
A web based monitoring tool for AFDX networks
Rodrigo Coelho, Mark Szczepanski, Tarek Miari, Gerhard Fohler

Technische Universität Kaiserslautern, Germany
{coelho, szczepanski, miari, fohler}@eit.uni-kl.de

Abstract—AFDX is the de-facto network used in avionics
systems. The configuration of a realistic AFDX network imple-
mentation requires the configuration of more than 100 devices
and is error prone. In this paper we present a web based
monitoring tool for AFDX networks, which allows for the
detection of configuration errors and the visualization of “live”
traffic information.

Our monitoring tool provides a platform agnostic solution for
the network visualization and does not require any specialized
hardware to connect to the AFDX network. We make use of
a network management system (NMS), a computer with COTS
hardware, to request and store the SNMP data from the AFDX
end-systems. The NMS further allows for users connected to a
LAN to access the monitoring tool.

The SNMP traffic in the AFDX network is minimal, trans-
mitted with the lowest frame priority and is independent of the
number of users monitoring the AFDX network.

I. INTRODUCTION

Most current avionics systems make use of the Avionics
Full-DupleX switched ethernet network (AFDX) [1] to replace
previous point-to-point networks. Based on ethernet, AFDX
addresses the intrinsic non-predictable characteristics of eth-
ernet networks by ensuring bandwidth isolation based on the
concept of virtual links (vls). Each vl receives a share of the
total link bandwidth. A vl further defines a logical path: one
source end-system1 (ES) and one or more destination ESs. The
actual physical route of each vl is statically defined at design
time.

In this paper we present a web-based AFDX monitoring tool
that allows for multiple users to monitor, via web browser: i)
errors caused during the network configuration, e.g. upload of
wrong configuration files, and wrong cable connections during
run-time and ii) “live” information about the current network
traffic.

Our approach does not require any special hardware for
collecting the AFDX traffic information, i.e. no need for
network tap (test access point), extra end-systems etc. Instead,
we make use of one free switch port of the AFDX network
to connect the network management station (NMS) whose
function is twofold: i) collecting AFDX traffic data from the
end-systems, ii) serving as a web server hosting the monitoring
tool and providing access to the monitoring tool to other
computers connected to the LAN. Figure 1 depicts the role
of the NMS for our monitoring tool.

Our monitoring tool is platform agnostic, providing access
to the complete monitoring tool via web browser. The moni-
toring tool provides:

1End-systems are the entities responsible to connect a computing node to
the AFDX network.

Fig. 1: Monitoring tool architecture.

• identification of disparities between the uploaded config-
uration files and the actual AFDX network traffic

• identification of possible physical connection errors in the
network

• identification of defects on switches and nodes
• visualization of the actual network topology2, connected

nodes and vl configuration
• visualization of “live” traffic information
The proposed monitoring tool currently runs on the AVIon-

ics NEtwork Lab of the chair of real-time systems at the
university of Kaiserslautern (AVINEL). The network topology
of the AVINEL replicates the topology of the commercial
aircraft Airbus A380 AFDX network[2], featuring 16 AFDX-
compliant switches and capacity for the connection of 85
end-systems3 (25 currently running). Scientific contributions
of the AVINEL include the comparison between practical
and theoretical values of end-to-end frame latency and buffer
backlog.

Commercial tools providing AFDX monitoring capability
exist on the market, e.g. AFDX Monitor (EC comp GmbH),
CANoe.AFDX (Vector). Yet, these tools are expensive, some
depend on vendor-developed hardware and are focused on
timeliness properties of messages. Conversely, our tool does

2In the current implementation, our monitoring tool displays the topology
used in the AVINEL

3The number of connected end-systems in the AVINEL (85) is, in fact,
smaller than the one in the Airbus A380 (approximately 120).

Fig. 2: AVINEL AFDX network topology.

not aim at providing end-to-end latency measurements or
dissect message contents. The goal of our monitoring tool is
to provide a platform agnostic tool for identification of errors
on the network configuration and for providing visualization
of the actual network traffic.

