
Mixed-criticality management of Networked

Real-Time Systems with ARTEMIS Simulator

Olivier CROS

ECE Paris - LACSC

37 quai de Grenelle, 75015 Paris

Email: cros@ece.fr

Laurent GEORGE

Université Paris-Est - LIGM / ESIEE

Bat Copernic - 5, bd Descartes

77454 Champs sur Marne, France

Email: lgeorge@ieee.org

Abstract—Nowadays, providing guarantees of performances
and reliability in real-time systems implies to have simulation
tools in order to test and emulate the systems. The real-time
network infrastructures are not an exception to this rule, and
needs their own simulators too. Our goal here is to present a
new network simulator, ARTEMIS, which is designed to integrate
mixed-criticality management in real-time networked systems.
Our point here is to show simulation results of ARTEMIS,
especially in mixed-criticality context, and to present the main
different modules of this software.

I. INTRODUCTION

A. About real-time simulators

Industrial systems with high constraints of mobility like in
defense, public transports or automotive systems rely on real-
time network architectures to exchange real-time information.
Most of new functionalities in those systems are becoming
electronically managed (brake by wire, steer by wire, ...)
and interconnected. Organizing and prioritizing information
among the different functions makes the scheduling need more
important. Furthermore, these systems are becoming more and
more complex, as we add them new functionalities with safety,
security and real-time constraints. This represents a drastic
increase in complexity, having impact in terms of costs and
physical weight hence energy consumption. In order to satisfy
these constraints, network infrastructures should be precisely
designed and evaluated. One need is to be able to analyze the
performances of these network infrastructures without paying
the cost of designing real workbench, hence the need for real-
time network simulators.

B. What is ARTEMIS ?

In the context of uniprocessor and multiprocessor systems,
several simulators already exist such as SimSo [1]. In real-time
networked systems, we have several network infrastructures
like CAN [2] (automotive) or AFDX [3] (avionics). In order
to answer to the needs of these infrastructures (in terms of
performances, for example), several network simulators can
be used. We can cite OPNET or OMNeT++ [4] tools, or even
NS [5], but these tools do not answer to our needs.

Our goal is to introduce mixed-criticality (MC) manage-
ment inside network simulation. Given that MC is not inte-
grated in currently existing simulators, we decided to design
Another Real-Time Engine for Message-Issued Simulation
(ARTEMIS).

ARTEMIS is a real-time network simulator, based on
four main development guidelines (see Figure 1). As real-
time scheduling is a research domain implying mathematical,
physical and industrial approaches not necessarily related to
software development, the point was to build a network sim-
ulation tool easy to install and to use in order to be also used
by non-developers. ARTEMIS is a web-oriented tool, which
makes it totally independent from the underlying operating
system.

Open-Source

Modular

Web-oriented

Easy-to-use

ARTEMIS

Fig. 1. ARTEMIS guidelines

ARTEMIS is a tool firstly designed for educational and
research purposes : its main objective is to provide simulation
results for scheduling models in a network context, as well
as to design and simulate different kinds of topologies and
infrastructures. In order to focus on MC integration prob-
lems in network infrastructures, ARTEMIS can model specific
interconnected architectures like Network-on-Chip (NoC) or
AFDX. But the point is not to make a real simulation of
specific materials corresponding to a physical implementation,
but to design a mathematical simulator in order to integrate
real-time computation models inside a network design tool.

C. What’s new ?

The first version of ARTEMIS was designed and finalized
in may 2014. The main goal, at that time, was to design
a functional network simulator, able to perform performance
analysis for given topologies. Since, new modules have been
integrated in the kernel and the graphical interface has been
updated in order to improve its ergonomy. Among all, the
main module added to ARTEMIS is the MC management
system, which allows us to simulate MC scheduling scenarios
in a network context. The point of this paper is to show the
implementations brought by these new modules, and to focus
on how the MC model has been integrated in ARTEMIS.



In section II, we briefly remind the architecture of
ARTEMIS : its main modules and development axes. In section
III, we focus on the implementation of MC modules. In section
IV, we show several simulation scenarios obtained with the
MC management module. Then, we present in section V the
current work and the incoming modules. Finally, we conclude
in section VI.

II. ARTEMIS DEVELOPMENT

A. Three-Element Modelization

ARTEMIS main structure has been designed to easily
modelize a network topology. Each topology is represented
by a set of 3 types of elements:

• Nodes: they are the end points and the transit points
(switches) of the network. Each node represents a
physical network interface, having its own network
address (a unique identifier of the node in the net-
work).

