
GMCB: An Industrial Benchmark for use in
Real-Time Mixed-Criticality Networks-on-Chip

James Harbin, Tom Fleming, Leandro Soares Indrusiak, Alan Burns

Real-Time Systems Group, Department of Computer Science, University of York, UK
{james.harbin,tdf506,leandro.indrusiak,alan.burns}@york.ac.uk

Abstract—This paper specifies and describes GMCB (Generic
Mixed-Criticality Benchmark), a benchmark industrial appli-
cation model for testing real-time mixed-criticality multicore
systems incorporating a network-on-chip (NoC). Task execution
information such as periods, latencies and criticality levels is
specified. The communication patterns between the tasks are
defined, incorporating message sizes transmitted between the
source and destination nodes. Cycle-accurate NoC simulation is
used to evaluate the performance of the GMCB model, evaluating
the communication latencies encountered under various task
mappings. The behaviour of the application under a recent
mixed-criticality NoC protocol is considered.

I. INTRODUCTION

The trend towards multi-core and many-core systems is
encouraging further integration of embedded and real-time
systems, and in particular the installation of multiple appli-
cations or system functions onto a single hardware platform.
Complex single applications may have component tasks of
distinct criticality levels sharing resources, such as processing
cores or links or buffers of a communication interconnect.
It is important to ensure that the goals of efficient resource
utilisation do not conflict with the requirement to deliver per-
formance guarantees for each level of criticality in the system.
Furthermore, multi-criticality systems can be implemented
upon a platform featuring sophisticated interconnects such as
a network-on-chip (NoC) [1], which requires consideration
of the communication and interference patterns that are in
progress.

In order to evaluate the performance of mixed-criticality
systems and protocols, it is important to have a range of
consistent and standardised benchmarks which present a pre-
defined loading for the mixed criticality system. This pa-
per specifies GMCB (Generic Mixed Criticality Benchmark),
a mixed-criticality benchmark developed from an industrial
case study, providing task execution times, task criticality
levels, communication patterns, and message sizes. Example
results are provided for the cycle-accurate simulation of this
application upon a multi-core system incorporating a NoC,
demonstrating the communication latency performance of the
application. These results are further extended by considering
the behaviour of a mixed-criticality protocol when executing
the application with two different task mappings.

II. RELATED WORK

The benchmarks that are available for embedded and real-
time systems typically provide a large number of tasks and
detailed structure of the internal code. However, they do
not include any criticality information for the various tasks,
or a designation of the tasks into distinct criticality levels.
To the best of our knowledge, this specfication of GMCB
provides the first mixed-criticality benchmark derived from a
real industrial case study suitable for schedulability analysis
and NoC communication latency simulation.

Benchmarking in general has been an important part of
performance analysis for parallel and distributed computing,
since it provides consistent test loadings that can be used to
evaluate a novel architecture, protocol or configuration. The
SPLASH2 benchmark suite [2] consists of a number of parallel
programs from various domains such as scientific and graphics
computing. The benchmark characteristics are explored to-
gether with their computation to communication ratios, and
their applicability to various case studies. The Mälardalen
benchmarks [3] provide a set of example applications with
call graphs for assessing worst-case execution time of network-
on-chip applications. TACLEbench [4] provides a constantly
updating and developing set of real-time benchmarks suitable
for timing analysis. These include parallel and sequential
benchmarks with complete C source code, and the code sizes
involved range from 21 to 3985 lines. TACLEbench includes a
number of parallel benchmarks. The Papabench benchmark [5]
from the Paparazzi project is one benchmark included in the
set of parallel benchmarks within TACLEbench, and models
a fly-by-wire UAV and associated autopilot. This benchmark
allows the WCET of the individual tasks to be computed from
application code. However, the two distinct functions (fly-by-
wire and autopilot) included are assumed to be running on
different CPUs, not permitting relative performance testing on
single-core vs. multi-core configurations.

In the context of NoC research, the MCSL benchmarks
[6] provide a number of benchmark NoC applications includ-
ing a H264 decoder, Fourier transforms, and Reed-Solomon
encoders/decoders. These applications define execution times
as well as communicating flow message sizes, sources and
destinations, and provide statistical traffic as well as recorded
application traffic patterns. However, these benchmarks do not
contain any criticality information or priority levels, which



would be useful for priority-preemptive NoCs and for evalu-
ating mixed-criticality systems in the context of task priorities.