The paper continues as follows: In section II we present
more details on the AFDX network installed in the AVINEL
and used as test case for our monitoring tool. Sections III-A
and III-B describe the features and the architecture of our
AFDX monitoring tool, respectively. We analyze the impact
of the tool in the network traffic in section IV. In section V,
we discuss some properties of our monitoring tool in detail,
and section VI presents the conclusion and future work.

II. ENVIRONMENT

The AFDX network of the AVINEL has a topology similar
to the one used in the Airbus A380 [2]. Figure 2 depicts
the AFDX network in AVINEL. In contrast to the 24-port
switches used in the A380, in the AVINEL we make use of
“TTE-Development Switches 100 Mbit/s”4[3]. These switches
feature eight 100 Mbit/s Ethernet ports supporting three types
of traffic: time-triggered (TT), rate-constrained (AFDX) and
standard Ethernet (COTS). These switches allow for the con-
figuration of 4096 virtual links and 256 shared BAGs.

In order to simulate the behavior of a switch with more than
eight ports, we group pairs of switches to form clusters and
then replicate the topology of the A380.

In our network, we replace the AFDX-certified end-systems
by the development boards mbed NXP LPC1768 Microcon-
troller. They feature an ARM Cortex-M3 core running at
96MHz and provide a 100Mbps ethernet interface. These
nodes are capable of generating network traffic of multiple
virtual links and of implementing the SNMP protocol required
by our monitoring tool.

4In this setup, we configure the TTEthernet switches to only use the AFDX
protocol, i.e. neither time-triggered messages nor TTEthernet synchronization
protocol frames are transmitted.

Info type Traffic Information
network overview

error n.a. possible switch errors
general n.a connected devices (end-systems and switches)

and their interconnections
end-systems

error All error during frame TX/ RX
error AFDX TX/ RX of an unexpected virtual link
error n.a. end-system is not running or disconnected
error n.a. end-system rebooted

general n.a. end-system up time
general AFDX for each expected virtual link:

- summary of TX/ RX frames
- number of lost frames (TX frames that did

not reach their destination)
- throughput

general BE summary of TX/ RX frames
virtual links

error AFDX wrong path (wrong destination end-system)
error AFDX packet loss ratio
error AFDX wrong parameter: VLID, BAG, Smax

general n.a. visualization of physical path (including source
and destination end-systems)

TABLE I: AFDX Network information accessible via the
monitoring tool.

III. AFDX MONITORING TOOL

This section presents, in detail, the features offered by our
monitoring tool and the architecture used to implement it.

A. Features
Our monitoring tool allows for the visualization of AFDX

relevant information via web browsers. Consequently, we
can provide a platform agnostic visualization tool for AFDX
networks. Moreover, our monitoring tool interfaces with the
AFDX network via one single AFDX switch port and no
special hardware is required for this interface, i.e. the network
management station (NMS) connects to the AFDX network
through a normal ethernet controller. The NMS makes use
of another ethernet controller to allow for the LAN users to
access the monitoring tool (see Figure 1). Some additional
frames used for message exchange of the SNMP protocol lead
to a minimal impact on the AFDX network (see section IV).
This impact is indeed independent of the number of users
accessing the monitoring tool.

Table I presents a list with all features available in the
monitoring tool. We improve the readability of this list by
splitting it into three sets of rows: network overview, end-
system related, and virtual link related information. The first
column classifies the type of available information into: error
or general information. The second column depicts which
type of traffic the information presented in the third column
relates to: AFDX, best-effort(BE) or all (n.a. stands for not
applicable). The third column presents the actual accessible
information.

Our monitoring tool allows the user to configure the visu-
alization refresh rate as well as to enable/ disable the display
of the status of individual end-systems.

B. Architecture
We divide the analysis of our monitoring tool into two main

parts: off-line, and on-line (interchangeably called run-time).

