

Tool Assisted Model Based Multi Objective Analyses

of Automotive Embedded Systems

Saimir Baci
1
, Henrik Kaijser

1
, Henrik Lönn

1
, Matthias Tichy

2
, Wenjing Yuan

3

1
Volvo Group, Advanced Technology and Research, Gothenburg Sweden

2
 Software Engineering Division, Chalmers | University of Gothenburg, Gothenburg, Sweden

3
Arccore AB, Gothenburg, Sweden

Abstract— Automotive embedded systems are increasingly

critical for vehicle functionality. Their scope and impact increase

and as a consequence their complexity and criticality. Cost is

constantly in focus, which emphasizes the need for efficient

development methods. Securing functional and non-functional

properties in such setting requires systematic and stringent

methods, including model based analysis. This paper introduces a

methodology and tool support for embedded automotive systems,

where multi-objective analyses drive iterative design. Tool

support is developed based on the EATOP platform for EAST-

ADL. Plugins supporting version consistency control, fault tree

analysis and analysis of linear property annotations including

power, energy and cost are reported. The tooling is validated on

an example system design and the methodology and part of the

tooling evaluated with engineering experts.

Keywords—Embedded Systems; Real-time Systems; Model

Based Development; AUTOSAR; EAST-ADL; Quality; Safety

I. INTRODUCTION

Automotive systems continuously face increasing

expectations. Functionality and cost are constantly in focus,

and linked to the latter is reduced development time. A recent

trend is the emerging use of agile methods and continuous

integration in automotive development, which calls for shorter

development iterations and increased automation.

Securing functional and non-functional properties in such

setting requires systematic and stringent methods, including

model based analysis. Examples of important qualities to

analyze are timing, safety, product cost, energy consumption

and various correctness criteria.

The demand for short development time, consistency and

correctness means that the required analyses should be

performed on the original constructive model or on

automatically generated models. The EAST-ADL [6]

architecture description language provides the opportunity to

represent several engineering aspects in the same model. It is

based on a structural model capturing the electrical and

electronic architecture in 4 levels of abstraction:

 Implementation Level: Concrete software

architecture and code

 Design Level: Physical topology, concrete functional

architecture with allocation.

 Analysis Level: Abstract functional architecture

 Vehicle Level: Feature content

Thus, the architecture description reduces the amount of

software details in four steps: Design level description ignores

code structure, interfaces to execution platform, interfaces to

I/O, etc. Analysis level ignores allocation and topology,

physical sensors and actuators. Vehicle level ignores solution

and integration aspects and focus on individual features and

their appearance to the customer.

The software details on implementation level are represented

using the AUTOSAR [5] approach, which is a fundamental

standard for automotive software.

EAST-ADL provides extensions to complement the structural

model with additional aspects: Behavior, Timing,

Dependability, Variability, Cost as well as:

 Energy and power: Mode-based steady state energy and

power annotations

 Take rates: Definition of production volumes and take

rates of vehicle types and features

 Requirements: Requirements allocation, traceability and

formalization

 Verification and Validation: Definition of V&V

procedures and results

The EAST-ADL is using the AUTOSAR meta modelling

rules. Therefore, the above extensions are compatible to

AUTOSAR models. Further, by prescribing syntax and

semantics for these annotations, tools and engineers can

interpret the information unambiguously and consistently.

In this paper, we present a methodology for working

iteratively with embedded system design, in a setting with

multi-objective model based analysis and design. Quality

aspects covered include fault propagation, linear property

annotations like energy, power and cost. The modelling and

analysis approach is based on the EAST-ADL Open Tool

Platform [2].

Model-based quality evaluation (MBQE) techniques have

been developed for a variety of quality attributes, including

safety, security, reliability, availability and performance.

Similar to other engineering disciplines the core idea of

MBQE techniques is to construct a quality evaluation model

from a system model and use this model to gain knowledge

about the quality of the system by checking them against

formally specified quality requirements. For the construction

of quality evaluation models mostly architectural models are

used, since the decisions taken in the architecture design phase

have a significant impact on the system quality and MBQE

provides an effective basis to choose an appropriate design.

