
Real World Automotive Benchmarks For Free

Simon Kramer, Dirk Ziegenbein, Arne Hamann
Corporate Research

Robert Bosch GmbH
Renningen, Germany

{simon.kramer2|dirk.ziegenbein|arne.hamann}@de.bosch.com

The progress and comparability of real-time analysis methods
that are applicable to real-world is slowed by the absence of
realistic benchmarks, mainly due to intellectual property (IP)
concerns. We propose a method that supports the generation of
realistic but IP free benchmark sets. Further, we provide the
application characteristics of a specific real-world automotive
software system.

Keywords—benchmarks, timing analysis, automotive software

I. INTRODUCTION
A large quantity of innovative functionalities in modern

automotive systems are realized using significant amounts of
software technologies. As a consequence the job of integrating
many different applications onto the same target platform has
grown to a more and more complex and time consuming task.
One important tool for guaranteeing the correctness of the
dynamic behavior of the integrated system, especially for the
cyber physical parts, is timing analysis.

There exists a large body of work in the domain of worst-
case timing (or real-time) analysis. Each method assumes
specific application and platform models addressing a subset
of existing real-world timing effects. For cases where the
application and platform models are simple enough, maximum
utilization bounds can be derived to decide whether or not a
given system adheres to some predefined real-time constraints.
Prominent examples for this kind of analyses are, for instance,
the work of Liu and Layland for independent periodic task sets
under rate-monotonic fixed priority scheduling on a single
core platform [1], or the work of Dertouzos on earliest
deadline first (EDF) scheduling [2]. An overview of
extensions on those basic works can be found under [3]. More
complex application and platform models are addressed by
approached based on the so-called busy window analysis
combined with reasoning about the critical instant as proposed
by Lehoczky [4]. As of today there exist proprietary industry
strength tools based on that approach, such as SymTA/S, that
are capable of analyzing most timing effects in current
automotive systems. However, the detailed analysis
techniques in those tools are not published, and thus, not
accessible for the real-time research community.

As a result, there currently exist only few directly
applicable tools and approaches that can cope with the
complexity of the dynamic behavior in modern automotive
systems. Therefore, simulation based methods are very
popular albeit time consuming and inherently unsafe, which is

unsatisfactory given the potential for front loading with formal
analysis techniques.

Due to the introduction of multi-core execution platforms,
the risk of divergence between academic research and
industrial practice is currently increasing. The reason is the
strongly increased problem space for timing analysis induced
by multi-core systems.

Extending existing approaches is very challenging since
the system structure and the dynamic system behavior of
automotive systems is very complex. The reasons are
manifold:

• Control of many physical processes with strongly
varying dynamics

• Co-existence of sampled and reactive system parts

• Different time domains (e.g. crank angle, timers,
incoming network traffic) leading to complex
scheduling situations

• Numerous complex communication dependencies
between functional entities in different time domains
due to high coupling which is due to physical
dependencies

• Sophisticated platform mechanisms influencing the
dynamic behavior (cooperative tasks for saving stack
space, automated copy mechanisms for data
consistency, etc.)

There exist some tools that address the generation of
synthetic applications for benchmark purposes that are worth
being mentioned here. For instance, the Task Graphs for Free
(TGFF) tool [8] generates a set of random independent task
trees. Thereby, the structure of the generated task trees is very
general, and could most likely be tweaked to fit the structure
of automotive applications. This paper can help to do the
mapping of the TGFF model to automotive application model
including a sensible parameterization. However, TGFF lacks a
model for memory accesses that can contribute (depending on
the mapping decisions) massively to the execution times
especially in multi-core systems.

Another tool for generating synthetic applications models
is called System Models for Free (SMFF) [9]. The SMFF tool
focuses on generating models that are “ready for scheduling
analysis”. For that purpose, it generates (in contrast to TGFF)
not only an application graph, but also a platform graph
consisting of computational and communication resources.