Figure 1 depicts the architecture of our monitoring tool. In
the off-line phase, the user uploads the network configuration
files to our monitoring tool which stores all relevant data in a
set of files (network config). During run-time, the monitoring
tool collects SNMP data containing “live” information about
the network traffic and node status. A set of PHP and java
scripts loaded on the user web browser is responsible for the
visualization part of the tool (called visualizer). The visualizer
then downloads the json files containing configuration and
“live” data from the NMS and compares the respective data
against each other.

These scripts then generate the visualization of general and
error information (see section III-A), and additionally store
the error information in a log file. In the next sections we
present details on the implementation of the back-end and
visualization (front-end) tool.

1) Back-end: During the off-line phase, the back-end parses
the files uploaded into the network devices and stores the
relevant network data (network topology, virtual links prop-
erties, MAC addresses for best-effort traffic) into the config
files in json format. The TTEthernet toolchain generates device
configuration files in two formats: binary and xml, and uploads
the binary files into the switches. Since parsing binary files is
extremely difficult, our tool parses the xml counterparts of
those binary files instead.

In order to collect the “live” AFDX traffic information,
we make use of the simple network management protocol
(SNMP). This protocol is an open standard widely used
in ethernet networks, implemented on the IP layer, and is
supported by the AFDX standard [1]. Compared to other man-
agement protocols, e.g., Common Management Information
Protocol (CMIP), SNMP requires significantly less resources
(section A.2 of [4]). Four elements form the basis of the
SNMP protocol [5]: network management station (NMS),
management agent, management information base (MIB) and
network management protocol. The NMS is the interface for
the human network manager into the network management
system. Management agents provide communication between
NMS and the managed devices as well as access to the infor-
mation in the MIB. MIB is a collection of information related
to the managed device. The network management protocol
defines how NMS and management agents communicate with
each other.

The SNMP design permits the extension of the MIB, e.g. via
private MIB, as well as the extension of management agents.
These properties, consequently, allow for SNMP to handle
information of specific applications, e.g. AFDX specific traffic
information.

The AFDX network in AVINEL has two types of devices:
TTEthernet 8-port development switches and the end-systems.
Unfortunately, the TTEthernet 8-port development switches do
not support the SNMP protocol. Therefore, we concentrate our
efforts on collecting the traffic information on the embedded
nodes end-systems (for the sake of simplicity, we will refer to
them as end-systems). After collecting traffic data from end-
systems we can infer information about the status of switches.

Fig. 3: Entry point of our private MIB.

Fig. 4: Global information objects.

Fig. 5: Best-effort related objects.

Fig. 6: AFDX related objects.

Applications on the end-systems access the ethernet port
using the lwIP library [6]. This library is supported by the
embedded nodes LPC1768 and implements the TCP/IP stack
including the SNMP protocol with support for private MIB. In
our approach, we implement the SNMP agents and extend the
MIB tree in order for them to collect and store the required
monitored traffic information.

Figures 3, 4, 5 and 6 depict the MIB objects used by
the monitoring tool: Figure 3 depicts the entry point of our
private MIB, Figures 4, 5 and 6 present the elements that
store global, best-effort and AFDX information. At the start-
up of each end-system (ES), we add our private MIB objects
to the MIB tree: The ES checks the sending and receiving
virtual links configured for the end-system and then creates
one branch under AFDX.TX-Table.TX-Entry and AFDX.RX-

Table.RX-Entry for each configured virtual link. These objects
store information about the transmitted and received frames
of a virtual link, respectively. The information stored in each
MIB object presented in figure 6 is self-explanatory. The
explanation on how to compute the number of lost frames
however is not straight forward: An AFDX ES inserts into
every transmitted frame an incremental sequence number.
Consequently, the monitoring tool checks the sequence number
of each incoming frame and detects if some frames do not
arrive at their destination. In this case, the SNMP agent counts
the number of lost frames of the respective virtual link and
stores it in the lostpackets MIB object.

Information regarding arrival of frames with unexpected
destination MAC address and best-effort traffic is stored in
the MIB objects presented in figure 4 and 5, respectively.
Under the BestEffort branch, the SNMP agents account for
the amount of data transmitted and received by all best effort
traffic of an end-system. The SNMP agents store the number
of frames and the amount of data received with unexpected
destination address into the objects under the GlobalRx branch.

