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The progress and comparability of real-time analysis methods 
that are applicable to real-world is slowed by the absence of 
realistic benchmarks, mainly due to intellectual property (IP) 
concerns. We propose a method that supports the generation of 
realistic but IP free benchmark sets. Further, we provide the 
application characteristics of a specific real-world automotive 
software system.   
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I.  INTRODUCTION 
A large quantity of innovative functionalities in modern 

automotive systems are realized using significant amounts of 
software technologies. As a consequence the job of integrating 
many different applications onto the same target platform has 
grown to a more and more complex and time consuming task. 
One important tool for guaranteeing the correctness of the 
dynamic behavior of the integrated system, especially for the 
cyber physical parts, is timing analysis. 

There exists a large body of work in the domain of worst-
case timing (or real-time) analysis. Each method assumes 
specific application and platform models addressing a subset 
of existing real-world timing effects. For cases where the 
application and platform models are simple enough, maximum 
utilization bounds can be derived to decide whether or not a 
given system adheres to some predefined real-time constraints. 
Prominent examples for this kind of analyses are, for instance, 
the work of Liu and Layland for independent periodic task sets 
under rate-monotonic fixed priority scheduling on a single 
core platform [1], or the work of Dertouzos on earliest 
deadline first (EDF) scheduling [2]. An overview of 
extensions on those basic works can be found under [3]. More 
complex application and platform models are addressed by 
approached based on the so-called busy window analysis 
combined with reasoning about the critical instant as proposed 
by Lehoczky [4]. As of today there exist proprietary industry 
strength tools based on that approach, such as SymTA/S, that 
are capable of analyzing most timing effects in current 
automotive systems. However, the detailed analysis 
techniques in those tools are not published, and thus, not 
accessible for the real-time research community.  

As a result, there currently exist only few directly 
applicable tools and approaches that can cope with the 
complexity of the dynamic behavior in modern automotive 
systems. Therefore, simulation based methods are very 
popular albeit time consuming and inherently unsafe, which is 

unsatisfactory given the potential for front loading with formal 
analysis techniques. 

Due to the introduction of multi-core execution platforms, 
the risk of divergence between academic research and 
industrial practice is currently increasing. The reason is the 
strongly increased problem space for timing analysis induced 
by multi-core systems. 

Extending existing approaches is very challenging since 
the system structure and the dynamic system behavior of 
automotive systems is very complex. The reasons are 
manifold:  

• Control of many physical processes with strongly 
varying dynamics  

• Co-existence of sampled and reactive system parts 

• Different time domains (e.g. crank angle, timers, 
incoming network traffic) leading to complex 
scheduling situations 

• Numerous complex communication dependencies 
between functional entities in different time domains 
due to high coupling which is due to physical 
dependencies 

• Sophisticated platform mechanisms influencing the 
dynamic behavior (cooperative tasks for saving stack 
space, automated copy mechanisms for data 
consistency, etc.) 

There exist some tools that address the generation of 
synthetic applications for benchmark purposes that are worth 
being mentioned here. For instance, the Task Graphs for Free 
(TGFF) tool [8] generates a set of random independent task 
trees. Thereby, the structure of the generated task trees is very 
general, and could most likely be tweaked to fit the structure 
of automotive applications. This paper can help to do the 
mapping of the TGFF model to automotive application model 
including a sensible parameterization. However, TGFF lacks a 
model for memory accesses that can contribute (depending on 
the mapping decisions) massively to the execution times 
especially in multi-core systems. 

Another tool for generating synthetic applications models 
is called System Models for Free (SMFF) [9]. The SMFF tool 
focuses on generating models that are “ready for scheduling 
analysis”. For that purpose, it generates (in contrast to TGFF) 
not only an application graph, but also a platform graph 
consisting of computational and communication resources. 



Additionally, a mapping of task and communication links to 
the platform graph along with scheduling parameters is 
generated. Overall, it might be hard to use SMFF to generate 
benchmarks representing typical automotive system. The main 
reason is that important structural application and platform 
elements are not represented in the application and platform 
models. 

The goal of this paper is to give an insight into the 
structure of typical automotive real-time software systems, 
along with challenges for research into relevant novel analysis 
techniques. To that end, the paper presents characteristics of 
an application with real-world complexity which is applicable 
to many control dominated application domains at Bosch. 
Based on these characteristics, real-time research groups are 
capable of generating expressive benchmarks for their real-
time research without IP limitations. 