III. MODEL DEFINITION

This section defines the criticality model, giving an
overview of mixed criticality fundamentals affecting the
benchmark. Then the structure of the benchmark is specified
by defining, firstly, its tasks and their computation intervals in
the two distinct criticality modes, and secondly, the communi-
cating flows, giving the source and destination tasks, and the
data size of each communication.

A. Criticality Model

Two distinct criticality levels, high (HI) and low (LO) criti-
cality are assumed for the benchmark. The model of criticality
used assumes that in any case in which a LO-crit transmission
may cause interference upon a HI-crit flow that could cause
the HI-crit flow to miss a deadline, the interfering LO-crit
transmissions are temporarily or permanently restricted from
transmission across the NoC. This situation is accomplished
by means of a criticality mode change. A criticality change is
triggered by a HI-crit task transmitting data more frequently
than permitted under its LO-crit parameters, or the transmis-
sion of data packets by a HI-crit task beyond the size specified
in the LO-crit parameters. This model and its implementation
upon the NoC is specified fully in two of our earlier protocols,
defined in [7] and [8]. These models assume that the NoC
architecture is priority preemptive, so as to provide reduced
latency to the highest priority in the case of contention.

Depending on the NoC protocols, criticality changes trig-
gered on one arbiter may be propagated to others. Following
a criticality change, LO-crit packets may be prohibited from
transmission from the affected arbiters (the model as used
in WPMC [7]), or priorities may be changed so the LO-
crit flows can only be serviced with a priority below any
HI-crit packets (the model used in WPMC-FLOOD [8]).
Although these protocols are used in evaluation with a mixed-
criticality application, the specific structure of the benchmark
is independent of a particular criticality change protocol.

B. Task Structure

The application consists of 20 communicating tasks, in-
cluding a special system management task. Given that the
application is a mixed criticality application, it is assumed that
tasks may have an increased worst-case execution time in HI-
crit mode. Therefore, task execution latency is specified in both
two alternative modes; C(LO) for LO-crit mode and C(HI)
for HI-crit mode. Task execution parameters as supplied by the
industrial user are as defined in Table I, with C(LO) assumed
at 80% of the C(HI) value. The majority of the tasks are HI-
crit, and only four tasks are LO-crit. This is itself interesting in
that the ad-hoc application case study assumed in our earlier
work [7] had only a small number of HI-crit transmissions
relative to total data communication. A further interesting
aspect is that the LO-crit flows transmit and receive the largest
amounts of data across the NoC. The system management

NAME PERIOD (ms) C(LO) (ms) C(HI) (ms) CRIT
I/O 1 20 3.6 4.5 HI
I/O 2 20 0.8 1 HI
I/O 3 20 0.8 1 HI
I/O 4 40 4.8 6 HI
I/O 5 40 4.8 6 HI
I/O 6 40 4.8 6 HI
I/O 7 20 1.6 2 HI
I/O 8 40 0.4 0.5 HI
I/O 9 100 0.2 0.25 HI
P 1 20 1.2 1.5 HI
P 2 20 0.4 0.5 HI
P 3 20 0.8 1 HI
P 4 20 3.2 4 HI
P 5 20 1.6 2 HI
P 6 20 2.4 3 HI
SYS 40 0.2 0.25 HI
P LO 1 20 6 - LO
P L0 2 20 3 - LO
P L0 3 80 20 - LO
IO LO 1 40 17 - LO

TABLE I: The definition of the tasks comprising the GMCB
benchmark

task is assumed to communicate with every other task in
the system, once per period. This communication consists
of the system management task transmitting a single data
packet to all other tasks defined in the system. The system
management task therefore represents a highly connected
component, which is capable of transmitting criticality changes
widely, as explored in Section IV-A.

C. Communication Flows Structure

The model as presented assumes that all tasks are released to
begin their computation upon the start of each period. Obvi-
ously, if multiple tasks are mapped onto a single processor,
then the lowest priority tasks must wait for access to the
resource. Upon completion of their computation, packets are
sent to the network interface for transmission to their peers
in the task graph. It would be possible to apply release jitters
to the tasks, however, the assumption of simultaneous release
upon the start of the period is in order to produce the maximum
contention on the NoC, and therefore illustrate the worst-case
latencies. The task graph and its flow relationships are shown
in Figure 1. Note that transmissions which are marked as
HI-crit do not necessarily cause a criticality mode change.
Criticality mode changes only occur if these transmissions are
larger than the indicated size, or if they occur more frequently
than once per task period.