• Links: physical and electronical connection between
two nodes. Basically, each link is just a set of 2 con-
nected nodes. As we are mainly focusing on oriented
networks, one node is considered as the input, and
the other as the output, but this configuration can be
managed to make a full duplex link.

• Flows: It is the information structure we want to send
through the topology. Each flow is caracterized by
a set of parameters (Worst-Case Transmission Time
(WCTT), Period, Offset, Criticality levels, ...). We
consider that each flow sends frames periodically, and
that a frame is a set of bytes of a given size.

All the scheduling models and structures are based on this
representation. It allows us to propose a generic approach in
the conception of a network infrastructure, which can provide
results that can be adapted to most of concrete situations. Using
this genericity, we can then personalize and parameterize each
type of element by adding different specifications (precising
the type of nodes, flows format, ...) without any loss or changes
in the simulator structure. That is why the modelization by
the three different elements allows us to create an abstraction
layer in ARTEMIS, between the modelization part and the
simulation part.

As shown in [6], ARTEMIS kernel is splitted in two
parts: the modeler and the simulator. The modeler represents
and builds the topology respecting the previous constraints
: modelizing the nodes, links, flows and building a static
topology. The simulator dynamically emulates flow scheduling
in the network: it makes the system evolving with a discrete
time-based simulation, simulating the transmission of flows
through the topology.

ARTEMIS consists in a software module built to simulate
the transmission of a given set of flows inside a network
topology. It consists in a Java kernel, a set of module basing
their communication with the kernel on an XML file layer [6].
The first main point of unifying different services results in
building a totally independent graphical interface, linked to
the kernel by this XML layer.

B. Utilization

Creating and simulating a scheduling scenario with
ARTEMIS relies on the definition of the 3 previously defined
basic elements: nodes, links and flows. That is why we based
the user experience, through the Graphical User Interface
(GUI), on the sequential building of these elements in the
network. In order to keep it easy to use, building a scenario is
splitted in successive simple steps.

First, we define the network topology. It consists in the
creation of the nodes and the links. We define each node
of the network as a pair: its name (associated with an auto-
generated network address), and its internal scheduling policy.
By default, we define only basic scheduling policy for the
nodes (FIFO, Fixed Priority scheduling), but the modular
structure of ARTEMIS allows us to integrate new ones. Finally,
we define the different links between the nodes, with possibly
a specified bandwith for each.

In the second step, we define flows with their proper-
ties. A flow m in ARTEMIS is characterized as a 4-tuple

{Pm, ~Cm, Tm, Om}:

• Path Pm: the path of nodes followed by the frames of
the flow in the network. It is statically-defined by the
user.

• WCTT: the maximum time needed for a node to
analyze and route any frame of the flow. In non-
critical mode, we have only one WCTT per flow,
denoted as Cm. In MC mode, we have one WCTT per
criticality level i, Ci

m is then the WCTT associated
to the criticality level i. In order to generalize this
modelization, we denote the set of WCTT for each
flow as ~Cm, with the size of the set equal to the
number of different criticality levels in the network.

• Period Tm: the inter-arrival time between two frames
of flow m.

• Offset: a possible offset configuration between a ref-
erence time origin of the initialization of the modeli-
sation tool and the emission of the first frame of the
flow. If not defined, flows transmission is supposed to
be non-concrete (the first release time of the flow can
be chosen arbitrarily).

Basically, each flow path is supposed to be static and with
a specified WCTT for each criticality level. The network is
defined by default without MC managament activation, so there
is only one WCTT per flow. MC is an option which has to
be activated (see III). By doing this way, realizing a schedul-
ing scenario in a simple topology does not need particular
configuration. Finally, we can adjust the network simulation
properties: total simulation time, electronical latency in each
visited node, the maximum number of criticality levels, and the
parameters needed to configure automatic task generation (the
number of generated tasks, the final network load and their
particular WCTT). Once these parameters has been defined,
we can launch the simulation.



III. MIXED-CRITICALITY MANAGEMENT IN ARTEMIS

A. Network model

The first goal of ARTEMIS kernel is to simulate MC man-
agement in networks based on the hypothesis that the network
criticality level is an information updated by a centralize entity
in the network: one central point (one node) is responsible of
updating the criticality level in the network. Each other nodes
store a local copy of the current network criticality level and
receive updates from the central point with a real-time reliable
multicast. We consider that changing the criticality level in
the network takes a bounded time (the maximum time needed
to update this information on all the nodes of network). To
preserve the consistancy of the criticality information stored
in all nodes, a reliable real-time multicast can be used [7].
With this reliable real-time multicast we can guarantee that
all nodes have the same criticality level at any time, provided
that the criticality switch in all nodes occurs after a bounded
time (the maximum needed to receive the information in all
nodes). We therefore need to characterize the worst case end-
to-end delay send and receive a multicast in all destination
nodes.