II. AUTOMOTIVE APPLICATIONS 

A. Structure 
In automotive systems software is structured into 

components, e.g. AUTOSAR [7] Software Components. 
Components which can’t be decomposed further are called 
atomic software components. Atomic software components 
finally contain runnables that are subject to scheduling, i.e. 
they have an associated activation pattern. Runnables with the 
same activation pattern are typically mapped to the same task. 
Thus task and activation scheme are used interchangeably in 
this paper. However, please note that multiple tasks with the 
same activation pattern may exist in one system. Tasks are 
finally scheduled by the OSEK [6] or AUTOSAR [7] 
operating system with fixed priorities. Both operating systems 
support so-called basic and extended tasks.  Once started, 
basic tasks run to completion. During their execution they can 
only be pre-empted by higher priority tasks. Extended tasks 
are additionally allowed to wait upon events and can pass the 
thread of control to tasks with lower priorities. In engine 
control applications only basic tasks are used. Runnables 
communicate with each other either by sender-receiver 
communication or by client-server calls. In AUTOSAR these 
communications are generated by the Runtime Environment 
(RTE). 

B. Task Activation 
The activation pattern of tasks and thus of the 

corresponding runnables are manifold. For periodic recurring 
jobs, tasks are triggered time-synchronously according to the 
given period. Additionally, tasks can also be activated by 
asynchronous events. A special case of these events in engine 
management systems is the angle-synchronous activation 
according to the rotation of the crankshaft. Here the period of 
the tasks depend on the revolutions per minute (rpm) and the 
number of cylinders (#cyl) of the engine as given in (1). 

                      period = 120 / (rpm * #cyl)                         (1) 

Scheduling of tasks is based on fixed priorities. 
Furthermore, tasks are scheduled either in a fully preemptive 
or cooperative manner. Tasks that participate in preemptive 
scheduling can preempt every other task at any time, whereas 

tasks that are scheduled cooperatively interrupt each other 
only at runnable borders. 

Runnables with the same activation scheme can also be 
grouped into multiple tasks, e.g. for separation or distribution 
purposes. For still guaranteeing a predefined order, a task can 
chain, i.e. activate, another task. Here the chaining task is 
terminated and the thread of control is handed over to the 
newly activated task. With this mechanism also inter-core 
activations are possible.   

C. Communication 
Communication is based on so-called labels that are read 

and written by runnables. Depending on the access 
specification a runnable can either read or write a label or do 
both. If a label is used for data exchange between runnables it 
is called a message. 

For message access two different mechanisms are 
configurable. The first possibility, which is not the most 
common, is the so-called direct access (called explicit access 
in AUTOSAR) where the runnable directly reads the message 
from memory. More frequently the so-called implicit access is 
used, where a task-local copy for data access is created. The 
copying is performed at the beginning of the task and 
modified data is written back at the task’s termination. Using 
this mechanism the value of a message does not change during 
runtime of a task and all runnables operate on consistent data. 
Obviously, this mechanism influences the execution time of 
the task. For instance, frequent time consuming accesses to 
messages stored in the global memory are replaced by faster 
accesses to the copies stored in local memories. However, this 
increases the overall memory requirements, and in cases 
where copied messages are accessed only a few times, the 
overall task execution time might increase. 

D. Timing Requirements 
The basic timing requirement for all tasks in automotive 

systems is to finish execution before their deadline. For time-
synchronous tasks with fixed periods, no overlapping 
executions and no backlog is allowed. This requirement 
translates to implicit task deadlines which are equal to the task 
periods. Angle-synchronous tasks have to finish before the 
injection or ignition take place. This requirement can be 
translated into a deadline which is equal to half the period (see 
Formula 1 in Section II.B). 

Additional timing requirements are provided as end-to-end 
latency constraints for cause-effect chains that are critical for 
the functional behaviour. Examples for such constraints are 1) 
sensor to actuator latency constraints, where an actuator must 
be set within a maximum delay after a sensor value was read, 
or 2) fault reaction delays, where a certain action must be 
triggered within a maximum delay after a fault in the system is 
detected.  

A cause-effect chain consists of multiple segments, each 
represented by two runnables that are connected by a 
read/write dependency over a label. The first runnable is 
called the stimulus, and the second the response of the 
segment. Please note, that for two consecutive segments it is 



required, that the response of the first segment is equal to the 
stimulus of the second segment.  

E. Cost Model 
For mapping of the software to a target platform, costs 

have to be added to the model. The level of detail that is 
necessary to describe costs is influenced by the target 
platform. 

For single-core architectures the given execution time for 
runnables typically covers the complete execution including 
label accesses, but excludes scheduling effects like pre-
emption. These have to be considered by analysis. In multi-
core architectures this approach is not feasible as the execution 
time of a runnable also depends on the placement of the labels 
and the corresponding access time. So the execution time of a 
runnable is decomposed into code execution time and label 
access time. 