D. Task Memory Requirements

In addition to the communicating flows contained in Figure
1, application tasks also communicate with memory in order
to load and save relevant data. A table showing the memory
communication sizes of each flow is presented in Table II.
This table specifies the size of the relevant code and total
data storage sizes for each task. It is evident that the memory
requirements for each individual task are highly variable, and
that there exists one particular task IO LO 1 which requires
significantly higher amounts of memory than the other tasks.
However, although total memory requirements are presented



P_2
T=20
C=0.5

IO_1
T=20
C=4.5

IO_7
T=20
C=2

IO_3
T=20
C=1

IO_8
T=40
C=0.5

System
Management

T = 40
C = 0.25

IO_9
T=100
C=0.25

IO_2
T=20
C=1

IO_4
T=40
C=6

P_LO_3
T=80
C=20

P_LO_1
T=20
C=6

IO_5
T=40
C=6

IO_6
T=40
C=6

P_4
T=20
C=4

P_3
T = 20
C = 1

P_1
T=20
C=1.5

P_5
T=20
C=2

300

4000

20
400

400

30

600

600

600

600

400

400 400
400

5000

400

1500

10

P_LO_2
T=20
C=3

65536 65536

6
5
5
3
6

400

600
100

500

IO_LO_1
T=40
C=17

P_6
T=20
C=3

HI-crit 
task

LO-crit 
task
LO-crit 
transmission

HI-crit 
transmission

Fig. 1: The structure of communicating flows within the GMCB application. Annotations to the arcs indicate data transmission
sizes in bytes in LO-crit mode. Computation latencies C are in the LO-crit mode, C(LO)

Task Name CodeSize DataSize CodeSize(MB) DataSize(MB)
IO 1 327208 196830 0.31 0.19
IO 2 95572 8466 0.09 0.01
IO 3 85092 17922 0.08 0.02
IO 4 976880 3118806 0.93 2.97
IO 5 976880 3118806 0.93 2.97
IO 6 976880 3118806 0.93 2.97
IO 7 512192 382078 0.49 0.36
IO 8 88992 11202 0.08 0.01
IO 9 81096 9170 0.08 0.01
P 1 1436608 925310 1.37 0.88
P 2 102340 65420 0.10 0.06
P 3 67320 104338 0.06 0.10
P 4 231056 85968 0.22 0.08
P 5 66504 4226 0.06 0.00
P 6 177224 101786 0.17 0.10
P LO 1 495180 8394340 0.47 8.01
P LO 2 140224 467082 0.13 0.45
P LO 3 6369620 1565474 6.07 1.49
IO LO 1 949800 112916262 0.91 107.69
Sys.
Man.

104296 1339930 0.10 1.28

TABLE II: The code and data memory requirements for the
benchmark tasks

for each task, the actual low-level memory access patterns
(recorded traces giving access patterns and timings) are not
currently available from the industrial user. Therefore, memory
requirements and the impact of memory read/write requests
upon NoC latency are not considered further in this paper.

IV. EXAMPLE RESULTS

The section presents preliminary tests of communications
latency for the GMCB benchmark. Detailed results for
reference in independent implementations will be made
available at [9].

A. Criticality Change Scenarios

In order to evaluate the behaviour of the benchmark follow-
ing criticality change events, three different criticality change
scenarios, C1, C2 and C3, are specified. In each scenario, the
size of data transmitted from the relevant flow is increased to
just beyond the sizes indicated in Figure 1, forcing a criticality
change. The interesting aspect of modelling these different
scenarios is that criticality changes may be propagated to
different regions of the NoC. Some regions of the NoC
may remain in the LO-crit mode, and therefore may respond
differently during arbitration and permit LO-crit flows to pass.