The generated quality evaluation models are different for each

quality attribute [7]. As examples Discrete Time Markov

Chains (DTMCs) are used for reliability evaluation [8],

Layered Queueing Networks (LQN) and Continuous Time

Markov Chains (CTMC) are used to predict performance

attributes [9], and Fault Tree (FT) and Failure Propagation

Models (FPM) are commonly used for evaluating system

safety [10][11][12].

Our approach differs from the mentioned ones that it uses

complete models for both the architectural configuration [17]

as well as, in the case of safety, the error behavior, i.e., the

error behavior can be modeled and analyzed independently of

the architecture. The other approaches typically embed the

quality evaluation relevant behavior into the components of

the architectural configuration and are therefore restricted by

the architecture. In contrast, the model of the error behavior

can evolve independently of the architectural configuration in

our approach to give the engineers (e.g., safety engineers)

more freedom to improve and refine the error model. For this,

we provide specific refactoring operations and version

consistency support to handle inconsistencies between the

models.

The paper will next introduce the modeling and analysis

capabilities used, followed by a methodology description for

iterative design guided by multi-objective analysis. The

concepts are then illustrated using a particular analysis, error

propagation applied on a brake by wire example system.

Before concluding, a description of the prototype tooling is

provided as well as an evaluation of the approach with

intended users.

II. MULTI-OBJECTIVE MODELS

System development is always a trade-off among a large set of

capabilities. In order to make the right design decisions,

reliable assessment of system properties is required. Model-

based analysis provides means for well-defined and

semantically sound assessment. Because the input is a model,

system specification can be captured in a systematic and

understandable way.

Because many analyses are highly specific and because most

analysis tools are tailor-made for a specific purpose, input

models often need to be unique for the specific analysis. This

has several consequences:

 Efficiency: Common aspects of the input are duplicated

 Consistency: System definition may deviate between

analyses

 Tool and data: Same system needs to be managed in

different tools with different learning curves, data

management, etc.

In order to mitigate these problems, a common model,

annotated with information for different analyses can be used.

This way, variants and versions are consistent for all analysis

purposes, and the amount of redundant modeling is

minimized.

Examples of analysis purposes that can share the same core

model include:

Timing – Response time: Annotate existing functional

structure with timing properties and requirements.

Dependability- Fault Tree analysis: Complement architectural

configuration with error propagation models

Cost – Piece and development cost: Take rates and cost

annotations complement functional and hardware elements.

Energy – Steady state and mode based energy and power

consumption: Can annotate functional and hardware elements.

In the tooling accounted for in this paper, the latter three

categories are supported, as well as several other linear

properties. Figure 1 shows the hardware architecture of a

fictitious brake by wire system. The lower part shows the

hardware architecture containing 5 instances of ECU types as

well as sensors and actuators. The type declarations are

annotated with power consumption as shown at the top. The

actuators’ power consumption varies with operating mode.

With the linear properties analyzer, the desired mode is

selected and the total power is summed up to

4*60W+5*17W=325W which is less than the prescribed

maximum power of 400W. The sensors’ power consumption

is ignored for simplicity. Note also that bus and power lines as

well as most type relations are suppressed in the diagram.

Figure 1. Prescribed and computed power consumption

for components of a brake by wire system in active and

idle mode.

III. METHODOLOGY

Engineering models will be defined in several ways, typically

depending on the degree of reuse and the kind of tooling

available. Below, a simple pattern will be described, which

would motivate and explain which kind of tool support is

typically needed.

A. Defining

Defining the model which is subject to analysis may be done

manually, or in cases where a source model exists,

automatically or semi-automatically. Such annotated model

needs to contain the fundamental properties of the element to

be analyzed, for example timing annotations or failure rate.

B. Analyzing

Analysis often involves transferring the annotated model to a

format acceptable to a particular analysis tool. Ideally, this

should be completely automatic to avoid mistakes and allow

the annotated model to be the documentation of the analyzed

entity. In case assumptions or engineering decisions need to be

provided to the analysis tool, these need to be documented to

secure repeatability and traceability.