The level of detail can be increased further e.g. with the 
following elements, but is not in scope of this paper: 

• Code access times: The provided execution times 
assume that code is executed directly from flash 
without contention. Enhancements could consider 
contention or different placements, i.e. to a local 
scratch-pad memory. 

• Fine granular interleaved modeling of instructions and 
label accesses: Enables a more detailed analysis of 
delays due to memory accesses. 

• Modes and variants: Enables a more precise timing 
analysis, giving tighter real-time bounds.  

• Cache related preemption delay (CRPD): The 
provided execution times already contain penalties 
due to caching effects. Since in current automotive 
microcontrollers caches are only used for flash 
memories that contain code and constant data, the 
increase in precision by performing a detailed CRPD 
analysis are expected to be rather small. Nevertheless, 
for future execution platforms it might be necessary to 
enhance the presented benchmark. 

• Locking and synchronization methods: Additional 
delays due to locking and synchronization, such as 
spin-locks across cores, are not explicitly modeled and 
contained in the execution time.  

To sum up, the benchmark presented in this paper makes 
some simplification to cope with complexity. 
Nevertheless, the level of detail is sufficient to achieve 
high accuracy for current execution platforms. Users of 
this benchmark are encouraged to extend the level of detail 
to fit their needs. 

III. BENCHMARK GENERATION METHOD 
The dominant reason for the lack of real-world application 

examples is intellectual property (IP) protection. While the 
exact functionality that is performed by an application does 
not need to be given for a timing benchmark, even the 
provision of the required information as detailed in Section II 

reveals enough insight on critical IP such that industry is not 
willing to provide it. 

The idea we propose in this paper, is to define a set of 
application characteristics which is abstract enough to not 
reveal IP but nevertheless allow creating realistic application 
benchmarks from it. In Section IV, we propose such a set of 
application characteristics.  

We have implemented an extraction tool that computes the 
concrete application characteristics for an AMALTHEA 
model of a real-world application. AMALTHEA [5] is a 
system model which has been developed in an ITEA project.  
At Bosch, we use AMALTHEA for timing analysis and 
optimization algorithms as well as for timing model exchange 
with customers. 

Based on concrete application characteristics, we are able 
to generate benchmark applications which we can easily hand 
out to external partners without IP protection concerns. The 
overall flow is shown in Figure 1. 

 
Figure 1: Flow and Elements of Benchmark Generation  

An added benefit of this approach is that it supports the 
generation of a suite of several benchmarks with similar 
structure and elements. Furthermore, scaling benchmarks to 
reflect future growth of applications can be easily achieved by 
scaling the application characteristics. This reduces the risk 
that scheduling or optimization algorithms are fine-tuned to a 
single application. 

IV. APPLICATION CHARACTERISTICS 
This section explains the various typical application 

characteristics in automotive systems and gives concrete value 
ranges derived from a real-world engine control application. 

A. Labels (Number, Size, Mode Of Access) 
Labels in automotive applications can be divided into three 

categories: atomic data types, arrays and structures, as well as 
interpolation curves and maps. Most labels have an atomic 
data type, i.e. 1, 2 and, 4 bytes. This group already covers over 
90% of all labels. The most complex application in terms of 
labels is combustion engine control requiring between 10000 
and 50000 labels, depending on the implemented features. The 
distribution of the label sizes for an exemplary engine control 
application is shown in TABLE I.  

 Additionally to the label size, also the access types need to 
be specified. A label can either be only read (parameters), only 
written (measurement points), or both (communication 
between runnables).  

 



TABLE I.  DISTRIBUTION OF LABEL SIZES 

Size (byte) Share 

1 35 % 

2 49 % 

4 13 % 

5 - 8 0,8 % 

9 - 16 1,3 % 

17 - 32 0,5 % 

33 - 64 0,2 % 

> 64 0,2 % 

 

Labels that are only read are constants that are usually 
stored in non-volatile memory such as flash. Specialties of 
constants are interpolation curves and maps. Those items are 
not read as a whole, but only the relevant range is accessed, 
depending on the value to be interpolated.  

Labels which are only written are called measurement 
points. A measurement point is gathering data, which can be 
read by external tools during development to show internal 
states. 