• Scenario C1 - Transmission by P 1 → IO 1 becomes
HI-crit

• Scenario C2 - Transmission by P 6 → IO 4 becomes
HI-crit

• Scenario C3 - Transmission by System Management task
to IO 1 becomes HI-crit



Task src. Task dst. Priority Task src. Task dst. Priority
IO 1 P 1 1 P 6 IO 7 32
IO 2 P 1 2 P 6 IO 5 33
IO 3 P 1 3 P 6 IO 6 34
IO 4 P 5 4 P 6 IO 4 35
IO 4 P 6 5 P 6 IO LO 1 36
IO 5 P 5 6 SYS IO 1 37
IO 5 P 6 7 SYS IO 2 38
IO 6 P 5 8 SYS IO 3 39
IO 6 P 6 9 SYS IO 4 40
IO 7 P 1 10 SYS IO 5 41
IO 7 P 6 11 SYS IO 6 42
IO 8 P 1 12 SYS IO 7 43
IO 9 P 1 13 SYS IO 8 44
P 1 IO 1 14 SYS IO 9 45
P 1 IO 2 15 SYS P 1 46
P 1 IO 3 16 SYS P 2 47
P 1 IO 7 17 SYS P 3 48
P 1 IO 8 18 SYS P 4 49
P 1 P 2 19 SYS P 5 50
P 1 P 3 20 SYS P 6 51
P 1 P 4 21 SYS P LO 1 52
P 1 P 5 22 SYS P LO 2 53
P 1 P 6 23 SYS P LO 3 54
P 1 P LO 1 24 SYS IO LO 1 55
P 1 P LO 3 25 P LO 1 P 1 56
P 2 P 1 26 P LO 2 P LO 1 57
P 3 P 1 27 P LO 2 P LO 3 58
P 4 P 1 28 P LO 2 IO LO 1 59
P 5 IO 4 29 P LO 3 P LO 2 60
P 5 P 1 30 P LO 3 P 1 61
P 6 P 1 31 IO LO 1 P 5 62

TABLE III: Priorities assigned for data flows between sources
and destinations

B. NoC Evaluation Scenario

In our evaluation of the network-on-chip scenario, we utilise
a cycle-accurate priority-preemptive NoC architecture [10]
with virtual channels, extended to include multi-criticality
arbitration as specified in [7]. The tasks are mapped onto
the NoC platforms of various 2D mesh sizes using the task
mappings defined in Table IV. As an example the frequency of
the NoC is taken as 100 MHz, and 32 bit flits are used. In this
model, it is assumed that the tasks compute for their specified
time and then make a simultaneous transmission to all their
associated peers as defined within the task graph. Multiple
tasks may be mapped onto a single CPU. Priority preemption
is used to interrupt a task if a higher priority task executes,
with the task priorities defined in descending order of Table
I. Within this section, the communications latency across the
NoC is recorded.

In order to implement the scenario given upon a priority-
preemptive NoC, flow priorities and task mappings have
to be defined. When contention occurs between two flows,
priority preemption permits the highest priority flow to receive
arbitration and therefore access the output port. (This may be
modified by the criticality protocol as described in Section
III-A). The priorities are as defined in Table III.

C. NoC Communication Latency in LO-crit mode

In this model, all tasks are using their LO-crit computation
and transmission parameters. Figure 2 shows the communi-
cation latency across a 3x3 NoC, illustrating the latencies of
flows of individual priority levels. The results illustrate that

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5
x 10

−5

Peak communication latency vs
 flow priority for the GMCB benchmark

Flow priority index

C
o

m
m

u
n

ic
a

ti
o

n
 l
a

te
n

c
y
 (

s
)

Fig. 2: Communication latencies for flows in GMCB with an
example task mapping (mapped onto 3x3 NoC)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5
x 10

−5

Peak communication latency vs
 flow priority for the GMCB benchmark

Flow priority index

C
o

m
m

u
n

ic
a

ti
o

n
 l
a

te
n

c
y
 (

s
)

Fig. 3: Communication latencies for flows in GMCB with an
example task mapping (mapped onto 2x2 Noc)

the communication latencies of the majority of flows are fairly
close to their basic latency, however, the range of flows with
priorities from 16 to 24 exhibit increasing latencies, since
due to interference the lower priority flows must wait for the
higher priorities before they can receive arbitration. In Figure
2 and throughout the remaining result graphs, the latencies of
the flows from 57 to 61 are not shown directly, since they
are significantly above the range of the rest of the latency
values. Flow 59 has a latency of 3.2 × 10−4s, while other
LO-crit flows transmitting 65536 bytes have a latency around
1.6 × 10−4s. The results in Figure 3 show the equivalent
LO-crit case with the benchmark application mapped onto a
2x2 NoC. The results in Figure 3 show an increased latency
for many flows due to the increased contention and blocking



during transmissions upon the NoC, with a larger number of
flows receiving an increased contention, particularly for flows
with priorities above 30. It is interesting that the flow with
priority 25 has a higher peak latency in the 3x3 case than 2x2,
since the round-robin 2x2 mapping places both endpoints on
the same core resulting in a zero latency since there is no
requirement for communication across the NoC.