Our point is to simulate a set of interconnected nodes, and
to apply them a MC policy management in order to focus on
the scheduling results it provides.

We consider that a network N is a set of nodes, links and
flows. The global criticality level of the network is noted as Γ.
This criticality level can take several values Γ1,Γ2, . . .Γmax.
Furthermore, we assume that the WCTT is increasing as a
function of the criticality level. This corresponds to the case
where the payload of flow increases as a function of the
criticality level. For example, for a flow corresponding to video
transmission, this corresponds to increase the quality of the
video transmission. More generally, this corresponds to the
case where the payload of flows increases as a function of
the criticality level, due to more complex or more precise
computations.

∀(i, j) ∈ [1; Γmax],Γi < Γj =⇒ ∀m ∈ N , Ci
m < Cj

m

This hypothesis implies that each criticality level is defined
hierarchically compared to the others. All criticality levels
builds a global hierarchy of importance between the lowest
(non-critical level) and the highest (with the highest WCTT).

Furthermore, we consider that for given flow, the WCTT
in each node (particularly, the switches) is identical. This
corresponds to case where the speed is identical for all links
(100 Mo/s, 1 Go/s, ...).

B. Mixed-criticality change

In order to implement MC in ARTEMIS, and to simulate
MC management in a network topology, we developed a
module to integrate MC in its simulation models. This module
is based on several hypotheses for our development.

First, all frames in the network are non-preemptive. We
consider, in a network context, that we cannot interrupt a
frame once transmitted to send another one and then resume
the transmission of it. Hence, when a criticality change occurs,

a specified delay (called the non-preemptive delay [8]) may be
neeed to complete the transmission of the current flow before
starting the transmission of critical flows.

Next, we consider that the criticality information is a stored
variable which can be modified in bounded time in all nodes
(with a real-time reliable multicast updating the criticality level
after the maximum time needed to receive it in all nodes of
the network, as defined in [7]). Given that, in our simulation
context, the criticality changes are statically-defined by the
user, we can consider that they occur precisely when we
specify it (contrary to real implementations, where a criticality
switch can be triggered automatically from information of
the physical environment). It implies that, when a criticality
change is defined by the user at a given time, it occurs in
constant time.

Last, we place the context inside Hard-MC management.
It means that, with a given criticality level Γi, only flows
corresponding to this specified level are transmitted. In other
words, we do not allow the simulator to send non-critical
flows during high critical modes. The priority in the design
and simulations of ARTEMIS is to focus on how to assure
critical flows transmission.

In ARTEMIS core, managing MC is just a problem of
selecting the correct flow to send in the network. Each node
is associated to a set of input and output buffers which can
contain frames. Applying MC management just consists in
filtering, in this buffers, which frames are considered as critical
or not, given the current criticality level. Then, picking and
managing frames in a node in ARTEMIS corresponds to the
following algorithm :

for time from 0 to END do
while (current == ∅) do

next = Pick(input_buffer, policy);
if (next == ∅) then

Break;
end
if (getWCTT(next, Γ) != -1) then

current = next;
end
else

Drop(next);
end

end
if (current != ∅) then

Analyze(current);
end

end

C. Managing mixed-criticality in ARTEMIS

Through the GUI, the user can first define several criticality
levels. By Default, ARTEMIS proposes only one criticality
mode, which corresponds to single criticality level. Through
the interface, a user can define new criticality levels (one at a
time), by defining: the name of the level and its abbreviation
code (for example, C for critical, SC for safety critical, etc...).

After defining the different criticality levels, the user de-
fines for each flow its WCTT vector through a second part of



Fig. 2. Messages table

the GUI (see Figure 2). It means that we must define for each
flow a WCTT for each criticality level of the system (critical:
2 and non-critical: 1 in the example). By Default, when a flow
is not considered as part of the specified criticality level, its
WCTT for this level is set to −1.

Fig. 3. Criticality change table table

After defining these levels, the user can define the time
instants when each new criticality level happens, after the
completion of the reliable multicast sent by the control node
(see the table on Figure 3). At a given time, the user can
define a criticality-change, which will make the scheduler to
swap to the new defined criticality level at this time during
the simulation. These criticality changes are defined with the
destination criticality level, at the time at which they occur.