The partitioning of all accesses is as follows: 

• Read-only : 40% 

• Write-only: 10% 

• Read-Write: 50% 

B. Intra-/Inter Task Communication  
Read/write labels are used to realize the communication 

between runnables. Here, three different cases can be 
distinguished: 

• Forward intra-task communication 

• Backward intra-task communication 

• Inter-task communication 

Intra-task communication implies that both communicating 
runnables are mapped to the same task. Forward 
communication is the subset of those communications, where 
the writer runs prior the reader so the flow of information is 
direct, without a huge delay. Backward communication is the 
opposite. Here the information always has a delay of one task 
instance. Inter-task communication is, when both 
communicating runnables are mapped to different tasks. Here 
the delay depends on multiple factors such as scheduling, 
employed communication scheme, and memory mapping.  

The amount of communications per task heavily varies. 
But the percentage of each type is similar over all tasks. 
Forward and backward intra-task communication occurs in 
25% and 35% of all cases, respectively. Inter-task 
communication is the most frequent type with a share around 
40%.  

 The characteristic of Inter-Task communication is shown 
in TABLE II. The sending tasks are listed in the rows. The 
receiving tasks are listed in columns. The colour codes the 
amount of communications with the following legend: 

TABLE II.   INTER-TASK COMMUNICATION 

Period 1 ms 2 ms 5 ms 10 
ms 

20 
ms 

50 
ms 

100 
ms 

200 
ms 

1000 
ms sync 

1 ms    I I  I   I 

2 ms    I I  I    

5 ms  I IV IV II II I    

10 ms II II II VI IV II IV II III IV 

20 ms I I I IV VI II IV I II IV 

50 ms   II II II III I    

100 ms  I I V IV II VI II III IV 

200 ms    I I  I I I  

1000 ms    III II  III I IV I 
Angle-
sync 

I I I IV IV I III I I V 

 

C. Runnables (Number, Activations) 
Runnables that are mapped to tasks as explained in section 

II.B share the same activation. Most Runnables are triggered 
time-synchronously in predefined periods. Special cases in 
engine control are runnables which are scheduled 
synchronously to the rotation angle of the crankshaft. 
Furthermore, some runnables are triggered sporadically by 
external events (e.g. interrupts) whose activation pattern can 
be modelled as arbitrary arrival curves. TABLE III lists all 
common periods used in engine management systems and 
gives their percentage of the share of all runnables. 

The total number of runnables depends, similar to the 
number of labels, on the implemented features. The typical 
range is between 1000 and 1500. 

TABLE III.  RUNNABLE DISTRIBUTION AMONG PERIODS 

Period Share 

1 ms 3 % 

2 ms 2 % 

5 ms 2 % 

10 ms 25 % 

20 ms 25 % 

50 ms 3 % 

100 ms 20 % 

I II III IV V VI 
<10 10-50 51-100 100-500 501-1000 >1000 



Period Share 

200 ms 1 % 

1000 ms 4 % 

angle-synchronous 15 % 

 

D. Runnable Execution Times 
The execution times of runnables are specified with 

minimum (best-case), average, and maximum (worst-case) 
values. The distribution of the execution times can be 
approximated with a Weibull distribution. Please note that the 
given execution times exclude the mapping-dependent label 
access delay, but include delays due to a specific code 
placement. The former represents one of the analysis 
challenges, especially for multi-core systems.  

TABLE IV shows the distribution of the average execution 
times (ACET) of runnables in each task. The Min-value 
denotes the shortest ACET and the Max-value denotes the 
longest ACET of a runnable within the given task. During 
benchmark generation the average over all generated ACET 
has to match the Avg. ACET of the chosen task. 

TABLE IV. RUNNABLE AVERAGE EXECUTION TIMES 

Period 
Average Execution Times in µs 

Min. Avg. Max. 

1 ms 0,34 5,00 30,11 

2 ms 0,32 4,20 40,69 

5 ms 0,36 11,04 83,38 

10 ms 0,21 10,09 309,87 

20 ms 0,25 8,74 291,42 

50 ms 0,29 17,56 92,98 

100 ms 0,21 10,53 420,43 

200 ms 0,22 2,56 21,95 

1000 ms 0,37 0,43 0,46 

angle-synchronous 0,45 6,52 88,58 

Interrupts 0,18 5,42 12,59 

 

TABLE V specifies factors that describe the relationship 
of the chosen base ACET to the minimum (fmin) and maximum 
(fmax) best-case (BCET) and worst-case execution times 
(WCET) of runnables in each task as depicted in Figure 3. By 
choosing random factors between fmin and fmax, the BCET and 
WCET for each runnable in a task can be calculated. 

As mentioned in II.B, there exist also runnables that are 
sporadically triggered by interrupts. Obviously, the load 
induced by those runnables has to be considered in system 
design and analysis. In total, interrupts add about 30 percent 
load to the overall system utilization. The occurrence of these 
interrupts can be modeled by arbitrary arrival curves. 