D. NoC Communication Latency with Criticality Changes

This section considers how criticality changes affect the
behaviour of the NoC under different candidate task mappings,
presenting results on the criticality changes and communi-
cation latencies of the communicating tasks. The criticality
changes are frequently propagated across the NoC, according
to the protocol requirements. For the WPMC protocol [7],
criticality changes are propagated along the routes traversed by
a packet. Any HI-crit transmissions that cross an arbiter inherit
that HI-crit mode change, and carry it with them throughout
the network. The scenario used to enforce criticality changes
consists of sending larger packets for a particular flow than
permitted under its LO-crit parameters. In this case, scenario
C1 is used, although the behaviour of the system is the same in
any case due to the inherited propagation of HI-crit changes.

Figure 5a shows the effects of criticality changes during
mapping onto a 2x2 NoC. The criticality status following
execution is shown via screenshot from a simulation GUI.
Arbiters which have changed to HI-crit mode are indicated
in red. Following the first transmission of excess data from
P 1 to IO 1, a criticality change is required. According to the
criticality change rules in WPMC [7], all arbiters soon change
to the HI-crit mode, since transmissions to all other tasks from
the system management task SYS carry an inherited criticality
change throughout the NoC. Given the arbitration rules in
WPMC, this prevents the LO-crit transmissions from reaching
their destinations. The dense packing of the HI-crit and LO-crit
tasks together upon the 2x2 NoC ensures that all LO-crit tasks
cannot make a transmission following the criticality change.
This is illustrated in Figure 4 in which an absence of the
latency bars for priority levels above 56 indicates that these
LO-crit flows did not complete transmission to the destination
successfully, and therefore received an undefined latency.

Figure 5b shows the effects of triggering criticality changes
while mapping onto a 4x4 NoC. In this case, the mapping
provided partitions the tasks so as to map the LO-crit tasks to
the cores along the top row of the NoC. Since these tasks have
the majority of their communication with each other in the LO-
crit mode, it is possible for some of the arbiters in the top row
of the NoC to remain in the LO-crit mode, since another HI-
crit transmission never carries an inherited criticality change
to these arbiters. Arbiters which have changed to HI-crit mode
are indicated in red. There are two phases of criticality change.
In the first phase, the inherited criticality change from P 1 is
propagated through the cores which carry HI-crit flows, and to
the top-left arbiter. In the second phase, the criticality change
reaches the top-right arbiter. However, two arbiters remain in
the LO-crit mode, and the latency results in Figure 6 show that

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5
x 10

−5

Peak communication latency vs
 flow priority for the GMCB benchmark

Flow priority index

C
o

m
m

u
n

ic
a

ti
o

n
 l
a

te
n

c
y
 (

s
)

Fig. 4: Communication latencies for flows in GMCB with an
example task mapping in 2x2 NoC with C1 criticality change

(a) 2x2 NoC (b) 4x4 NoC

Fig. 5: GUI screenshots for 2x2 and 4x4 NoCs showing
criticality changes

some flows with priorities 57-60 still complete transmission
and receive a defined latency. This indicates that the 4x4 NoC
with this separated mapping can still provide some service to
these flows, isolating the impact of criticality change under
the WPMC protocol.

V. FURTHER WORK

This benchmark presented has defined task computation and
computation parameters and the total memory consumption
of each task. However, it does not assess the impact of the
memory hierarchy, caching and the exact patterns of memory
access times. A naive assumption, for example assuming that
tasks transfer a fixed portion of their memory footprint across
the NoC every period, would likely produce unrepresentative
results, given the wide variation in memory access patterns
exhibited in Table II, Section III-D. Specific trace timings for
this model remain to be obtained from actual industrial use,
and would permit accurate evaluation incorporating the dy-
namic behaviour of memory access requests. The benchmark



0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5
x 10

−5

Peak communication latency vs
 flow priority for the GMCB benchmark

Flow priority index

C
o

m
m

u
n

ic
a

ti
o

n
 l
a

te
n

c
y
 (

s
)

Fig. 6: Communication latencies for flows in GMCB with an
example task mapping in 4x4 NoC with C1 criticality change

