

Linux and RTEMS

Y N

8 SimDVS [8] 2003 -

Modular design, Flexible Energy

Management

N

9 Cheddar [9] 2004 ADA Modular, Flexible, allows integration of

third party components

N N

10 TORSCHE [10] 2006 Matlab/

Simulink

Routine based design Timing Analysis N

11 Realtss [11] 2007 C/C++/TCL Modular, flexibility to add new scheduler N N

12 STORM [12] 2010 Java OOPS design, Modular, Flexible,

Extensible, Reusability

N Statistical information:

deadline miss count, power

consumption etc

13 FORTAS [13] 2011 Java Modular, flexible, Follows OOPS

paradigm

Comparison between

different scheduler

performance

N

14 SPARTS [14] 2011 Java Modular, flexible, Follows OOPS

paradigm

Execution time Vs. Task Set

size, Simulation time

analysis

Scheduler overhead statistics

15 omNET [15] 2012 C++ Modular CPU Utilization Vs.

deadline size and deadline

stolerance

N

16 Yartiss [16] 2012 Java OOPS design, Modular, Flexible,

Extensible, Reusability

N Tracking Preemption points

17 RTMultiSim

[17]

2012 - Follows STORM like design CPU utilization, parallelism

degree

N

18 RealtssMP [18] 2013 C/C++/TCL Modular, flexibility to integrate new

scheduler

Y Tracking Preemption points,

migration points, Deadline

miss points

19 ERTSim [19] 2013 C/C++ Modular and Structural paradigm of

C/C++

Utilization upper bound test,

Response Time Analysis,

Processor Demand Analysis

N

20 GEN4MAST

[20]

2014 Python Modular, flexible CPU Utilization Analysis N

21 SimSo [26] 2014 Python Modular Comparison between

different scheduler

performance

Overhead calculation such as

context switches, scheduling

decisions, cache related

preemption delays

III. SYSTEM MODEL
The system model includes task, processor and energy

models used by different energy efficient real time scheduling
algorithms. The real time scheduling algorithms that are
implemented in STREAM consider multi-core system
composed of m homogeneous processor cores and mixed task
model which consist of preemptive and independent periodic
as well as aperiodic tasks. Each periodic task is described by
four attributes: arrival time, worst case execution time, period
or inter-release time and deadline. All periodic tasks have
implicit deadlines. An aperiodic task is described by two
attributes: arrival time and worst case execution time.

Energy consumption of a DVFS enabled CMOS-based
processor consists of two components: dynamic energy
(Edynamic) due to switching activities and static energy (Estatic)
due to leakage current. Edynamic is a convex function of
processor speed and contributes to the largest part of total
energy consumed during instruction execution [22]. It can be
expressed as follows:

 (1)

 (2)

 where, Pdynamic is dynamic power consumption, Cef is
the effective switching capacitance, Vdd is the supply voltage
and f is the clock frequency. For the DVFS scheduler, the
frequency and voltage transition overheads are assumed to be
negligibly small. The sum of dynamic energy consumption of
the individual cores is taken as the total dynamic energy
consumption of the multi-core processor. Table II shows the
voltage and frequency settings of a synthetic processor which
is used for the simulations. The voltage and frequency values
of this synthetic processor are derived based on values taken
from Intel Core i3-530 dual core processor [23] whose
maximum frequency is 2.93 GHz, voltage variation ranges
from 0.6500V to 1.400V and maximum power consumption is
101W. However, STREAM provides the flexibility to change
the frequency/voltage settings as per user's requirement.