TABLE V. FACTORS FOR DETERMINING RUNNABLE BEST- AND WORST-
CASE EXECUTION TIMES 

Period 
Best Worst 

fmin fmax fmin fmax 

1 ms 0,19 0,92 1,30 29,11 

2 ms 0,12 0,89 1,54 19,04 

5 ms 0,17 0,94 1,13 18,44 

10 ms 0,05 0,99 1,06 30,03 

20 ms 0,11 0,98 1,06 15,61 

50 ms 0,32 0,95 1,13 7,76 

100 ms 0,09 0,99 1,02 8,88 

200 ms 0,45 0,98 1,03 4,90 

1000 ms 0,68 0,80 1,84 4,75 

angle-synchronous 0,13 0,92 1,20 28,17 

Interrupts 0,12 0,94 1,15 4,54 

 

  
Figure 3: Runnable Execution Time calculation  

 Please note that the given values already assume a 
multicore architecture. Adaptations to smaller and bigger 
platforms can be achieved by scaling the given values. This 
can be done either by scaling the total number of runnables, or 
by scaling the execution times of the runnables. 

E. Cause-Effect Chains 
As explained in section II.D, end-to-end latency 

constraints for critical cause-effect chains are additional 
timing requirements imposed on an engine control application. 
Most cause-effect chains only contain runnables with the same 
activation pattern. On a single-core platform, those are usually 
grouped into the same task. However, there are also cause-
effect chains spanning multiple activation patterns. These 
chains usually involve transitions from the time-synchronous 
to the angle-synchronous domain and vice-versa, i.e. for 
conversion of requested torque from the driver (sampled time-
synchronously) into injection mass and time for the engine 
(angle-synchronous). 

In typical engine control applications there are between 30 
and 60 cause-effect chains that are critical for the functional 
behavior. The shares for the number of involved activation 
patterns per cause-effect chain can be found in Table VI. The 
number of runnables in each of those activation patterns is 
given in Table VII. 



TABLE VI. INVOLVED ACTIVATION PATTERNS PER CAUSE-EFFECT 
CHAIN 

Involved Activation Patterns Share 

1 70 % 

2 20 % 

3 10 % 

 

TABLE VII. RUNNABLES PER ACTIVATION PATTERN 

Number of Runnables Share 

2 30 % 

3 40 % 

4 20 % 

5 10 % 

 

The end-to-end latency constraint for a cause-effect chain 
can be obtained by adding the periods of the involved 
activation patterns. For instance, if a cause-effect chain 
consists of 3 runnables with a 10 ms period and 2 runnables 
with a 20 ms period, the resulting constraint is equal to 30 ms. 
Please note, that there are no cyclic transitions between two 
activation patterns (e.g. 10 ms  20 ms  10 ms) within a 
cause-effect chain. 

V. CHALLENGES 
In order to be applicable in the design process of 

automotive software systems, future real-time analysis 
techniques must address the following analysis challenges: 

1. Precise analysis of worst-case end-to-end latencies 
along complex cause-effect chains: the analysis of task 
response times in not sufficient for automotive 
applications since relevant cause-effect chains that are 
subject to timing constraints usually span over 
different tasks and time domains. 

2. Interleaved WCET and WCRT analysis for memory 
accesses: with the advent of multi-core execution 
platforms, the classical share of work between WCET 
and WCRT analysis is not valid any longer. Since 
automotive applications extensively communicate 
over (different) shared memories, the access times 
including arbitration have to be considered in a 
combined WCET and WCRT analysis. 

3. Automatic optimized application mapping: as can be 
derived from challenge 2, the mapping of runnables to  
tasks to cores along with the mapping of labels to 

memory locations have a huge influence on whether 
or not a given system adheres to real-time 
requirements. Since the design space cannot be 
handled manually based on experience, tool support 
for guiding or (partly) automating the mapping is 
needed.  

4. Evaluation of digital (multi-core) execution platforms: 
the application characteristics presented in this paper 
can be used to evaluate the suitability of digital 
execution platforms. Especially the memory layout 
seems an interesting object of investigation. 

VI. CONCLUSION & OUTLOOK 
The application characteristics proposed in this paper aim 

at providing realistic but IP-free benchmarks to the real-time 
community. We are aware that especially in the area of 
execution time modeling the characteristics are rather 
simplistic but should suffice as a starting point. 

We certainly admit that the presented benchmark is not 
really “for free” but requires work for creating the benchmark 
from the presented characteristics. Thus,we currently evaluate 
whether we can make tools mentioned in Section II available 
as open source in context of the AMALTHEA project. 
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