We add in the lwIP library the SNMP agents functions
responsible to update our private MIB. For each transmitted
or received message, we apply the algorithm presented in
algorithm 1 or algorithm 2 respectively.

Algorithm 1: Transmitting frames

begin
foreach frame to send do

if successful transmission then
frame← transmitted frame;
if frame.type == AFDX then

if frame.VLID == expected VLID then
sendpkts.V LID ++;
sendbytes.V LID+ =
frame.length

else
BEsendbytes+ = frame.length;

end

The network management station collects the information
stored in the private MIB of all selected end-systems. Due to
the web based property of our monitoring tool, we make use
of PHP library Net-SNMP[7] to establish the communication
between the NMS and the managed devices (end-systems).
We design our monitoring tool such that end-systems do not
generate traps to notify changes on their state. Conversely,
the monitoring tool periodically polls the end-systems private
MIBs content. For this purpose, we use the Net-SNMP function
snmpwalk, which permits to retrieve a private MIB sub-tree
every time this function is called.

The monitoring tool refresh rate parameter determines how
often two activities take place: The first is the polling interval
used by the NMS to send SNMP commands to the selected
end-systems and store the retrieved information in the AFDX

Algorithm 2: Receiving frames

begin
foreach incoming frame do

frame ← incoming frame;
if frame.type == AFDX then

if frame.VLID == expected VLID then
recvpkts.V LID ++;
recvbytes.V LID+ = frame.length;
if frame.seq no is correct then

break;
else

lostpackets.V LID+ =
|actual seq no− expected seq no|;

else
RC-MACheadererror ++;
RCerrorrecvbytes+ = frame.length;

else
if dest MAC == expected dest MAC then

BErecvbytes+ = frame.length;
else

BE-MACheadererror ++;
BEerrorrecvbytes+ = frame.length;

Forward frame to upper layer;
end

live data json file, as depicted in figure 1. In section IV,
we present the impact of the SNMP traffic on the overall
network traffic. The second activity, is the refresh rate of the
visualization described in section III-B2.

The traffic injected into the AFDX network by the mon-
itoring tool does not increase if multiple users monitor the
network status: the visualizer of only one user sends the SNMP
requests for the NMS to poll the end-systems (traffic in the
AFDX network). All other users access the information in the
json files stored in the NMS (LAN traffic).

2) Visualization: The visualization of our monitoring tool
is based on the AJAX [8] technique. This technique allows
for the monitoring tool visualizer (user web browser) to send
asynchronous requests to the NMS without interfering with
the actual display content, e.g., the user does not need to
click anywhere for the visualizer to send requests to the NMS.
Once the monitoring tool viewer receives the response from
the NMS, the web browser updates the visualization with the
changes on the network state, i.e. there is no need to refresh
the complete web page. We describe the time behavior of the
monitoring tool visualization in the next paragraph.

First, after opening the monitoring tool web page, the visu-
alizer executes a set of scripts that refreshes the visualization
of the modified information and requests the NMS to retrieve
the private MIB from the end-systems. In a second step, the
NMS sends the request for the private MIB transmission to
an end-system. The third step consists of the response from
end-system with the expected MIB information. In case of no
response after a time-out, the NMS polls another end-system.

In the last step, the NMS stores the received MIB into the
AFDX live data json file. The NMS repeats these four steps
for each end-system. On the next refresh period, the visualizer
downloads AFDX live data and updates the visualization with
the updated information. The NMS allows for only one user
to change the configuration parameters: network configuration
files, refresh rate and monitored end-systems.

Figures 7, 8a and 8b show screen shots of the monitoring
tool main window, detailed information about a switch and an
end-system, respectively.

Fig. 7: Monitoring tool main window.

The graphical representation of the end-systems and
switches change in the main window according to their states.
Table II depicts the graphical representation of end-systems
and switches states as well as how the monitoring tool iden-
tifies these states.