TABLE II. FREQUENCY/VOLTAGE SETTINGS OF SYNTHETIC PROCESSOR

Level Frequency (GHz) Voltage (V)

0 2.93 1.4

1 2.64 1.3

2 2.05 1.1

3 1.47 0.9

4 1.17 0.8

5 0.73 0.65

IV. SOFTWARE ARCHITECTURE OF STREAM

Software architecture of STREAM provides the overall
view of the system. It describes modeling and relationship
between the different software entities in the system. These
software entities are categorized into four subsystems: system
modeler, task set generator, scheduler/controllers and
performance analyzer/scheduling profiler. System modeler
provides necessary working environment to facilitate and
bring together the sound and flexible execution behavior of
the simulator. It encapsulates task model, multi-core processor
model, partition manager and energy model. Task set
generator is a separate sub system that is responsible for the
generation of periodic and aperiodic tasks. It makes use of
basic building blocks of system modeler. Performance
analyzer/scheduling profiler provides the facility to analyze
and view various statistical results of the scheduler such as
scheduler log traces, analytical graphs etc.
Scheduler/controller is surrounded by other three subsystems.
Task set generator produces a task set which is given as input
to scheduler/controller subsystem. It schedules the task set,
generates the output and calculates the energy consumption.
The results are shown with the help of performance analyzer.
Figure 1 shows the architecture of STREAM in which
relationship between different entities is broadly shown to
visualize the overall flow of the system.

Figure 1. Software Architecture of STREAM

V. ENTITY AND MODULE DESCRIPTION:

The subsystems mentioned in the previous section are
composed of different entities. This section presents the
details of all these entities including their attributes, modules
and relationships among them.

A. System Modeler:

This subsystem includes task model, processor model,
energy profiler model and partition manager. The algorithms
implemented by STREAM use a mix of periodic and aperiodic

tasks. Hence task model includes the characteristics of both
types of tasks and state transition details. The task state
diagram shown in figure 2 gives the details of all the states in
which a task may exist during execution. Tasks begin with a
state called Zombie where it lives in static list of suspended
tasks outside the execution environment. Upon arrival, it
advances to a Ready state where it enters the ready queue of
the system. Upon getting a turn, scheduler makes it eligible for
execution on the processor (Running). This is depicted by a
transition from Ready state to Running state. While running, a
task may get preempted by arrival of a high priority task in
which case the scheduler brings it back to Ready state and
gives chance to a high priority task. On termination, a task is
moved back to a Zombie state, where it waits until its next
invocation (in case of periodic task) or it marks its finished
status (in case of aperiodic task). Few scheduling algorithms
may allow tasks to migrate from one processor core to another
on preemption, for reasons such as reducing the response time.
This state is depicted in dotted lines (indicating that it’s a
scheduler specific implementation) and is called as Migrated
Ready. On migration, it follows the same fundamental state
behavior as explained above.

The task model is represented as generic class which is
extended to add specific task type such as periodic and
aperiodic task type. In order to perform the state transitions
during execution, different functionalities are implemented.
They are getArivalTime(), getWCET(), getPeriod(),
getNextDeadline(), isRunning(), isPreempted(), isFinished()
etc.

Processor model represents virtual processor entity, the
instance of which represents one processor core. It maintains a
static list of periodic tasks and dynamic list of periodic as well
as aperiodic jobs. It performs important functionalities such as
calculation of core utilization at each scheduling point (here
scheduling point refers to either arrival of a higher priority job
or completion event), maintaining the record of execution
frequency, count of idle and busy time etc. Some of these
functionalities are named as: getTaskset(), getReadyList(),
populateReadyList(), getLocalTime(), getCoreUtil() and
getCurrentFrequency(). It also includes an abstract energy
profile class which is a Map like structure providing <key,
value> construct. The key is represented as frequency level
while the value is represented by the corresponding voltage at
that frequency level. This class can be extended to provide an
energy profile of a real energy specification or synthesized
energy specification of standard processor model of intel,
ARM, AMD etc. The functionalities of energy profile class
include getVoltage(), getNearAbsoluteFrequency(),
getEnergyProfile(), getCapacitance(), getUnitEnergy() etc.

In order to apply partition scheme, partition manager class
is written that provides different partitioning schemes such as
first fit, worst fit, best fit [24] etc. Algorithms implemented in
STREAM follow partition approach for periodic tasks and
global approach for aperiodic tasks in which aperiodic job can
migrate to other core upon its preemption. In addition, one
more abstract method is written which can be overridden to
provide custom implementation of the partition scheme.

