
RTProb - Real Time Probabilsitic Tool for

Probabilistic Schedulability Analysis using Markov

Chain

Jasdeep Singh, Luca Santinelli, Guillaume Infantes, David Doose and Julien Brunel

ONERA -DTIS Toulouse, name.surname@onera.fr

Abstract—This paper presents a probabilistic schedulability
analysis tool for probabilistic Real-Time Systems (pRTS). By
pRTS we mean a real-time system in which at least one of its
parameters is defined using a probability distribution; in our case
this parameter is the task Worst Case Execution Time (WCET)
which is the probabilistic, called probabilistic WCET (pWCET).
The tool implements a formalism which is based on formal
methods for modelling and analysis of pRTSs. It uses pWCETs
to construct Continuous Time Markov Chain models, one per
task job. For each job, the CTMC describes the job execution
by taking into account all the interferences (probabilistic delays)
that might exist. The tool also interfaces with model checkers for
checking the models built. The results of the analysis as given
by the tool are the probability of deadline miss and the response
time curves for each task and for each job of the tasks.

Index Terms—Probabilistic Real-Time System, probabilistic
Worst Case Execution Time, Markov Chain, Continuous Proba-
bility Distribution, Formal Methods

I. INTRODUCTION

As the complexity of the real-time systems increases, accu-

rate determination of the worst case execution time (WCET)

also becomes difficult. This is augmented by increasing us-

age of multi-core and commercial-off-the-shelf implementa-

tions [9]. The deterministic WCET contains large pessimism

because actual execution times of the tasks may rarely be

equal to the WCET. In order to quantify this pessimism,

research is carried out on statistical methods to determine

the execution times of the task [3], [1]. The result of such

research is the notion of probabilistic worst case execution

time (pWCET) which is a probability distribution which upper

bounds all the possible execution times of a task [4]. The use of

probabilities to model real-time tasks can potentially result to

an efficient resource usage by reducing the pessimism involved

in designing and guaranteeing a real-time system. A real-time

system in which at least one parameter is represented by a

probability distribution, and is not a deterministic value, is

called a probabilistic real-time system (pRTS).

The schedulability analysis is performed on a given real-

time system to ensure that all the timing constraints of jobs

and tasks are met. As the jobs execute, they may delay

the executions of other jobs, in turn disobeying a timing

constraint. For deterministic schedulability analysis which uses

the WCET, the value of these delays, also called backlogs, is

relatively simpler to determine. However, since the execution

of the jobs could be given as probability distributions, there

exist probabilistic backlogs in the system. That means that

there exists a probability that certain job imposes a backlog to

other jobs. The probabilistic schedulability analysis takes into

account such probabilistic backlogs to provide a probability

for the system to meet its timing constraints.

The pWCET can be given as a continuous or discrete

probability distribution. A continuous distribution gives the

probability that the execution time takes a value within two

limits. On the other hand, a discrete distribution gives the

probability that the execution time takes certain discrete value.

[3], [1] show that the result of measurement based probabilistic

timing analysis (MBPTA) is a continuous distribution. Thus,

the schedulability analysis which use these continuous distri-

bution must be developed.

Some works are proposing probabilistic schedulability anal-

yses and experience the complexity of combining probability

distributions [8]. This is because there can be numerous

probabilistic interactions to consider and offer guarantees. The

complexity increases by a very large magnitude if the input

distributions are continuous.

In this paper, formal methods are used to model pRTS where

the pWCETs are described with continuous distributions. For-

mal methods have a mathematical foundation, and thus have

a way to apply the underlying theorems for building the

system model. This would help overcome the complexity with

continuous distribution through mathematical constructions

apply. Moreover, a model constructed using formal method

can be subject to verification and model checking to obtain

safe results by a pessimistic margin from the exact results.

Contributions: This paper presents an implementation with

formal methods for schedulability analysis of pRTS using

Continuous Time Markov Chain (CTMC). CTMC is a set of

states and transitions labeled with parameters of continuous

probability distribution. In particular, CTMC is labeled with

rates of exponential distributions. CTMC possesses memory-

lessness property, i.e. to determine the future state, no knowl-

edge of past is required and knowledge in the present state is

enough. CTMC is able to model non-determinism (choice in

the system) and probability (weight to the choices) and both

of these aspects are necessary to model pRTS. The continuous

pWCET distributions can be directly mapped onto CTMC state

transitions, and the CTMC models can be formally checked.