Task M2x2 M3x3 4x4 (C1 crit. change)
IO 1 0,0 0,0 0,0
IO 2 0,1 0,1 0,1
IO 3 1,0 0,2 0,2
IO 4 1,1 1,0 1,0
IO 5 0,0 1,1 1,1
IO 6 0,1 1,2 1,2
IO 7 1,0 2,0 2,0
IO 8 1,1 2,1 2,1
IO 9 0,0 2,2 2,2
P 1 0,1 0,0 3,0
P 2 1,0 0,1 3,1
P 3 1,1 0,2 3,2
P 4 0,0 1,0 0,0
P 5 0,1 1,1 1,0
P 6 1,0 1,2 1,2
P LO 1 1,1 2,0 0,3
P LO 2 0,0 2,1 1,3
P LO 3 0,1 2,2 2,3
IO LO 1 1,0 0,0 3,3
SYS 1,1 0,1 0,0

TABLE IV: Task mappings used in the various NoC sizes for
the evaluation, showing the assignment of the different tasks
to processing cores

will be updated online at [9] as further information and results
become available.

It is easily possible to tune the benchmark load provided
by adjusting the frequency of packet release for each task.
At the moment the benchmark assumes that each application
node performs its computation and then makes a transmission
simultaneously to its task peers. In order to provide additional
load, it is possible to increase the data sizes of any flow, either
by injecting additional packets or increasing packet size to
increasing the number of flits that constitute a single packet.

Although this benchmark scenario model accomodates
criticality changes resulting from application transmissions
(specifically the need to transmit more data than possible
under LO-crit parameters) it is possible that in real situa-

tions criticality changes could be application-determined. For
example, a criticality change could be triggered from an
application-specific fault model or other event model external
to data transmission across the NoC platform. The impact of
this, and the integration of this with NoC data processing,
will need to be considered. It is also important to consider
how the application-specific issues of how a mixed-criticality
system can recover and return to LO-crit mode following a
criticality change, and whether criticality changes are frequent
and handled automatically by the platform or require applica-
tion support in order to recover. An architecture or protocol
allowing criticality mode changes to be reversed is currently
under development.

VI. CONCLUSION

This paper has described and specified a test mixed-
criticality application suitable for use as a benchmark for
mixed-criticality systems implemented upon a network-on-
chip (NoC). The benchmark has been defined including
task periods, execution times in different criticality modes,
and communication data sizes. Example results have been
presented, illustrating the communication latencies generated
for task mappings onto NoCs of different sizes. The issues
involved in the production of realistic benchmarks, and the
extension of the benchmark to enhance its realism for mixed-
criticality scenario evaluation have been considered.

ACKNOWLEDGEMENTS

Financial support for this work was provided by the EPSRC,
under project ’MCC’ (EP/K011626/1).

REFERENCES

[1] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote,
“Outstanding research problems in NoC design: System, microarchitec-
ture, and circuit perspectives,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 28, no. 1, pp. 3 –21, Jan. 2009.

[2] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The splash-
2 programs: characterization and methodological considerations,” in
Computer Architecture, 1995. Proceedings., 22nd Annual International
Symposium on, June 1995, pp. 24–36.

[3] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks – past, present and future,” B. Lisper, Ed. Brussels,
Belgium: OCG, Jul. 2010, pp. 137–147.

[4] “Taclebench benchmark suite,” http://www.tacle.knossosnet.gr/activities/taclebench,
accessed: 2015-03-29.

[5] F. Nemer, H. Cassé, P. Sainrat, J. P. Bahsoun, and M. De Michiel,
“Papabench: a free real-time benchmark,” WCET, vol. 4, 2006.

[6] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, and
Z. Wang, “A NoC traffic suite based on real applications,” in ISVLSI
2011: IEEE Com. Soc. Annual Symp., 2011, pp. 66–71.

[7] A. Burns, J. Harbin, and L. Indrusiak, “A wormhole noc protocol for
mixed criticality systems,” in Real-Time Systems Symposium (RTSS),
2014 IEEE, Dec 2014, pp. 184–195.

[8] L. Indrusiak, A. Burns, and J. Harbin, “Average and worst-case la-
tency improvements in mixed-criticality wormhole networks-on-chip,”
in Euromicro Technical Committee on Real-Time Systems (ECRTS)
(accepted), Jul 2015.

[9] “Gmcb benchmark definition,” https://sites.google.com/a/york.ac.uk/gmcb/,
accessed: 2015-06-11.

[10] L. S. Indrusiak and O. M. dos Santos, “Fast and accurate transaction-
level model of a wormhole network-on-chip with priority preemptive
virtual channel arbitration,” in DATE 2011: Design, Automation Test in
Europe Conf., Mar. 2011, pp. 1–6.