Additionally, a mapping of task and communication links to
the platform graph along with scheduling parameters is
generated. Overall, it might be hard to use SMFF to generate
benchmarks representing typical automotive system. The main
reason is that important structural application and platform
elements are not represented in the application and platform
models.

The goal of this paper is to give an insight into the
structure of typical automotive real-time software systems,
along with challenges for research into relevant novel analysis
techniques. To that end, the paper presents characteristics of
an application with real-world complexity which is applicable
to many control dominated application domains at Bosch.
Based on these characteristics, real-time research groups are
capable of generating expressive benchmarks for their real-
time research without IP limitations.

II. AUTOMOTIVE APPLICATIONS

A. Structure
In automotive systems software is structured into

components, e.g. AUTOSAR [7] Software Components.
Components which can’t be decomposed further are called
atomic software components. Atomic software components
finally contain runnables that are subject to scheduling, i.e.
they have an associated activation pattern. Runnables with the
same activation pattern are typically mapped to the same task.
Thus task and activation scheme are used interchangeably in
this paper. However, please note that multiple tasks with the
same activation pattern may exist in one system. Tasks are
finally scheduled by the OSEK [6] or AUTOSAR [7]
operating system with fixed priorities. Both operating systems
support so-called basic and extended tasks. Once started,
basic tasks run to completion. During their execution they can
only be pre-empted by higher priority tasks. Extended tasks
are additionally allowed to wait upon events and can pass the
thread of control to tasks with lower priorities. In engine
control applications only basic tasks are used. Runnables
communicate with each other either by sender-receiver
communication or by client-server calls. In AUTOSAR these
communications are generated by the Runtime Environment
(RTE).

B. Task Activation
The activation pattern of tasks and thus of the

corresponding runnables are manifold. For periodic recurring
jobs, tasks are triggered time-synchronously according to the
given period. Additionally, tasks can also be activated by
asynchronous events. A special case of these events in engine
management systems is the angle-synchronous activation
according to the rotation of the crankshaft. Here the period of
the tasks depend on the revolutions per minute (rpm) and the
number of cylinders (#cyl) of the engine as given in (1).

 period = 120 / (rpm * #cyl) (1)

Scheduling of tasks is based on fixed priorities.
Furthermore, tasks are scheduled either in a fully preemptive
or cooperative manner. Tasks that participate in preemptive
scheduling can preempt every other task at any time, whereas

tasks that are scheduled cooperatively interrupt each other
only at runnable borders.

Runnables with the same activation scheme can also be
grouped into multiple tasks, e.g. for separation or distribution
purposes. For still guaranteeing a predefined order, a task can
chain, i.e. activate, another task. Here the chaining task is
terminated and the thread of control is handed over to the
newly activated task. With this mechanism also inter-core
activations are possible.

C. Communication
Communication is based on so-called labels that are read

and written by runnables. Depending on the access
specification a runnable can either read or write a label or do
both. If a label is used for data exchange between runnables it
is called a message.

For message access two different mechanisms are
configurable. The first possibility, which is not the most
common, is the so-called direct access (called explicit access
in AUTOSAR) where the runnable directly reads the message
from memory. More frequently the so-called implicit access is
used, where a task-local copy for data access is created. The
copying is performed at the beginning of the task and
modified data is written back at the task’s termination. Using
this mechanism the value of a message does not change during
runtime of a task and all runnables operate on consistent data.
Obviously, this mechanism influences the execution time of
the task. For instance, frequent time consuming accesses to
messages stored in the global memory are replaced by faster
accesses to the copies stored in local memories. However, this
increases the overall memory requirements, and in cases
where copied messages are accessed only a few times, the
overall task execution time might increase.

D. Timing Requirements
The basic timing requirement for all tasks in automotive

systems is to finish execution before their deadline. For time-
synchronous tasks with fixed periods, no overlapping
executions and no backlog is allowed. This requirement
translates to implicit task deadlines which are equal to the task
periods. Angle-synchronous tasks have to finish before the
injection or ignition take place. This requirement can be
translated into a deadline which is equal to half the period (see
Formula 1 in Section II.B).

