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Abstract— Automotive embedded systems are increasingly 

critical for vehicle functionality. Their scope and impact increase 

and as a consequence their complexity and criticality. Cost is 

constantly in focus, which emphasizes the need for efficient 

development methods. Securing functional and non-functional 

properties in such setting requires systematic and stringent 

methods, including model based analysis. This paper introduces a 

methodology and tool support for embedded automotive systems, 

where multi-objective analyses drive iterative design. Tool 

support is developed based on the EATOP platform for EAST-

ADL. Plugins supporting version consistency control, fault tree 

analysis and analysis of linear property annotations including 

power, energy and cost are reported. The tooling is validated on 

an example system design and the methodology and part of the 

tooling evaluated with engineering experts.   

Keywords—Embedded Systems; Real-time Systems; Model 

Based Development; AUTOSAR; EAST-ADL; Quality; Safety 

I.  INTRODUCTION 

Automotive systems continuously face increasing 

expectations. Functionality and cost are constantly in focus, 

and linked to the latter is reduced development time. A recent 

trend is the emerging use of agile methods and continuous 

integration in automotive development, which calls for shorter 

development iterations and increased automation.  

Securing functional and non-functional properties in such 

setting requires systematic and stringent methods, including 

model based analysis. Examples of important qualities to 

analyze are timing, safety, product cost, energy consumption 

and various correctness criteria.  

The demand for short development time, consistency and 

correctness means that the required analyses should be 

performed on the original constructive model or on 

automatically generated models. The EAST-ADL [6] 

architecture description language provides the opportunity to 

represent several engineering aspects in the same model. It is 

based on a structural model capturing the electrical and 

electronic architecture in 4 levels of abstraction: 

 Implementation Level: Concrete software 

architecture and code 

 Design Level: Physical topology, concrete functional 

architecture with allocation. 

 Analysis Level: Abstract functional architecture 

 Vehicle Level: Feature content 

Thus, the architecture description reduces the amount of 

software details in four steps: Design level description ignores 

code structure, interfaces to execution platform, interfaces to 

I/O, etc. Analysis level ignores allocation and topology, 

physical sensors and actuators. Vehicle level ignores solution 

and integration aspects and focus on individual features and 

their appearance to the customer. 

The software details on implementation level are represented 

using the AUTOSAR [5] approach, which is a fundamental 

standard for automotive software. 

EAST-ADL provides extensions to complement the structural 

model with additional aspects: Behavior, Timing, 

Dependability, Variability, Cost as well as: 

 Energy and power: Mode-based steady state energy and 

power annotations  

 Take rates: Definition of production volumes and take 

rates of vehicle types and features 

 Requirements: Requirements allocation, traceability and 

formalization 

 Verification and Validation: Definition of  V&V 

procedures and results 

The EAST-ADL is using the AUTOSAR meta modelling 

rules. Therefore, the above extensions are compatible to 

AUTOSAR models. Further, by prescribing syntax and 

semantics for these annotations, tools and engineers can 

interpret the information unambiguously and consistently.  

In this paper, we present a methodology for working 

iteratively with embedded system design, in a setting with 

multi-objective model based analysis and design. Quality 

aspects covered include fault propagation, linear property 

annotations like energy, power and cost. The modelling and 

analysis approach is based on the EAST-ADL Open Tool 

Platform [2]. 

Model-based quality evaluation (MBQE) techniques have 

been developed for a variety of quality attributes, including 

safety, security, reliability, availability and performance. 

Similar to other engineering disciplines the core idea of 

MBQE techniques is to construct a quality evaluation model 

from a system model and use this model to gain knowledge 



 

 

about the quality of the system by checking them against 

formally specified quality requirements. For the construction 

of quality evaluation models mostly architectural models are 

used, since the decisions taken in the architecture design phase 

have a significant impact on the system quality and MBQE 

provides an effective basis to choose an appropriate design. 

The generated quality evaluation models are different for each 

quality attribute [7]. As examples Discrete Time Markov 

Chains (DTMCs) are used for reliability evaluation [8], 

Layered Queueing Networks (LQN) and Continuous Time 

Markov Chains (CTMC) are used to predict performance 

attributes [9], and Fault Tree (FT) and Failure Propagation 

Models (FPM) are commonly used for evaluating system 

safety [10][11][12]. 