C. Understanding

Many analysis results are non-trivial and thus difficult to

understand. Effective views representing the source model and

analysis result are thus required.

D. Evolving

The purpose of analysis is often to evaluate a design in order

to iteratively improve it. On the basis of analysis results, both

the architecture model and its analysis annotations may be

changed. When such changes are performed, it is important

that architecture models and analysis annotations stay

consistent. It is also necessary to iteratively modify and asses

models and annotations with respect to all relevant properties.

IV. DEPENDABILITY ANALYSIS CONCEPTS

In the following, we describe the instantiation of the four steps

discussed in Section III for the analysis of a system’s

dependability, particularly, safety. Automotive systems are

highly safety-critical and, thus, processes require that safety is

properly addressed during system development. A particular

employed technique is fault tree analysis (FTA) as part of

hazard analysis. Fault tree analysis is a top-down approach to

identify, which errors (or combinations thereof) of system

parts can result in a certain hazard.

Figure 3. Error Propagation Model of brake system

A. Defining

EAST-ADL supports a specific view, called error model, for

modeling the errors and how errors of one component

influence other components, and eventually result in a hazard,

see . This influence of one component’s errors to other

components has been termed “failure pathology” by Avizienis

Figure 2. Version consistency check on Functional Design Architecture of Brake By Wire

system

et al. [14] and is the basis of many architecture based safety

analysis methods [10][11][12]. As part of the goal to support

the engineer to analyze the system’s safety, our approach

supports an automatic generation of an initial error model

from the architectural model. The generated error model

reflects the structure of the functions in the design model of

EAST-ADL and is based on one to one mapping patterns

between function models and error models, e.g. component

types are mapped to error types, ports of the components are

mapped to ports at the error type.

Furthermore, the generated behavior of the error model is

pessimistic, i.e., it assumes that errors of one component

always result in errors of other components.

As this initial error model is only based on the structure, it

does not resemble the real error behavior. Hence, the error

model, particularly the behavior, needs to be refined by the

engineer to properly resemble the system’s error behavior.

To support the engineer, we provide two refactoring

operations on the error model. As the initial mapping is quite

verbose, the refactoring operations deal with merging different

parts of the architectural configuration, i.e., merging multiple

error types inside a containing error type and merging of

multiple ports of an error type. As an example, the joining of

multiple error types inside a containing error type results in a

simpler structure, which might also be easier to analyze and

understand. Note that changes in this step only concerns the

correct representation of error propagation, and does not

address system changes.

As those refactorings change the error behavior, they are not

automatically executed but instead provide the safety engineer

more complex editor operations compared to the normal

graphical editor operations.

B. Analyzing

In order to analyze the specified error mode, the EAST-ADL

error model created by the previous step is automatically

transformed to a fault tree model, which is subsequently

analyzed by the HipHops tool [18] with respect to minimal cut

sets (see Figure 4). Cut sets are sets of failures whose

combination result, in the context of safety, in a hazard.

Minimal cut sets are cut sets where no failure can be removed

without the cut set not being a cut set anymore. Minimal cut

sets are important from a safety perspective, as they are the

“simplest” scenarios how failures in the system can result in a

hazard and, thus, should be addressed first.

C. Understanding

In order to understand results, a combination of views of the

architectural configuration, the analysis input and the analysis

results is required. In this case, the error propagation model

and the resulting fault tree are key elements. Also, the minimal

cut set, i.e. the sets of faults leading to each system failure, are

fundamental and thus highlighted in the tree view of the error

propagation model.

D. Evolving

An important part of the development lifecycle is the

evolution of the system. In the context of the safety

Figure 4. Fault Tree from HiP-HOPS analysis tool

assessment, both the architectural configuration as well as the

error model will be updated regularly. Furthermore, the

updates of one model will lead to updates in the other, e.g., the

analysis of the error model might result in the addition of a

redundant sensor in the architectural configuration, which in

turn requires a change in the error model to properly capture

the new failure behavior. Such changes are manual in our

current approach, although semi-automatic approach can be

used where a new error propagation model is generated and

compared/merged with the existing error propagation model.