Figure 2. Task State Transition Diagram

B. Task set Generator:

Task set generator is a separate subsystem which is
responsible for generating synthetic task sets. Figure 3 shows
the implementation of synthetic task set generation. The
attributes of task set generator class are shown in a separate
box in the flow chart in figure 3. The task set generation
algorithm is responsible for generating periodic and aperiodic
tasks. Each iteration in the flow chart generates one mixed
task set. For generating periodic/aperiodic tasks, it makes use
of two algorithms: RandFixedSum and UUniFast-Discard
[21]. RandFixedSum algorithm generates a vector of
uniformly distributed utilization values such that the sum of
those utilization values is equal to periodic/aperiodic load.
UUniFast-Discard algorithm is used to discard those
utilization values that are exceeding 1 in case of periodic task.
Period of each periodic task is chosen to be a random number
such that it is a natural factor of a given hyper period value.
Rest of the task attributes are calculated using UUniFast
algorithm. Arrival time of the aperiodic task is obtained as a
random number over a hyper period and the minimum inter-
arrival time between two aperiodic tasks is not more than 5%
to 10% of hyper period. The WCET of aperiodic task is
calculated as a product of utilization value and the time left till
the hyper period from its arrival. The synthetic task generator
generates periodic tasks for a wide range of utilization: 30% to
80% and aperiodic tasks utilization is based on the remaining
utilization of processor. The number of periodic tasks in a task
set are ranging from 2 to 20 and aperiodic tasks in a task set
ranges from 2 to 5 for the purpose of simulation but STREAM
has the flexibility to generate even more number of tasks. For
each class of fixed number of tasks and utilization, 100 task
sets are generated.

Task set generator is implemented as a generic interface
that provides the flexibility of adding new task set generator
algorithms.

C. Schedulers, Servers and Controllers:

In the proposed simulation tool, various flavors of
dynamic priority schedulers have been implemented. Though
the current version of STREAM do not focus on fixed priority
scheduling techniques, it provides the flexibility to add new
schedulers. The schedulers currently implemented in
STREAM are all based on EDF scheduling policy. The
aperiodic servers currently implemented are TBS and DS. To

make these schedulers energy efficient, a dynamic energy
optimization technique namely, DVFS is implemented.

Figure 3. Task Set Generator Flow Chart

The flexible design of simulator allows execution of
different schedulers separately as well as they can execute in
combination with different aperiodic servers and energy
controllers depending upon the user requirement. For
example, if a user wants to execute non energy aware
scheduler for hard real time tasks, then EDF can be selected or
if a user wants to execute energy aware scheduler for mixed
task set, then a combination of EDF, TBS and DVFS can be
selected. The scheduler, aperiodic server and energy controller
are implemented as java interface that makes them easy to add
new scheduling policy, another aperiodic server or any other
energy optimization policy (e.g. Dynamic Power
Management).

Figure 4 shows the detailed class diagram of the
simulation core which includes scheduler, server and energy
controller. EDF scheduling policy is implemented with two
different aperiodic servers: TBS and DS. Utilization update
[27], a DVFS technique is implemented for optimizing
dynamic energy of cores. Aperiodic jobs are executed at
maximum frequency in case of DVFS and are allowed to
migrate to a processor core with minimum utilization in order
to achieve minimum response time.

D. Results, Performance Analyzer and Profiler:

A separate subsystem is made for displaying the results,
scheduler profiling and performance analysis. Scheduler
profiler is used to test the validity and correctness of the
scheduler. It generates the log traces in the background of the
scheduler and records the details of every single scheduler
event. This log trace provides the detailed action of events
which happened at a particular time within one hyper period.
Besides this, it generates per-core execution flow by tracking
down all the state transitions of tasks at every unit of time.

Figure 3. Simulation Core

This per-core execution flow is useful to find out various
statistical information such as idle/busy percentage of
processor time. It also generates energy statistics according to
the employed energy scheme. For example, in case of DVFS,
detailed information of frequency-voltage scaling is recorded
for every scheduling decision over a hyper period.