The objective is to obtain the probability of deadline miss for

the jobs in the system as well as their response time curves.

The implementation presented in this paper is named RT-

Prob. It is based on the CTMC modelling of jobs in a pRTS

from [11], [10], the complete framework is under the process

of publication. The formalism uses the pWCET of the jobs and

takes into account for the probabilistic delays that can exist

between jobs in the system. RTProb builds CTMC models,

interfaces with model checking, and computes the probability

of deadline miss and response time for each job and each task.

Section II introduces the notations used in this paper and

the assumptions for the probabilistic schedulability analysis

proposed. Section III briefly explains the model behind the

implementation. Section IV elaborates on the working of the

tool. Section V concludes this paper with closing remarks and

future work.

TABLE I: Acronyms and Abbreviations.

pRTS Probabilistic Real-Time Systems

CTMC Continuous Time Markov Chain

EDF Earliest Deadline First

FP Fixed Priority

pWCET Probabilistic Worst Case Execution Time

PDF Probability Density Function

CDF Cumulative Distribution Function

ICDF Inverse Cumulative Distribution Function

pWCRT Probabilistic Worst Case Response Time

II. NOTATIONS, DEFINITIONS AND ASSUMPTIONS

This section introduces the notations used and the assump-

tions made to apply CTMCs into the probabilistic schedulabil-

ity analysis of pRTSs.

Given a continuous random variable X defined in [0,+∞)

• Probability Density Function (PDF): fX (x) of X gives

the probability that a value extracted from X lies between

a and b, Pr(a ≤ X ≤ b) =
∫ b

a fx(X )dx.

• Cumulative Distribution Function (CDF): FX (x) of

X gives the cumulative probability for X ≤ x, FX (x) =∫ t
0 fx(X )dx.

• Inverse Cumulative Distribution Function (ICDF):

FX (x) of X gives the exceeding threshold probability a

x as the probability that X > x, FX (x) =
∫

∞

t fx(X )dx.

The case in which the pWCET is represented by the

exponential distribution with λ as the rate parameter, PDF:

fX (x) = λe−λx; CDF:FX (x) = 1− e−λx; and ICDF FX (x) =
e−λx; all supported on the interval (0,+∞]. The PDF is referred

to as EXP(λ).
Convolution: For two PDFs fX (x) and gY (y), their con-

volution is denoted by ⊗, refers to the summation of the

random variables X and Y generally given as: f ⊗ g(z) =∫
∞

−∞
f (x)g(x− t)dt The convolution of more than two PDFs is

represented as ⊗
i
Ci. Convolution operation is computationally

costly. RTProb is conceived to reduce the use of convolution

by observing a sequence that exists in the execution of jobs

in the pRTS. This is elaborated in later sections. Convolution

is still required for jobs arriving synchronously.

Task: A task τi is a tuple τi = {Ci,Ti,Di}, i = 1,2 . . .m where

• Ci is the continuous PDF given by an exponential distri-

bution with rate λi which represents the pWCET;

• Ti is the period;

• Di is the task deadline such that Di ≤ Ti.

Job: These tasks execute periodically and the j-th periodic

instance of a task is a job Ji j. A job is defined as Ji j =
{τi,di j,ai j, pi j} where

• τi is the task to which the job belongs;

• ai j = ( j−1)Ti is the job arrival time;

• di j = jTi is the job deadline;

• pi j is the job priority, zero being the highest priority. The

job priority gets assigned depending on the scheduling

policy used.

Given is a task set of m tasks Γ = {τ1,τ2, . . . ,τm}.

The hyperperiod hp = lcm(Ti),τi ∈ Γ, i = 1,2 . . .m, gives the

scope of the schedulability analysis for EDF or FP.

Scheduling Policy: Earliest Deadline First (EDF) or Fixed

Priority (FP) [2] scheduling policy on a uniprocessor machine

can be chosen. The policy is preemptive, i.e. arrival of a

higher priority job can cause the already executing lower

priority job to pause while the higher priority job finishes

execution. The jobs are suspended if their execution reaches

their respective deadline. This is to avoid theoretical problems

given the pWCET is defined in [0,∞).
Backlog: It is the delay to the execution of a job given by

the higher priority jobs which have executed earlier. Backlog

causes an increase in probability of deadline miss of the job.