New or modified annotations to represent non-functional

properties like timing or energy consumption may also be

required in the architectural configuration.

To support version management of individual model elements,

a fine-grained version annotation approach was introduced.

Each model element gets a version annotation that is manually

increased if a new stable version of that model element has

been developed. As the model elements of the architectural

configuration and the error model are internally linked, the

system can simply compare the two versions of the model

elements and check whether one model has been updated, see

Figure 2.

As an example, when analyzing the error propagation model,

it was found that there was a single point of failure of the

brake pedal sensor leading to brake system failure. The flaw

was corrected, and version consistency control applied to

identify which parts of the error propagation model was

affected by the change.

V. PROTOTYPE TOOLING

The prototype tooling is implemented in Java as a set of six

Eclipse [1] plugins. Eclipse is an open source platform that

facilitates rapid development of integrated features based on a

plugin architecture. The platform comprises a runtime and

many plugins that provide support for tool development. On

top of Eclipse the prototype tooling makes use of the EATOP

platform [2], which is an emerging infrastructure platform for

EAST-ADL. This means that EATOP provides serialization,

deserialization and validation of the multi-objective system

model. In addition, EATOP supplies a tree view for model

navigation and editing, as well as programmatic access to the

model. The prototype tooling plugins mainly rely on EATOP

functionality, but also take advantage of some functionality in

the Eclipse platform, see Figure 5.

Eclipse Platform

EATop Platform

Prototype Tooling Plugins

VersionControlErrorPropagation HipHopsFTA

Error Propagation Analysis

DiagramModelDiagramEditorPropertyAnalyzer

Figure 5. Software architecture of the prototype tooling

There are three plugins for the error propagation analysis.

First, the ErrorPropagation plugin creates the error

model from the model of the architectural configuration (i.e.,

the structure of the architecture defined by components and

connectors [17]) and also supports the refactoring operations.

Second, the HipHopsFTA plugin exports the error model to

HiP-HOPS format. Third, the VersionControl plugin

handles version control and consistency between the

architectural configuration and the error model.

In addition to the plugins for error propagation, there is a

PropertyAnalyzer plugin. This plugin can be used for

analyzing linear properties like power consumption, current,

cable length, piece cost etc. as mentioned above.

Finally, there are two diagram plugins used by the tooling

prototype. These are general in the sense that they are

applicable for any modeling objective that benefits from

diagram representation. The DiagramModel plugin

represents a diagram model and has been auto-generated from

an xml schema using the Eclipse Modeling Framework [3].

The DiagramEditor plugin is an editor based on the

Graphical Editor Framework [4]. Diagrams are created by

using drag-and-drop of system model elements in the tree

view to the editor canvas. In order to keep the system and

diagram models synchronized, there is a reference from each

node and edge in the diagram to the underlying system model

element. Model element listeners are utilized on both models

to detect any changes in one of the models that need to be

reflected in the other.

VI. EVALUATION

In order to evaluate the presented method, we performed a

confirmative case study at Volvo. In the following sections,

we discuss the evaluation criteria, the method of the

evaluation, as well as the results.

A. Evaluation Criteria

Carvalho [15] provides validation criteria for measuring the

outcome of a design research: artifact success, generalization,

and novelty. Artifact success, as shown by name, is used for

measuring whether the artifact is a success or not.

Generalization defines the range of applicability for the

outcome, so whether the applicability is restricted to specific

situations or not. Novelty indicates the improvements of the

measured outcome comparing with existing knowledge, i.e.,

the outcome is better compared to before.

B. Evaluation Method

We used semi-structured interviews as a method to perform

data collection on the evaluation criteria. Semi-structured

interviews are built on a common set of questions but the

interviewer can react to the background and questions of the

interviewee by adaptions of the questions during the interview.

The interviews have been performed individually in order to

avoid bias by a group interview as well as ensure that all

feedback from all participants is gathered.