Our approach differs from the mentioned ones that it uses 

complete models for both the architectural configuration [17] 

as well as, in the case of safety, the error behavior, i.e., the 

error behavior can be modeled and analyzed independently of 

the architecture. The other approaches typically embed the 

quality evaluation relevant behavior into the components of 

the architectural configuration and are therefore restricted by 

the architecture. In contrast, the model of the error behavior 

can evolve independently of the architectural configuration in 

our approach to give the engineers (e.g., safety engineers) 

more freedom to improve and refine the error model. For this, 

we provide specific refactoring operations and version 

consistency support to handle inconsistencies between the 

models. 

The paper will next introduce the modeling and analysis 

capabilities used, followed by a methodology description for 

iterative design guided by multi-objective analysis. The 

concepts are then illustrated using a particular analysis, error 

propagation applied on a brake by wire example system. 

Before concluding, a description of the prototype tooling is 

provided as well as an evaluation of the approach with 

intended users.  

II. MULTI-OBJECTIVE MODELS  

System development is always a trade-off among a large set of 

capabilities. In order to make the right design decisions, 

reliable assessment of system properties is required. Model-

based analysis provides means for well-defined and 

semantically sound assessment. Because the input is a model, 

system specification can be captured in a systematic and 

understandable way.  

Because many analyses are highly specific and because most 

analysis tools are tailor-made for a specific purpose, input 

models often need to be unique for the specific analysis. This 

has several consequences: 

 Efficiency: Common aspects of the input are duplicated 

 Consistency: System definition may deviate between 

analyses 

 Tool and data: Same system needs to be managed in 

different tools with different learning curves, data 

management, etc. 

In order to mitigate these problems, a common model, 

annotated with information for different analyses can be used. 

This way, variants and versions are consistent for all analysis 

purposes, and the amount of redundant modeling is 

minimized. 

Examples of analysis purposes that can share the same core 

model include: 

Timing – Response time: Annotate existing functional 

structure with timing properties and requirements.  

Dependability- Fault Tree analysis: Complement architectural 

configuration with error propagation models 

Cost – Piece and development cost: Take rates and cost 

annotations  complement functional and hardware elements. 

Energy – Steady state and mode based energy and power 

consumption: Can annotate functional and hardware elements. 

In the tooling accounted for in this paper, the latter three 

categories are supported, as well as several other linear 

properties. Figure 1 shows the hardware architecture of a 

fictitious brake by wire system. The lower part shows the 

hardware architecture containing 5 instances of ECU types as 

well as sensors and actuators. The type declarations are 

annotated with power consumption as shown at the top. The 

actuators’ power consumption varies with operating mode. 

With the linear properties analyzer, the desired mode is 

selected and the total power is summed up to 

4*60W+5*17W=325W which is less than the prescribed 

maximum power of 400W. The sensors’ power consumption 

is ignored for simplicity. Note also that bus and power lines as 

well as most type relations are suppressed in the diagram.   

 

 
Figure 1. Prescribed and computed power consumption 

for components of a brake by wire system in active and 

idle mode. 

 

III. METHODOLOGY  

Engineering models will be defined in several ways, typically 

depending on the degree of reuse and the kind of tooling 

available. Below, a simple pattern will be described, which 

would motivate and explain which kind of tool support is 

typically needed.  



 

 

A. Defining 

Defining the model which is subject to analysis may be done 

manually, or in cases where a source model exists, 

automatically or semi-automatically. Such annotated model 

needs to contain the fundamental properties of the element to 

be analyzed, for example timing annotations or failure rate.   

B. Analyzing   

Analysis often involves transferring the annotated model to a 

format acceptable to a particular analysis tool. Ideally, this 

should be completely automatic to avoid mistakes and allow 

the annotated model to be the documentation of the analyzed 

entity. In case assumptions or engineering decisions need to be 

provided to the analysis tool, these need to be documented to 

secure repeatability and traceability. 

C. Understanding   

Many analysis results are non-trivial and thus difficult to 

understand. Effective views representing the source model and 

analysis result are thus required. 

D. Evolving 

The purpose of analysis is often to evaluate a design in order 

to iteratively improve it. On the basis of analysis results, both 

the architecture model and its analysis annotations may be 

changed. When such changes are performed, it is important 

that architecture models and analysis annotations stay 

consistent. It is also necessary to iteratively modify and asses 

models and annotations with respect to all relevant properties.  