Additional timing requirements are provided as end-to-end
latency constraints for cause-effect chains that are critical for
the functional behaviour. Examples for such constraints are 1)
sensor to actuator latency constraints, where an actuator must
be set within a maximum delay after a sensor value was read,
or 2) fault reaction delays, where a certain action must be
triggered within a maximum delay after a fault in the system is
detected.

A cause-effect chain consists of multiple segments, each
represented by two runnables that are connected by a
read/write dependency over a label. The first runnable is
called the stimulus, and the second the response of the
segment. Please note, that for two consecutive segments it is

required, that the response of the first segment is equal to the
stimulus of the second segment.

E. Cost Model
For mapping of the software to a target platform, costs

have to be added to the model. The level of detail that is
necessary to describe costs is influenced by the target
platform.

For single-core architectures the given execution time for
runnables typically covers the complete execution including
label accesses, but excludes scheduling effects like pre-
emption. These have to be considered by analysis. In multi-
core architectures this approach is not feasible as the execution
time of a runnable also depends on the placement of the labels
and the corresponding access time. So the execution time of a
runnable is decomposed into code execution time and label
access time.

The level of detail can be increased further e.g. with the
following elements, but is not in scope of this paper:

• Code access times: The provided execution times
assume that code is executed directly from flash
without contention. Enhancements could consider
contention or different placements, i.e. to a local
scratch-pad memory.

• Fine granular interleaved modeling of instructions and
label accesses: Enables a more detailed analysis of
delays due to memory accesses.

• Modes and variants: Enables a more precise timing
analysis, giving tighter real-time bounds.

• Cache related preemption delay (CRPD): The
provided execution times already contain penalties
due to caching effects. Since in current automotive
microcontrollers caches are only used for flash
memories that contain code and constant data, the
increase in precision by performing a detailed CRPD
analysis are expected to be rather small. Nevertheless,
for future execution platforms it might be necessary to
enhance the presented benchmark.

• Locking and synchronization methods: Additional
delays due to locking and synchronization, such as
spin-locks across cores, are not explicitly modeled and
contained in the execution time.

To sum up, the benchmark presented in this paper makes
some simplification to cope with complexity.
Nevertheless, the level of detail is sufficient to achieve
high accuracy for current execution platforms. Users of
this benchmark are encouraged to extend the level of detail
to fit their needs.

III. BENCHMARK GENERATION METHOD
The dominant reason for the lack of real-world application

examples is intellectual property (IP) protection. While the
exact functionality that is performed by an application does
not need to be given for a timing benchmark, even the
provision of the required information as detailed in Section II

reveals enough insight on critical IP such that industry is not
willing to provide it.

The idea we propose in this paper, is to define a set of
application characteristics which is abstract enough to not
reveal IP but nevertheless allow creating realistic application
benchmarks from it. In Section IV, we propose such a set of
application characteristics.

We have implemented an extraction tool that computes the
concrete application characteristics for an AMALTHEA
model of a real-world application. AMALTHEA [5] is a
system model which has been developed in an ITEA project.
At Bosch, we use AMALTHEA for timing analysis and
optimization algorithms as well as for timing model exchange
with customers.

Based on concrete application characteristics, we are able
to generate benchmark applications which we can easily hand
out to external partners without IP protection concerns. The
overall flow is shown in Figure 1.

Figure 1: Flow and Elements of Benchmark Generation

An added benefit of this approach is that it supports the
generation of a suite of several benchmarks with similar
structure and elements. Furthermore, scaling benchmarks to
reflect future growth of applications can be easily achieved by
scaling the application characteristics. This reduces the risk
that scheduling or optimization algorithms are fine-tuned to a
single application.

IV. APPLICATION CHARACTERISTICS
This section explains the various typical application

characteristics in automotive systems and gives concrete value
ranges derived from a real-world engine control application.