Analyzing the performance of scheduler output is very
important in order to study behavior and working of
schedulers. STREAM provides many run time analysis
options that makes the whole design attractive and easy to
handle. It also provides a visual plotter tool to display the
analysis graphically. Figure 5 shows sample output from
STREAM. Following are the different runtime analysis
options that can be switched on or off as per requirement.

- Task runtime execution and behavior analysis: This
includes tracking state of the tasks at various points of
execution, counting task’s decision points such as arrival
points, completion points, preemption points etc.,
measuring the response time of tasks etc.
- Processor Runtime Statistics: This includes tracking
of processor busy/idle time statistics, logging the
operational state (e.g. powered, shutdown, suspended etc.)
of individual core at various points of schedule, logging
run time energy consumption statistics for individual core
as calculated by specified energy model, logging per-core
cache memory behavior for its hot access and cold access
over the entire schedule.

- Scheduler overhead analysis: This includes
measuring the extra cost of execution incurred by a
scheduler program in addition to above two analysis. This
extra cost includes the time taken by scheduler program to
invoke various scheduling decisions such as time required
for task’s state transition, to handle preemption, to change
processor parameters like frequency/voltage settings,
cache impact detection, ready job queues etc.

Figure 5. Example graph produced by plotter tool: Normalized Energy
Consumption Vs. Utilization

VI. CONCLUSION

This paper proposed a simulation tool - STREAM, for
simulation of energy efficient real time scheduling algorithms
for mixed task set on multi-core processors. It provides
simulation of different real time scheduling techniques for
periodic as well as mixed task set. It also has a separate
module for generation of mixed task set. Efficient visual
display is provided to view scheduler log traces and profiling
results. A graph plotter is provided to visualize the
performance analysis of different schedulers. The energy
efficient schedulers implemented in this simulator currently
does not take care of static energy optimization. The future
work focuses on implementation of leakage aware scheduling
algorithms for mixed task set.

REFERENCES

[1] N. C. Audsley, A. Burns, M. F. Richardson and A. J. Wellings,

“STRESS: a simulator for hard real-time systems”, Software Practice

and Experience, 24(6), pp. 543–564, June 1994.
[2] S. D. Vroey, J. Goossens, C. Hernalsteen, "A generic simulator of real-

time scheduling algorithms", Proceedings of the 29th Annual Simulation

Symposium, pp. 242-249, 8-11 Apr 1996.
[3] Sensini, Fabrizio, G. Buttazzo, and P. Ancilotti. "Ghost: A tool for

simulation and analysis of real-time scheduling algorithms",

Proceedings of the IEEE Real-Time Educational Workshop, 1997.
[4] M. G. Harbour, J. J. G. Garcia, J. C. P. Gutierrez, J. M. Drake, “MAST:

Modeling and analysis suite for real time applications", 13th Euromicro

Conference on Real-Time Systems, pp.125,134, 2001.
[5] A. Manacero, M. B. Miola, V. A. Nabuco, "Teaching real-time with a

scheduler simulator", 31st Annual Frontiers in Education Conference,
vol.2, no., pp.T4D,15-19, 2001.

[6] G. Jakovljevic, Z. Rakamaric, D. Babic, " Java Simulator of Real-Time

Scheduling Algorithms ", 24th International Conference on Information
Technology Interfaces, June 24-27, Cavtat, Croatia, 2002.

[7] Blumenthal, Jan, et al. "YASA-A Framework for Validation, Test, and

Analysis of Real-Time Scheduling Algorithms." Proceedings of 5th
Real-Time Linux Workshop. 2003.

[8] D.Shin, W. Kim, J. Jeon, J. Kim, and S. L. Min, "SimDVS: An

Integrated Simulation Environment for Performance Evaluation of

Dynamic Voltage and Frequency Scaling Algorithms", PACS 2002, pp.

141–156, Springer 2003.
[9] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a Flexible

Real Time Scheduling Framework”, in Proc. of SIGAda, 2004.