IV. PERFORMANCE AND IMPACT ON AFDX NETWORK

In our monitoring tool one NMS sequentially polls the
traffic information stored in every ES. Consequently, the time
required to poll the information of all nodes on the network
depends on four factors: the number of ESs on the network, the
amount of data stored in each ES (consequently the number
of vls on this ES), the time taken for the NMS to generate
requests and the time taken for the ESs to respond to those
requests.

For the AFDX network in AVINEL, in a configuration with
10 ESs configured with 5 vls each (380 SNMP objects), it
takes approximately 3.5 seconds for the monitoring tool to

(a) Detailed view of switch sta-
tus

(b) Detailed view of end-system
status

Fig. 8: Detailed information about network devices.

Visualization How detected
no error detected

no error
current end-system up time smaller than a
previous value

reboot
current end-system not available

shut down
frames arrive with unexpected destination MAC
address

MAC error

< 2% > 2%,
<10%

>10%

computing the ratio between the number of
transmitted frames in the source ES, against the
number of lost frames in the destination ES.
This symbol appears on the destination ES.

virtual link loss ratio
comparing the number of transmitted frames in
the source ES, against the number of arrived
frames in the destination ES (the lost frame
counter has value zero). This symbol appears
on the destination ES.

no frame of some vir-
tual link(s) arrived at
the destination

comparing the vl parameters (BAG, Smax) from
live AFDX data against the configuration
parameters ES.wrong virtual link pa-

rameter(s)
if all receiving ES of a virtual link present
errors, the error origin is possibly the source
ES.This symbol appears on the source ESerror on a virtual link

source
all ES connected to a switch present low
packet loss ratio.

no error
all ES connected to a switch present high
packet loss ratio.

possible error

TABLE II: End-system and switches states.

poll all ESs. Our tests can verify that the polling time scales
approximately linearly with number of ESs and number of vls.

It is important to mention that, since the goal of AVINEL
is to analyse the network traffic, end-systems run only low
level applications for frame transmission and reception, i.e.
no application process the received data. In section V we
discuss implementation related reasons for this polling time
and present suggestions on how to shorten it.

The impact of the SNMP protocol in the AFDX network
traffic is minimal. We measure the bandwidth required, on the
NMS link, to retrieve the SNMP objects considering the time
interval between the first NMS request and the response from
the last ES. The bandwidth required is very low: approximately
160 Kbps, i.e. 0.16% of the total bandwidth. Further, this
bandwidth requirement does not increase with the number of
polled SNMP objects: experiments in which the number of
SNMP messages range from 780 to 1980 messages, require
approximately the same amount of network bandwidth.

V. DISCUSSION

In contrast to most of the commercial AFDX monitoring
tools, our monitoring tool does not provide detailed informa-
tion on the end-to-end delay or content of individual messages.
One of our goals is to provide an AFDX monitoring tool that
does not require special hardware. Since most COTS ethernet
controllers do not allow for time-stamping precision in sub
microsecond range, we believe that precise timing analysis

should be deferred to another tool.
Our monitoring tool allows for the comparison of data

used in the configuration of the network devices against the
actual network traffic collected with the SNMP protocol. One
possible strategy to use our monitoring tool is, to upload
the configuration files into the network devices and run a
set of test applications on the end-systems that make use of
all virtual links on that ES. In this scenario, our monitoring
tool can detect disparities between the uploaded configuration
files and the actual AFDX network traffic as well as identify
physical connection errors in the network. After this initial
test phase, the actual AFDX application is loaded into the
end-systems and our monitoring tool can identify errors on
switches, nodes and cables (caused after the test phase), errors
on the transmitted virtual links as well as display the state of
the network nodes.

In the current implementation, our monitoring tool does not
display a topology different than the one used in AVINEL.
Another limitation of the current version is that only config-
uration files used by the TTEthernet toolchain are supported.
One can address these limitations as follows: Displaying
a different topology requires the generation of the HTML
content based on the information parsed from the network
configuration files; Using the toolchain from another provider
requires another parser to collect the relevant information from
the configuration files.