A. Labels (Number, Size, Mode Of Access)
Labels in automotive applications can be divided into three

categories: atomic data types, arrays and structures, as well as
interpolation curves and maps. Most labels have an atomic
data type, i.e. 1, 2 and, 4 bytes. This group already covers over
90% of all labels. The most complex application in terms of
labels is combustion engine control requiring between 10000
and 50000 labels, depending on the implemented features. The
distribution of the label sizes for an exemplary engine control
application is shown in TABLE I.

 Additionally to the label size, also the access types need to
be specified. A label can either be only read (parameters), only
written (measurement points), or both (communication
between runnables).

TABLE I. DISTRIBUTION OF LABEL SIZES

Size (byte) Share

1 35 %

2 49 %

4 13 %

5 - 8 0,8 %

9 - 16 1,3 %

17 - 32 0,5 %

33 - 64 0,2 %

> 64 0,2 %

Labels that are only read are constants that are usually
stored in non-volatile memory such as flash. Specialties of
constants are interpolation curves and maps. Those items are
not read as a whole, but only the relevant range is accessed,
depending on the value to be interpolated.

Labels which are only written are called measurement
points. A measurement point is gathering data, which can be
read by external tools during development to show internal
states.

The partitioning of all accesses is as follows:

• Read-only : 40%

• Write-only: 10%

• Read-Write: 50%

B. Intra-/Inter Task Communication
Read/write labels are used to realize the communication

between runnables. Here, three different cases can be
distinguished:

• Forward intra-task communication

• Backward intra-task communication

• Inter-task communication

Intra-task communication implies that both communicating
runnables are mapped to the same task. Forward
communication is the subset of those communications, where
the writer runs prior the reader so the flow of information is
direct, without a huge delay. Backward communication is the
opposite. Here the information always has a delay of one task
instance. Inter-task communication is, when both
communicating runnables are mapped to different tasks. Here
the delay depends on multiple factors such as scheduling,
employed communication scheme, and memory mapping.

The amount of communications per task heavily varies.
But the percentage of each type is similar over all tasks.
Forward and backward intra-task communication occurs in
25% and 35% of all cases, respectively. Inter-task
communication is the most frequent type with a share around
40%.

 The characteristic of Inter-Task communication is shown
in TABLE II. The sending tasks are listed in the rows. The
receiving tasks are listed in columns. The colour codes the
amount of communications with the following legend:

TABLE II. INTER-TASK COMMUNICATION

Period 1 ms 2 ms 5 ms 10
ms

20
ms

50
ms

100
ms

200
ms

1000
ms sync

1 ms I I I I

2 ms I I I

5 ms I IV IV II II I

10 ms II II II VI IV II IV II III IV

20 ms I I I IV VI II IV I II IV

50 ms II II II III I

100 ms I I V IV II VI II III IV

200 ms I I I I I

1000 ms III II III I IV I
Angle-
sync

I I I IV IV I III I I V

C. Runnables (Number, Activations)
Runnables that are mapped to tasks as explained in section

II.B share the same activation. Most Runnables are triggered
time-synchronously in predefined periods. Special cases in
engine control are runnables which are scheduled
synchronously to the rotation angle of the crankshaft.
Furthermore, some runnables are triggered sporadically by
external events (e.g. interrupts) whose activation pattern can
be modelled as arbitrary arrival curves. TABLE III lists all
common periods used in engine management systems and
gives their percentage of the share of all runnables.

The total number of runnables depends, similar to the
number of labels, on the implemented features. The typical
range is between 1000 and 1500.

TABLE III. RUNNABLE DISTRIBUTION AMONG PERIODS

Period Share

1 ms 3 %

2 ms 2 %

5 ms 2 %

10 ms 25 %

20 ms 25 %

50 ms 3 %

100 ms 20 %

I II III IV V VI
<10 10-50 51-100 100-500 501-1000 >1000

Period Share

200 ms 1 %

1000 ms 4 %

angle-synchronous 15 %

D. Runnable Execution Times
The execution times of runnables are specified with

minimum (best-case), average, and maximum (worst-case)
values. The distribution of the execution times can be
approximated with a Weibull distribution. Please note that the
given execution times exclude the mapping-dependent label
access delay, but include delays due to a specific code
placement. The former represents one of the analysis
challenges, especially for multi-core systems.