A. Assumptions

The CTMC formalisation requires two assumptions:

Assumption1: The pWCET distributions are continuous dis-

tributions. This is because, as already stated, the results of

MBPTA approaches are continuous distributions. Moreover,

we want to avoid converting from continuous to discrete,

which could be complex and would require some knowledge

on the system behaviour and raise the question: which are the

discrete values to impose and ensure safety? [5] Continuous

distributions are directly applied with CTMCs and operations

between them benefit from CTMC mathematical background.

Assumption2: The pWCET distribution is assumed to be

exponential EXP(λ). This is because we want to interface

CTMCs in which the transitions between the states of the

CTMC are labelled with exponential rates. Not having an

exponential distribution would increase the complexity be-

cause the model looses the memorylessness property. More-

over, imposing exponential distributions does not limit the

applicability of the CTMC modelling to pRTSs, since it is

always possible to find an exponential distribution that upper

bounds a pWCET [10]. Formal and parametrized exponential

upper bounding will be developed in future work. To note

that measurement-based approaches [7], [3], [3], [1] estimate

pWCET as distributions with exponential shapes. In those

cases, the exponential distribution assumption does not even

introduce further pessimism. Finally, we outline that it would

always be possible to decompose a distribution into expo-



nential elements and see this as job decomposition. Such

decomposition is in the scope of another paper.

III. JOB MODELING

RTProb models and evaluates all the possible interferences

that a job can receive and which can delay its execution, in

turn increasing the probability of deadline miss. To each job

Ji j, there are three ways in which its execution can be delayed:

Case1 - Preceding job. A job that precedes job Ji j in terms of

priority is the set J̄prd(Ji j)
de f
= {Jgh : pgh < pi j,agh < ai j} and

pgh − pi j is minimum implying the previous job not released

synchronously. The preceding job (the one before Ji j) is the

only job giving backlog to the victim job. This is because the

process of analysis is sequential in the order of decreasing

job-priority. Thus, the cardinality1 of J̄prd(Ji j) is always one,

card(J̄prd(Ji j)) = 1; the set representation is for a general

notation. The pWCET and arrival time of job Jgh ∈ J̄prd(Ji j)
are represented as C[J̄prd(Ji j)] = Cgh and a[J̄prd(Ji j)] = agh,

respectively.

Case2 - Synchronous job. A set of jobs arriving syn-

chronously to Ji j is J̄syc(Ji j)
de f
= {Jgh : agh = ai j, pgh < pi j}.

The total push to the job Ji j by the jobs in J̄syc(Ji j) is given

by the convolution of the pWCETs of all the jobs in the set

C̄syn(Ji j). The pWCET and arrival time of job Jgh ∈ J̄syc(Ji j)
are represented as C[J̄syc(Ji j)] = Cgh and a[J̄syc(Ji j)] = agh,

respectively.

Case3 - Preempting job. A set of preempting jobs is defined

as J̄prm(Ji j)
de f
= {Jgh : agh > ai j, pgh < pi j,agh < di j}. J̄prm(Ji j)

is ordered in increasing arrival times of its constituent jobs. A

k− th job Jgh of J̄prm(Ji j) is represented as J[k, J̄prm(Ji j)] =
Jgh, with pWCET and arrival time as C[k, J̄prm(Ji j)] = Cgh

and a[k, J̄prm(Ji j)] = agh respectively. Ki j is the maximum

number of preemptions Ji j can have and is given as Ki j =
card(J̄prm(Ji j)).

These job classifications are depicted in Figure 1 for each

job Ji j. The job executions are represented in the ICDF

form to differentiate the case of pWCETs from deterministic

WCETs. In here, the worst-case execution is described with a

random variable, and the ICDF captures the distribution law

as well as the probabilistic behaviour that jobs follow. To each

interference, we have develop upper bounds to represent them

and interface with CTMCs. Some details are given in [10],

more will come in future work.

Consider a task set Γ1 from Table II which has three tasks

τ1, τ2 and τ3 with period equal to deadline as 1,1.5,3 and

pWCET with exponential rates 7,8,6 respectively.