Each interview starts with an introduction, which provides a

general concept of the research and background. Afterwards,

each part of the approach is described using both a

presentation as well as a demo of the tools. Thereafter, the

interviewees answer the questions and rate the features of our

approach with respect to the evaluation criteria. Seven

interviews have been performed each around one hour. Four

of the interviewees are experts in automotive architecture;

three of the interviewees are safety experts. We chose these

two groups of experts to cover both parts of our models, e.g.,

architecture and error models.
After the interviews, the answers from the interviews have

been summarized in relation to our evaluation criteria and

subsequently analyzed.

C. Results

In the following, we discuss the chosen evaluation criteria

artifact success, generalization, and novelty in more detail for

the four activities in our method.

We measure artifact success in terms of “Ease of Use”, “Ease

of Understanding” and “Achieving its goal” on a likert scale

of 1 to 5, with 1 being poor and 5 being excellent.

 Defining Analyzing and

Understanding

Evolving

Ease of Use 4 3.8 3.9

Ease of

Understanding

3.4 3.8 4

Achieving its

Goal

4.1 4 3.9

Table 1 Artifact Success

Overall, we can see that the artifact success is generally rated

highly (around 4). The only criteria rated less good is “Ease of

Understanding” for the “Defining” step. The specific reason

for that is that the interviewees did not find it as easy to

understand the refactoring operations and their purpose on the

error model, compared to other parts.

With respect to the generalization and novelty criteria, we

collected qualitative answers from the interviewees. Overall

both generalization and novelty are confirmed. For example,

the interviewees stated on generalization: “It should be a part

of [our] development process in the future.”, “This feature is

easy to use, but setting the logic probability is hard to achieve.

But it achieves its goal quite well.”, “Yes, this feature is useful

everywhere and highly needed.”, ”The version control is

definitely applicable for the current work and it is always a big

issue to handle.”. “Yeah, there are a lot [of] modifications

needed to be done manually. When need to update the model,

add or move hardware or functions, those changes are quite

common. But it may not be able to automate since the

machine cannot make decision for that. But it would be good

to have something automatic for a complex project.”.

Examples for statements on novelty include “I don’t think

there is any current tool which has this feature, as far as I

know.”, ” There are lots of tools [that] are doing the version

control.”, “Other tools have similar features, but not for this

purpose.”

In summary, we conclude that the approach has been

positively evaluated.

D. Threats to Validity

Threats to validity are usually categorized into internal and

external. Internal validity refers to the extent that the

evaluation result is warranted and external validity refers to

the extent that the evaluation result can be generalized to other

situations and to other people [16]. In this evaluation, the

threat to internal validity is instrumentation. The

instrumentation here refers to the measuring scale for scoring

different artifacts. Since different interviewees could have

different understanding of the score, it means the same

evaluation feedback may differ for different interviewees.

There are several threats to external validity in this research.

Purposive sampling, only the ones who are familiar with the

research background in Volvo are selected as interviewees,

this makes the evaluation result hard to be generalized to other

people in other organizations. Similarly, only seven interviews

have been conducted during the evaluation. However, in this

evaluation, experts from industrial practice with different

backgrounds and expertise are selected in order to avoid

selection bias. So we conclude that the result is adequate valid

from generalization perspective. In interviews, the Hawthorne

effect might result in more positive feedback, when the

researcher states that the whole interview will be recorded. To

counter this threat, the interviewer asks for honest feedback at

the beginning of the interview and the individual recordings

were kept anonymous and not shared within the organization.

Concerning the influence of Mono-method bias, we performed

both subjective measurement (interview) and objective

measurement (quantitative data on a Likert scale on the

valuation criteria) to make sure a valid conclusion is drawn.

VII. CONCLUSION AND FUTURE WORK

We presented an approach for model-based analysis of

automotive systems with respect to multiple different quality

attributes like performance, timing, costs, and safety. The

approach is based on a common modeling language, EAST-

ADL, with extensions to model the different quality aspects.

We explained in more detail the four steps of our approach by

applying it to safety as quality attribute. The evaluation by a

case study at Volvo using semi-structured interviews showed

that the approach is applicable in practice.