TABLE IV shows the distribution of the average execution
times (ACET) of runnables in each task. The Min-value
denotes the shortest ACET and the Max-value denotes the
longest ACET of a runnable within the given task. During
benchmark generation the average over all generated ACET
has to match the Avg. ACET of the chosen task.

TABLE IV. RUNNABLE AVERAGE EXECUTION TIMES

Period
Average Execution Times in µs

Min. Avg. Max.

1 ms 0,34 5,00 30,11

2 ms 0,32 4,20 40,69

5 ms 0,36 11,04 83,38

10 ms 0,21 10,09 309,87

20 ms 0,25 8,74 291,42

50 ms 0,29 17,56 92,98

100 ms 0,21 10,53 420,43

200 ms 0,22 2,56 21,95

1000 ms 0,37 0,43 0,46

angle-synchronous 0,45 6,52 88,58

Interrupts 0,18 5,42 12,59

TABLE V specifies factors that describe the relationship
of the chosen base ACET to the minimum (fmin) and maximum
(fmax) best-case (BCET) and worst-case execution times
(WCET) of runnables in each task as depicted in Figure 3. By
choosing random factors between fmin and fmax, the BCET and
WCET for each runnable in a task can be calculated.

As mentioned in II.B, there exist also runnables that are
sporadically triggered by interrupts. Obviously, the load
induced by those runnables has to be considered in system
design and analysis. In total, interrupts add about 30 percent
load to the overall system utilization. The occurrence of these
interrupts can be modeled by arbitrary arrival curves.

TABLE V. FACTORS FOR DETERMINING RUNNABLE BEST- AND WORST-
CASE EXECUTION TIMES

Period
Best Worst

fmin fmax fmin fmax

1 ms 0,19 0,92 1,30 29,11

2 ms 0,12 0,89 1,54 19,04

5 ms 0,17 0,94 1,13 18,44

10 ms 0,05 0,99 1,06 30,03

20 ms 0,11 0,98 1,06 15,61

50 ms 0,32 0,95 1,13 7,76

100 ms 0,09 0,99 1,02 8,88

200 ms 0,45 0,98 1,03 4,90

1000 ms 0,68 0,80 1,84 4,75

angle-synchronous 0,13 0,92 1,20 28,17

Interrupts 0,12 0,94 1,15 4,54

Figure 3: Runnable Execution Time calculation

 Please note that the given values already assume a
multicore architecture. Adaptations to smaller and bigger
platforms can be achieved by scaling the given values. This
can be done either by scaling the total number of runnables, or
by scaling the execution times of the runnables.

E. Cause-Effect Chains
As explained in section II.D, end-to-end latency

constraints for critical cause-effect chains are additional
timing requirements imposed on an engine control application.
Most cause-effect chains only contain runnables with the same
activation pattern. On a single-core platform, those are usually
grouped into the same task. However, there are also cause-
effect chains spanning multiple activation patterns. These
chains usually involve transitions from the time-synchronous
to the angle-synchronous domain and vice-versa, i.e. for
conversion of requested torque from the driver (sampled time-
synchronously) into injection mass and time for the engine
(angle-synchronous).

In typical engine control applications there are between 30
and 60 cause-effect chains that are critical for the functional
behavior. The shares for the number of involved activation
patterns per cause-effect chain can be found in Table VI. The
number of runnables in each of those activation patterns is
given in Table VII.