IV. DEPENDABILITY ANALYSIS CONCEPTS  

In the following, we describe the instantiation of the four steps 

discussed in Section III for the analysis of a system’s  

dependability, particularly, safety. Automotive systems are 

highly safety-critical and, thus, processes require that safety is 

properly addressed during system development. A particular 

employed technique is fault tree analysis (FTA) as part of 

hazard analysis. Fault tree analysis is a top-down approach to 

identify, which errors (or combinations thereof) of system 

parts can result in a certain hazard. 

 

 
Figure 3. Error Propagation Model of brake system 

 

A. Defining 

EAST-ADL supports a specific view, called error model, for 

modeling the errors and how errors of one component 

influence other components, and eventually result in a hazard, 

see . This influence of one component’s errors to other 

components has been termed “failure pathology” by  Avizienis 

Figure 2. Version consistency check on Functional Design Architecture of Brake By Wire 

system 



 

 

et al. [14] and is the basis of many architecture based safety 

analysis methods [10][11][12]. As part of the goal to support 

the engineer to analyze the system’s safety, our approach 

supports an automatic generation of an initial error model 

from the architectural model. The generated error model 

reflects the structure of the functions in the design model of 

EAST-ADL and is based on one to one mapping patterns 

between function models and error models, e.g. component 

types are mapped to error types, ports of the components are 

mapped to ports at the error type.  

Furthermore, the generated behavior of the error model is 

pessimistic, i.e., it assumes that errors of one component 

always result in errors of other components. 

As this initial error model is only based on the structure, it 

does not resemble the real error behavior. Hence, the error 

model, particularly the behavior, needs to be refined by the 

engineer to properly resemble the system’s error behavior. 

To support the engineer, we provide two refactoring 

operations on the error model. As the initial mapping is quite 

verbose, the refactoring operations deal with merging different 

parts of the architectural configuration, i.e., merging multiple 

error types inside a containing error type and merging of 

multiple ports of an error type. As an example, the joining of 

multiple error types inside a containing error type results in a 

simpler structure, which might also be easier to analyze and 

understand. Note that changes in this step only concerns the 

correct representation of error propagation, and does not 

address system changes.  

As those refactorings change the error behavior, they are not 

automatically executed but instead provide the safety engineer 

more complex editor operations compared to the normal 

graphical editor operations.  

B. Analyzing  

In order to analyze the specified error mode, the EAST-ADL 

error model created by the previous step is automatically 

transformed to a fault tree model, which is subsequently 

analyzed by the HipHops tool [18] with respect to minimal cut 

sets (see Figure 4). Cut sets are sets of failures whose 

combination result, in the context of safety, in a hazard. 

Minimal cut sets are cut sets where no failure can be removed 

without the cut set not being a cut set anymore. Minimal cut 

sets are important from a safety perspective, as they are the 

“simplest” scenarios how failures in the system can result in a 

hazard and, thus, should be addressed first.  

C. Understanding 

In order to understand results, a combination of  views of the 

architectural configuration, the analysis input and the analysis 

results is required. In this case, the error propagation model 

and the resulting fault tree are key elements. Also, the minimal 

cut set, i.e. the sets of faults leading to each system failure, are 

fundamental and thus highlighted in the tree view of the error 

propagation model. 

D. Evolving 

An important part of the development lifecycle is the 

evolution of the system. In the context of the safety 

 
Figure 4. Fault Tree from HiP-HOPS analysis tool 

assessment, both the architectural configuration as well as the 

error model will be updated regularly. Furthermore, the 

updates of one model will lead to updates in the other, e.g., the 

analysis of the error model might result in the addition of a 

redundant sensor in the architectural configuration, which in 

turn requires a change in the error model to properly capture 

the new failure behavior. Such changes are manual in our 

current approach, although semi-automatic approach can be 

used where a new error propagation model is generated and 

compared/merged with the existing error propagation model. 

New or modified annotations to represent non-functional 

properties like timing or energy consumption may also be 

required in the architectural configuration. 

To support version management of individual model elements, 

a fine-grained version annotation approach was introduced. 