As mentioned in section III-B1, the TTEthernet 8-port
development switches used in the AVINEL do not support
the SNMP protocol, and consequently the state information
displayed for each switch is currently inferred from the end-
systems information. This limitation on the used switches
does not imply a limitation on our monitoring tool. On the
contrary, despite the lack of SNMP support on the switches
our monitoring tool can still provide some information about
the switch state. In case SNMP support becomes available
in future versions of the switches, our monitoring tool can
provide more precise and detailed information about their
states.

In order to keep the impact of our monitoring tool in
the AFDX traffic minimal, we transmit all SNMP-related
messages as best-effort traffic. BE messages have the lowest
priority on a TTEthernet network and thus are only transmitted
if no AFDX frame is queued for transmission.

Section IV presented the approximate time to poll 10 end-
systems with 5 virtual links each. The largest impact on
this time is caused by end-system response to the SNMP
request, i.e., the time the node takes to process the NMS
request and send the response. Our analysis points to the
lwIP library as the source of this long response time. We
compared the performance of lwIP against another library
mbed library using raw ethernet frames, and we could con-
clude that lwIP is significantly slower. We believe that we can
decrease the overall time to poll all end-systems once we run
SNMP on another ethernet library. Two other points may also
contribute to decrease the overall time to poll all end-systems:
i) implementation of a multithreaded application to poll ES

simultaneously and ii) using more than one NMS to request
and store information from the ES.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a web-based monitoring tool for
AFDX networks that allows for multiple users to monitor, via
a web browser both “live” information of the current network
traffic and detect errors caused during the network configu-
ration phase. We detect errors in the network configuration
by comparing the files used to configure the network devices
against the actual network traffic. Our monitoring tool does
not require any specialized hardware and provides a platform
agnostic AFDX visualization tool.

We make use of the AFDX network in the avionics network
lab at the chair of real-time systems of the university of Kaiser-
slautern (AVINEL) to demonstrate the applicability of this
tool. We collect “live” network information by means of the
SNMP protocol (supported by the AFDX standard). In order
for the end-systems to collect this information, we extended
the SNMP implementation on the es to add support of AFDX
traffic information. Then a computer connected to the AFDX
and LAN networks serves as network management station
(NMS) requesting and storing traffic information from the end-
systems. This computer further serves as web server hosting
the monitoring tool and providing access to the monitoring
tool to other users connected to the LAN.

As explained in section IV, the impact of the monitoring
tool in the AFDX traffic is minimal and independent of the
number of users monitoring the AFDX network.

Future work includes the performance evaluation of other
SNMP compatible ethernet libraries available for the nodes
used as end-systems in the AVINEL. Further, we plan to
modify the application that polls the end-systems by adding
multithreaded capabilities and allow for parallel polling of
SNMP data. Additionally, we plan to distribute this tool from
our website.

REFERENCES

[1] “ARINC specification 664 P7-1. Aircraft Data Network Part-7 Avionics
Full-Duplex Switched Ethernet Network,” September 2009.

[2] J.-B. ITIER, “A380 integrated modular avionics. the history, objectives
and challenges of the deployment of ima on a380,” http://www.artist-
embedded.org/docs/Events/2007/IMA/Slides/ARTIST2 IMA Itier.pdf.

[3] TTTech, “TTE Development Switch 100 Mbit/s,” http://www.ttagroup.org/
ttethernet/doc/TTTech-TTE-Development-Switch-100Mbps.pdf.

[4] E. T. S. Institute, “Satellite earth stations and systems (ses); broad-
band satellite multimedia (bsm); management functional architecture,”
http://www.etsi.org/deliver/etsi ts/102600 102699/102672/01.01.01 60/
ts 102672v010101p.pdf.

[5] W. Stallings, SNMP,SNMPV2,Snmpv3,and RMON 1 and 2, 3rd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1998.

[6] “lwip a lightweight tcp/ip stack,” http://savannah.nongnu.org/projects/lwip/.
[7] “Net-snmp,” http://www.net-snmp.org/.
[8] “Asynchronous javascript technology and xml (ajax) with the java

platform,” http://www.oracle.com/technetwork/articles/java/ajax-
135201.html.