TABLE VI. INVOLVED ACTIVATION PATTERNS PER CAUSE-EFFECT
CHAIN

Involved Activation Patterns Share

1 70 %

2 20 %

3 10 %

TABLE VII. RUNNABLES PER ACTIVATION PATTERN

Number of Runnables Share

2 30 %

3 40 %

4 20 %

5 10 %

The end-to-end latency constraint for a cause-effect chain
can be obtained by adding the periods of the involved
activation patterns. For instance, if a cause-effect chain
consists of 3 runnables with a 10 ms period and 2 runnables
with a 20 ms period, the resulting constraint is equal to 30 ms.
Please note, that there are no cyclic transitions between two
activation patterns (e.g. 10 ms 20 ms 10 ms) within a
cause-effect chain.

V. CHALLENGES
In order to be applicable in the design process of

automotive software systems, future real-time analysis
techniques must address the following analysis challenges:

1. Precise analysis of worst-case end-to-end latencies
along complex cause-effect chains: the analysis of task
response times in not sufficient for automotive
applications since relevant cause-effect chains that are
subject to timing constraints usually span over
different tasks and time domains.

2. Interleaved WCET and WCRT analysis for memory
accesses: with the advent of multi-core execution
platforms, the classical share of work between WCET
and WCRT analysis is not valid any longer. Since
automotive applications extensively communicate
over (different) shared memories, the access times
including arbitration have to be considered in a
combined WCET and WCRT analysis.

3. Automatic optimized application mapping: as can be
derived from challenge 2, the mapping of runnables to
tasks to cores along with the mapping of labels to

memory locations have a huge influence on whether
or not a given system adheres to real-time
requirements. Since the design space cannot be
handled manually based on experience, tool support
for guiding or (partly) automating the mapping is
needed.

4. Evaluation of digital (multi-core) execution platforms:
the application characteristics presented in this paper
can be used to evaluate the suitability of digital
execution platforms. Especially the memory layout
seems an interesting object of investigation.

VI. CONCLUSION & OUTLOOK
The application characteristics proposed in this paper aim

at providing realistic but IP-free benchmarks to the real-time
community. We are aware that especially in the area of
execution time modeling the characteristics are rather
simplistic but should suffice as a starting point.

We certainly admit that the presented benchmark is not
really “for free” but requires work for creating the benchmark
from the presented characteristics. Thus,we currently evaluate
whether we can make tools mentioned in Section II available
as open source in context of the AMALTHEA project.

References
[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for

multiprogramming in a hard real-time environment,” in Journal of the
ACM, vol. 20(1), 1973, pp. 46–61.

[2] J. M. L. Dertouzos, “Control robotics: the procedural control of physical
processes,” in Proceedings of the IFIP Congress, 1974, pp. 807–813.

[3] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-Time Systems, vol.
28, no. 2-3, pp. 101–155, Nov. 2004.

[4] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of IEEE Real-Time Symposium
(RTSS), 1990, pp. 201–209.

[5] H. Mackamul, “AMALTHEA - An Open Tool Platform for Embedded
Multicore Systems”, EclipseCon Europe 2013, Ludwigsburg, Germany,
Oct 2013.

[6] OSEK VDX, “Open systems and the corresponding interfaces for
automotive electronics,” http://www.osek-vdx.org.

[7] AUTOSAR, “Automotive Open System Architecture”, http://
www.autosar.org.

[8] R.P. Dick and W. Wolf. “TGFF: Task Graphs for Free”, International
Workshop on Hardware/Software Codesign (CODES/CASHE), 1998,
pp. 97-101.

[9] M. Neukirchner, S. Stein, and R. Ernst. „SMFF: System Models for
Free”, 2nd International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2011.

	I. Introduction
	II. Automotive Applications
	A. Structure
	B. Task Activation
	C. Communication
	D. Timing Requirements
	E. Cost Model

	III. Benchmark Generation Method
	IV. Application Characteristics
	A. Labels (Number, Size, Mode Of Access)
	B. Intra-/Inter Task Communication
	C. Runnables (Number, Activations)
	D. Runnable Execution Times
	E. Cause-Effect Chains

	V. Challenges
	VI. Conclusion & Outlook
	References