Each model element gets a version annotation that is manually 

increased if a new stable version of that model element has 

been developed. As the model elements of the architectural 

configuration and the error model are internally linked, the 

system can simply compare the two versions of the model 

elements and check whether one model has been updated, see 

Figure 2.  

As an example, when analyzing the error propagation model, 

it was found that there was a single point of failure of the 

brake pedal sensor leading to brake system failure. The flaw 

was corrected, and version consistency control applied to 

identify which parts of the error propagation model was 

affected by the change.  

V. PROTOTYPE TOOLING  

The prototype tooling is implemented in Java as a set of six 

Eclipse [1] plugins. Eclipse is an open source platform that 

facilitates rapid development of integrated features based on a 

plugin architecture. The platform comprises a runtime and 

many plugins that provide support for tool development.  On 

top of Eclipse the prototype tooling makes use of the EATOP 

platform [2], which is an emerging infrastructure platform for 

EAST-ADL. This means that EATOP provides serialization, 

deserialization and validation of the multi-objective system 

model. In addition, EATOP supplies a tree view for model 

navigation and editing, as well as programmatic access to the 

model. The prototype tooling plugins mainly rely on EATOP 

functionality, but also take advantage of some functionality in 

the Eclipse platform, see Figure 5. 



 

 

Eclipse Platform

EATop Platform

Prototype Tooling Plugins

VersionControlErrorPropagation HipHopsFTA

Error Propagation Analysis 

DiagramModelDiagramEditorPropertyAnalyzer

 
Figure 5. Software architecture of the prototype tooling 

 

There are three plugins for the error propagation analysis.  

First, the ErrorPropagation plugin creates the error 

model from the model of the architectural configuration (i.e., 

the structure of the architecture defined by components and 

connectors [17]) and also supports the refactoring operations. 

Second, the HipHopsFTA plugin exports the error model to 

HiP-HOPS format. Third, the VersionControl plugin 

handles version control and consistency between the 

architectural configuration and the error model.  

In addition to the plugins for error propagation, there is a 

PropertyAnalyzer plugin. This plugin can be used for 

analyzing linear properties like power consumption, current, 

cable length, piece cost etc. as mentioned above. 

Finally, there are  two diagram plugins used by the tooling 

prototype. These are general in the sense that they are 

applicable for any modeling objective that benefits from 

diagram representation.  The DiagramModel plugin 

represents a diagram model and has been auto-generated from 

an xml schema using the Eclipse Modeling Framework [3]. 

The DiagramEditor plugin is an editor based on the 

Graphical Editor Framework [4]. Diagrams are created by 

using drag-and-drop of system model elements in the tree 

view to the editor canvas. In order to keep the system and 

diagram models synchronized, there is a reference from each 

node and edge in the diagram to the underlying system model 

element. Model element listeners are utilized on both models 

to detect any changes in one of the models that need to be 

reflected in the other.   

VI. EVALUATION 

In order to evaluate the presented method, we performed a 

confirmative case study at Volvo. In the following sections, 

we discuss the evaluation criteria, the method of the 

evaluation, as well as the results. 

A. Evaluation Criteria 

Carvalho [15] provides validation criteria for measuring the 

outcome of a design research: artifact success, generalization, 

and novelty. Artifact success, as shown by name, is used for 

measuring whether the artifact is a success or not. 

Generalization defines the range of applicability for the 

outcome, so whether the applicability is restricted to specific 

situations or not. Novelty indicates the improvements of the 

measured outcome comparing with existing knowledge, i.e., 

the outcome is better compared to before. 

B. Evaluation Method  

We used semi-structured interviews as a method to perform 

data collection on the evaluation criteria. Semi-structured 

interviews are built on a common set of questions but the 

interviewer can react to the background and questions of the 

interviewee by adaptions of the questions during the interview. 

The interviews have been performed individually in order to 

avoid bias by a group interview as well as ensure that all 

feedback from all participants is gathered. 

Each interview starts with an introduction, which provides a 

general concept of the research and background. Afterwards, 

each part of the approach is described using both a 

presentation as well as a demo of the tools. Thereafter, the 

interviewees answer the questions and rate the features of our 

approach with respect to the evaluation criteria. Seven 

interviews have been performed each around one hour. Four 

of the interviewees are experts in automotive architecture; 

three of the interviewees are safety experts. We chose these 

two groups of experts to cover both parts of our models, e.g., 

architecture and error models. 
After the interviews, the answers from the interviews have 

been summarized in relation to our evaluation criteria and 

subsequently analyzed. 