D. Java implementation

ARTEMIS core is implemented in Java. The Java Virtual
Machine (JVM) allows us to build an abstraction layer, which
makes ARTEMIS independent from the underlying Operating
System. The core structure makes the kernel independent from
the GUI and other modules through an XML abstraction layer,
conformed to the architecture showed in Fig. 4. It works
with the following structure: the user sends orders and data
which are stored into a database, the simulation launcher
builds these data as a set of XML input files, the kernel
emulates the network topology based on this data and provides
results as XML files, which are parsed by different modules
(performance evaluator, GUI, grapher, ...).

For MC management in ARTEMIS, we implement a ded-
icated module integrated in the kernel. We split the represen-
tation of a flow in the CoreManager in two different parts:

UI Modules

Database

XML Files Layer

Network topology Nodes simulation

Java Kernel

CoreModeler CoreScheduler

Fig. 4. Modules architecture for ARTEMIS

one classical flow scheduling, and one MC flow scheduling.
The point of operating this split was to keep a very simple
scheduling mode in the kernel, made for classical scheduling,
without having to integrate MC models. We define for this
a simple flow class model named NetworkFlow. In a second
approach, we integrate a task model called MCFlow to rep-
resent a flow with several criticality levels. That gives us two
different models for a flow m :

• A single criticality model, where m =
{Pm, ~Cm, Tm, Om} and ~Cm = {C1

m}

• A MC-model, where m = {Pm, ~Cm, Tm, Om} and
~Cm = {C1

m, C2

m, ...Ci
m} for a network of i different

criticality levels.

IV. SIMULATION OF MIXED-CRITICALITY SCENARIOS

In order to simulate a MC-managing scenario with
ARTEMIS, we selected three different scheduling scenarios,
based on the same topology (see Figure 5). The point was
to compare the different effects on flows transmission of
criticality switching in the topology. We specified for all this
scenarios a common set of flows : m1, m2, m3, m4.

Each flow mi in the network results in the transmission
of periodic frames mi. We propose to focus on the MC man-
aging in ARTEMIS through 3 different scheduling simulation
scenarios inside the described topology.

For all scenarios, we define a set of global parameters,
needed to set up the network :

Time simulation 200 ms
Electronical latency 0 ms
Scheduling FIFO

1) Scenario 1: The first scenario is a single criticality
scenario. It allows us to define the primary properties of flows
: path, period, non-critical WCTT and offset. We specify a
simple network of 4 flows m1,m2, ...,m4. A real execution
context would rather consist in 40 or 50 flows minimum, but



S1

ES1

ES2

S2

ES3

ES4

S3 ES5

m1

m2

m3

m4

m1,m2

m3,m4

m1,m2,m3,m4

Fig. 5. ARTEMIS simulation topology

we limited here to a very low number of flows for the sake of
proof of concept of the result graphs.

Flow m1 m2 m3 m4

Oi 0 0 0 10

C1

i (ms) 60 60 60 30
Ti (ms) 120 150 400 100

Fig. 6. First simulation scenario

We obtain a simple scheduling scenario for the 4 given
flows (see Figure 6). We set by default the electronical latency
between two nodes is equal to 0 ms. All flows are scheduled
correctly, according to their parameters. In order to focus on
the effects of switching criticality, we focus on nodes S1, S2,
S3.

2) Scenario 2: In this second scenario, the point is to keep
the same previous parameters, but adding a second criticality
level to flows m1 and m2. We consider in ARTEMIS that the
WCTT of a packet which is not critical at a given criticality
level is equal to −1. That is why we add the following
parameters to the previous ones :

Flows m1 m2 m3 m4

C2

i (ms) 100 80 -1 -1

We add to the topology a criticality change at t = 40ms.
We obtained the results shown in 7. We can see that, starting
from t = 40ms, all single criticality frames are no more
transmitted. The critical flows (m1, m2) have a corresponding
increase in their WCTT starting from t = 40ms, which
corresponds to the criticality change.

3) Scenario 3: This last scenario consists in representing
a combination of the two previous scenarios : we consider the
same topology, and the same parameters. We just add another
criticality switch, from criticality level 2 to criticality level 1,

Fig. 7. MC simulation scenario

at t = 150ms. This way, we can obtain the complete behavior
of the focused topology during a specified phase of criticality
switching.

Fig. 8. Double change simulation scenario

As expected, we have a correct transmission of critical
frames from flows m1 and m2 during the critical phase
40 − 80ms. But, before and after this critical phase, we
observe that all the non-critical packets are transmitted. This
corresponds to a network criticality level equal to 1. We give
the different changes of criticality level in figure 9.