Currently, our approach is restricted that we support only a

full regeneration of the error model based on the model of the

architectural configuration. We are planning to improve the

approach working on implementing incremental model

transformations [13] [19] in order to incrementally adapt parts

of the error model if only parts of the model of the

architectural configuration change.

REFERENCES

[1] Eclipse Foundation: https://eclipse.org/

[2] EATOP EAST-ADL TOol Platform: https://www.eclipse.org/EATOP/

[3] Eclipse Modelling Framework: http://www.eclipse.org/modeling/emf/

[4] Eclipse Graphical Editing Framework: https://eclipse.org/gef/

[5] AUTOSAR Partnershio: www.autosar.org

[6] ÉAST-ADL Association: www.east-adl.info

[7] L. Grunske. Early quality prediction of component-based systems–a
generic framework. Journal of Systems and Software 80.5 (2007).

[8] K. Goseva-Popstojanova and K. S. Trivedi. Architecture-based approach
to reliability assessment of software systems. Perform. Eval, 45(2-
3):179–204, 2001.

[9] S. Balsamo, A. DiMarco, P. Inverardi, and M. Simeoni. Model-Based
Performance Prediction in Software Development: A Survey. IEEE
Transactions on Software Engineering, 30(5):295–310, 2004.

[10] M. Güdemann and F. Ortmeier. Probabilistic model-based safety
analysis. In Alessandra Di Pierro and Gethin Norman, editors,
Proceedings Eighth Workshop on Quan- titative Aspects of
Programming Languages, volume 28 of EPTCS, pages 114–128, 2010.

[11] H. Giese and M. Tichy. Component-based hazard analysis: Optimal
designs, product lines, and online-reconfiguration. In Computer Safety,
Reliability, and Security, 25th International Conference, SAFECOMP
2006, Gdansk, Poland, September 27- 29, 2006, Proceedings, volume
4166 of Lecture Notes in Computer Science, pages 156–169. Springer,
2006.

[12] C. Priesterjahn, D. Steenken, and M. Tichy. "Timed hazard analysis of
self-healing systems." Assurances for Self-Adaptive Systems. Springer
Berlin Heidelberg, 2013. 112-151.

[13] D. Hearnden, M. Lawley, and K. Raymond. "Incremental model
transformation for the evolution of model-driven systems." Model
Driven Engineering Languages and Systems. Springer Berlin
Heidelberg, 2006. 321-335.

[14] A. Avizienis, et al. "Basic concepts and taxonomy of dependable and
secure computing." Dependable and Secure Computing, IEEE
Transactions on 1.1 (2004): 11-33.

[15] J. Carvalho. ”Validation Criteria For Outcomes Of Design Research”,
The International Workshop on IT Artefact Design & Workpractice
Intervention, 10 June, 2012, Barcelona.

[16] P. Runeson and M.Höst. "Guidelines for conducting and reporting case
study research in software engineering." Empirical software engineering
14.2 (2009): 131-164.

[17] N. Medvidovic and Richard N. Taylor. "A classification and comparison
framework for software architecture description languages." Software
Engineering, IEEE Transactions on 26.1 (2000): 70-93.

[18] Y. Papadopoulos, J. McDermid, R. Sasse and R. Heiner,“Analysis and
Synthesis of the Behaviour of Complex Programmable Electronic
Systems in Condition of Failure“ Reliability Engineering and System
Safety, Volume 71, pp. 229-247.

[19] S. Getir, L. Grunske, C.Bernaska, V. Käfer. T. Samwald, and M. Tichy.
„CoWolf – A Generic Frameowork for Multi-View Co-Evolution and
Evaluation of Models.“ 8th International Conference on Model
Transformations (ICMT 2015), L’Aquila, Italy, July 20-21, 2015.

Acknowledgements: This work was supported by the European Commission,
the Artemis-JU, and by VINNOVA under Grants 2012-04304 Crystal, 2013-
2196 Synligare, and 2014-01271 Amalthea4public.

https://eclipse.org/
https://www.eclipse.org/EATOP/
http://www.eclipse.org/modeling/emf/
https://eclipse.org/gef/
http://www.autosar./
http://www.east-adl.info/