C. Results 

In the following, we discuss the chosen evaluation criteria 

artifact success, generalization, and novelty in more detail for 

the four activities in our method. 

We measure artifact success in terms of “Ease of Use”, “Ease 

of Understanding” and “Achieving its goal” on a likert scale 

of 1 to 5, with 1 being poor and 5 being excellent.   

  

 Defining Analyzing and 

Understanding 

Evolving 

Ease of Use 4 3.8 3.9 

Ease of 

Understanding 

3.4 3.8 4 

Achieving its 

Goal 

4.1 4 3.9 

Table 1 Artifact Success 

 

Overall, we can see that the artifact success is generally rated 

highly (around 4). The only criteria rated less good is “Ease of 

Understanding” for the “Defining” step. The specific reason 

for that is that the interviewees did not find it as easy to 

understand the refactoring operations and their purpose on the 

error model, compared to other parts.  

With respect to the generalization and novelty criteria, we 

collected qualitative answers from the interviewees. Overall 



 

 

both generalization and novelty are confirmed. For example, 

the interviewees stated on generalization: “It should be a part 

of [our] development process in the future.”, “This feature is 

easy to use, but setting the logic probability is hard to achieve. 

But it achieves its goal quite well.”, “Yes, this feature is useful 

everywhere and highly needed.”, ”The version control is 

definitely applicable for the current work and it is always a big 

issue to handle.”. “Yeah, there are a lot [of] modifications 

needed to be done manually. When need to update the model, 

add or move hardware or functions, those changes are quite 

common. But it may not be able to automate since the 

machine cannot make decision for that. But it would be good 

to have something automatic for a complex project.”. 

Examples for statements on novelty include “I don’t think 

there is any current tool which has this feature, as far as I 

know.”, ” There are lots of tools [that] are doing the version 

control.”, “Other tools have similar features, but not for this 

purpose.” 

In summary, we conclude that the approach has been 

positively evaluated. 

D. Threats to Validity 

Threats to validity are usually categorized into internal and 

external. Internal validity refers to the extent that the 

evaluation result is warranted and external validity refers to 

the extent that the evaluation result can be generalized to other 

situations and to other people [16]. In this evaluation, the 

threat to internal validity is instrumentation. The 

instrumentation here refers to the measuring scale for scoring 

different artifacts. Since different interviewees could have 

different understanding of the score, it means the same 

evaluation feedback may differ for different interviewees. 

There are several threats to external validity in this research. 

Purposive sampling, only the ones who are familiar with the 

research background in Volvo are selected as interviewees, 

this makes the evaluation result hard to be generalized to other 

people in other organizations. Similarly, only seven interviews 

have been conducted during the evaluation. However, in this 

evaluation, experts from industrial practice with different 

backgrounds and expertise are selected in order to avoid 

selection bias. So we conclude that the result is adequate valid 

from generalization perspective. In interviews, the Hawthorne 

effect might result in more positive feedback, when the 

researcher states that the whole interview will be recorded. To 

counter this threat, the interviewer asks for honest feedback at 

the beginning of the interview and the individual recordings 

were kept anonymous and not shared within the organization. 

Concerning the influence of Mono-method bias, we performed 

both subjective measurement (interview) and objective 

measurement (quantitative data on a Likert scale on the 

valuation criteria) to make sure a valid conclusion is drawn.  

VII. CONCLUSION AND FUTURE WORK 

We presented an approach for model-based analysis of 

automotive systems with respect to multiple different quality 

attributes like performance, timing, costs, and safety. The 

approach is based on a common modeling language, EAST-

ADL, with extensions to model the different quality aspects. 

We explained in more detail the four steps of our approach by 

applying it to safety as quality attribute. The evaluation by a 

case study at Volvo using semi-structured interviews showed 

that the approach is applicable in practice. 

Currently, our approach is restricted that we support only a 

full regeneration of the error model based on the model of the 

architectural configuration. We are planning to improve the 

approach working on implementing incremental model 

transformations [13] [19] in order to incrementally adapt parts 

of the error model if only parts of the model of the 

architectural configuration change. 
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