C

NC

Scen.2 Scen.3

0ms 40ms 150ms

Fig. 9. Criticality switching scenarios

We can conclude that, through this simple example with
two criticality levels, ARTEMIS correctly simulates the behav-
ior of each node during the different non-critical and critical
phases.

V. CURRENT WORK

Once integrating the theorical simulation models in
ARTEMIS, our goal is now to link it with real architectures to
take into account real traffic generation. We want ARTEMIS
to communicate with the operating systems in order to send



and receive Ethernet frames. But the problem we are currently
working on is that the JVM represents a software abstraction
layer that cuts off real-time management. We had two possible
solutions to solve this : by making the software real-time with
Real Time Specification for Java (RTSJ) [9], or by establishing
a real-time communication between ARTEMIS and the OS
through a real-time layer.

We chose this second solution because of the hard-
maintainability of RTSJ in embedded devices, and so we chose
to work with Xenomai [10] in our approach. Xenomai is a real-
time patch which is made as a module for the linux kernel.
It is a free and open-source solution to make the linux kernel
real-time oriented.

The socket server is the central point of the real-time
integration of ARTEMIS we are currently working on. Our
goal is to be able to send and receive Ethernet frames from
real connected devices. But, in order to support real-time
communications, Ethernet frames should be generated at the
lowest layer of the ISO stack. The JVM does not allow this.
That is why we need an intermediate element between the real
network infrastructure and the ARTEMIS core.

Our solution is to establish a socket server in C++ which is
an entry point to ARTEMIS. This socket server is responsible
for the communication between Xenomai layers (the different
OS devices) and ARTEMIS client. We obtain the architecture
described in Fig 10.

RT Virtual Topology

ARTEMIS Core

JVM Socket Server

Xenomai

Unix Kernel

Xenomai

Unix Kernel Network

Virtual
Network

WCTT-Ethernet
conversion

Frames
(MAC layer)

Fig. 10. Xenomai integration architecture

VI. CONCLUSION AND PERSPECTIVES

A. Conclusion

This new version of ARTEMIS now provides management
of more complex scheduling scenarios and integrates new mod-
els of scheduling through MC management. We show that the
scheduler part of the simulator integrates dynamic criticality
changes inside the model. MC criticality level updates are
managed by a central node that multicasts updates with a real-
time reliable multicast. ARTEMIS allows us to provide reliable
simulation results for these new simulation model.

MC integration in networks domains such as avionics,
defense or smart vehicles. ARTEMIS is a tool to simulate
topologies inside these industrial contexts.

B. Perspectives

Now that ARTEMIS virtual simulation is functional, our
goal is to use currently developing modules to integrate
this virtual simulation to real network infrastructures, and to
be able to simulate complex real-time topologies integrating
AFDX or CAN networks, in order to provide simulation results
for such networks.

REFERENCES

[1] M. Cheramy, P.-E. Hladik, and A.-M. Deplanche, “Simso: A simulation
tool to evaluate real-time multiprocessor scheduling algorithms,” in
WATERS’14, 2014.

[2] K. Tindell and A. Burns, “Guaranteeing message latencies on Controller
Area Network (CAN),” in Proceedings of the 1st International CAN

Conference. Citeseer, 1994.

[3] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Method for
bounding end-to-end delays on an AFDX network,” in Proc. the 18th

Euromicro Conference on Real-Time Systems (ECRTS), Germany, July
2006, pp. 192–202.

[4] A. Varga, “The omnet++ discrete event simulation system,” in Proceed-

ings of the European Simulation Multiconference.

[5] T. R. Henderson, M. Lacage, and G. F. Riley, “Network simulations
with the ns-3 simulator,” in In Sigcomm, 2008.

[6] O. Cros, F. Fauberteau, and X. L. Laurent George, “Simulating real-
time and embedded networks scheduling scenarios with artemis,” in
WATERS’14, 2014.

[7] L. George and P. Minet, “A fifo worst case analysis for a hard real-time
distributed problem with consistency constraints,” in Proceedings of the

17th International Conference on Distributed Computing Systems, 1997.

[8] L. George, N. Rivierre, and M. Spuri, Preemptive and Non-Preemptive

Real-Time UniProcessor Scheduling, 1996.

[9] G. Bolella and J. Gosling, “The real-time specification for java,” vol. 33,
pp. 47–54, 2000.

[10] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and
C. Talierco, “Performance comparison of vxworks, linux, rtai and
xenomai in a hard real-time application,” in Real-Time Conference,

2007, 2007.