[10] Sucha, Premysl, et al. "Torsche scheduling toolbox for matlab",
Computer Aided Control System Design, 2006 IEEE International

Conference on Control Applications, 2006 IEEE International

Symposium on Intelligent Control, 2006.
[11] A. Diaz, R. Batista, O. Castro, "Realtss: a real-time scheduling

simulator", 4th International Conference on Electrical and Electronics

Engineering, pp. 165 - 168, 2007.
[12] R. Urunuela, A.-M. Déplanche, and Y. Trinquet, “STORM: a

Simulation Tool for Real-time Multiprocessor Scheduling Evaluation”,

GDR SOC SIP, p. 1, 2009.
[13] P. Courbin and L. George, “FORTAS: Framework fOr Real-Time

Analysis and Simulation”, Proceedings of the 2nd International

Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems, pp. 21–26, 2011.

[14] B. Nikolic, M.A. Awan, S.M. Petters, "SPARTS: Simulator for Power

Aware and Real-Time Systems," 10th International Conference on

Trust, Security and Privacy in Computing and Communications,

pp.999,1004, 16-18 Nov. 2011.

[15] Z. Khalib, B. Ahmad, O. Bi, "Performance Analysis of a Non-
preemptive Dynamic Soft Real Time Scheduler Using Discrete Event

Simulator", Computational Intelligence, Modelling and Simulation,

2012 Fourth International Conference on , pp.182,187, 25-27 Sept.
2012.

[16] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, and M. Qamhieh,
"YARTISS: A tool to visualize, test, compare and evaluate real-time

scheduling algorithms,” Proceedings of the 3rd International Workshop

on Analysis Tools and Methodologies for Embedded and Real-time
Systems, Pisa (Italy), 2012.

[17] Hangan, Anca, and G. Sebestyen. "RTMultiSim: A Versatile Simulator

for Multiprocessor Real-Time Systems." Proceedings of the 3rd
International Workshop on Analysis Tools and Methodologies for

Embedded and Real-time Systems, Pisa (Italy). 2012.

[18] A. D. Ramirez, D. K. Orduno, P. M. Alvarez, "A multiprocessor real-
time scheduling simulation tool," 22nd International Conference on

Electrical Communications and Computers, pp.157,161, 27-29 Feb.

2012.
[19] A.S. Pillai, T.B. Isha, "ERTSim: An embedded real-time task simulator

for scheduling", IEEE International Conference on Computational

Intelligence and Computing Research, pp.1-4, 26-28 Dec. 2013.
[20] J. M. Rivas, J. J. Gutiérrez, and M. G. Harbour, "GEN4MAST: A Tool

for the Evaluation of Real-Time Techniques Using a Supercomputer.",

Proceedings of 3rd International Workshop on Real Time and Distributed
Computing in Emerging Applications co-located with 34th IEEE Real

Time Systems Symposium, Dec 2014.
[21] P. Emberson, R. Stafford, R. I. Davis, "Techniques For The Synthesis

Of Multiprocessor Tasksets", 1st International Workshop on Analysis

Tools and Methodologies for Embedded and Real-time Systems, 2010.
[22] T.D. Burd, R. W. Brodersen, "Energy efficient CMOS microprocessor

design", System Sciences, Proceedings of the Twenty-Eighth Hawaii

International Conference, pp.288-297, 3-6 Jan 1995.
[23] http://cpuboss.com/cpu/Intel-Core-i3-530.

[24] R. I. Davis and A. Burns, "A survey of hard real-time scheduling for

multiprocessor systems." ACM Computing Survey. 43, 4, Article 35,
October 2011.

[25] Digalwar, M., Mohan, S., Raveendran, B.K., "Dynamic voltage and

frequency scaling scheduling algorithm for mixed task set," 8th IEEE
International Conference on Industrial and Information Systems,

pp.643,648, 17-20 Dec. 2013.

[26] M. Chéramy, P.-E. Hladik, and A.-M. Déplanche. "SimSo: A simulation
tool to evaluate real-time multiprocessor scheduling algorithms." In

Proceedings of the 5th International Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems, 2014.
[27] Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power

embedded operating systems. In Proc. ACM Symposium on Operating

Systems Principles, 2001.