TABLE II: The task set Γ1 with parameters.

Tasks pWCET Deadline=Period

τ1 EXP(7) 1.0

τ2 EXP(8) 1.5

τ3 EXP(6) 3.0

1Given a set S, the cardinality of S is represented as card(S) which gives
the number of elements in S
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Fig. 1: Job Ji j, job set J̄prd(Ji j), job set J̄syc(Ji j), and job set

J̄prm(Ji j) are represented with interactions between them.

The jobs for task τ1 in the hyperperiod are as shown in

the Figure 2. For job J31, the synchronous jobs are J̄syc(Ji j) =
{J11,J21} and the preempting jobs are J̄prm(Ji j) = {J11}. For

job J22 the preceding job is J̄prd(Ji j) = {J31}, which imposes

the backlog represented by the dotted line.

J11 J12 J13

J21 J22

J31

3

3

3

2
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0
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Fig. 2: Jobs in the task set Γ1 in the hyperperiod with dotted

lines showing the backlog.

The existence of backlog to a job changes the execution

distribution of the victim job. This reduces the probability that

the victim job begins execution by a certain time. In turn, it

implies an increase in the probability that the victim job misses

its deadline.

A. CTMC

Continuous Time Markov Chain is a set of states and

transitions between them and each transition is labelled with an

exponential rate λ. The CTMC possesses the memorylessness

property. The set of transitions between the states is repre-

sented through a Q-matrix, which describes the transition for

each couple of states as exponential distribution. The exponen-

tial rates represent the execution of a job before and after any

preemption by considering all the possible interferences from

higher priority jobs until the end of execution.

For a job Ji j, a set of states are defined as Xi j =
{P0,P1, . . . ,PKi j

,F}, in which state P0 represents execution
without preemption (after the eventual initial postponement),
Pk represents execution after k-th preemption, and F represents
the end of execution; Ji j suffers Ki j number of preemptions.



The Q-matrix of size [(Ki j +2),(Ki j +2)] is given as:
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[(Ki j+2),(Ki j+2)]

,

where the subscript of λ denotes i) the final state, f if it goes

to state F or k if it goes to Pk state, and ii) the k-th state

from which it goes out. For example, λ f 2 denotes the rate of

transition from state P2 to state F .

In the process to calculate the rates of Q-matrix, the backlog

from J̄prd(Ji j), J̄
syc(Ji j), J̄

prm(Ji j) is used. Job Ji j CTMC model

is {Xi j,Qi j}, while the set of CTMC models of all the jobs in

the hyperperiod {{Xi j},{Qi j}} defines a pRTS.

Formal model checking is performed on the CTMC models

to validate and build them. We have developed an iterative

process adding a new preemption state and transitions per

iteration, and the preemption property is validated via model

checking. The preemption property is: ‘maximum probability

that the job is preempted at arrival t of the preempting

job’. The response time distribution R T i j for each job Ji j

is computed by checking the complete CTMC against the

property: ‘maximum probability that the job ends execution by

a time t’, 0 ≤ t ≤ Di. The case where t > Di, the schedulability

analysis gives the probability of deadline miss DMi j for a job

Ji j. We remind that the response time distribution computed

with CTMC is the probabilistic Worst-Case Response Time

(pWCET) as the probability distribution that upper bounds any

possible job response time.

Figure 3 presents the CTMC model for a generic job.

The model has all the states that could occur: execution P0,

execution after a first preemption P1, etc.. In total, it has K

preemptions, and thus K + 2 states; the state transitions are

represented with exponential distributions and rates λ. Figure 4

joins all the CTMC job models in the hyperperiod ordered by

priority: for each job there is a CTMC model associated. These

elements are ordered in the sequence of decreasing priority of

the jobs. The backlog from one model is propagated to the

next.

The CTMC models are used to represent the jobs in the

schedule. The pWCRT and deadline miss probability are

computed from them. The whole process of building CTMC

models and compute pWCRTs as well as deadline miss prob-

abilities is what we call probabilistic schedulability analysis.

The overall approach is safe because (i) the pWCET is used

for each job, which represents worst case execution; (ii) the

analysis takes into account the worst cases (upper bounds) for

backlogs which delay the execution of a job; (iii) formal model

checking is performed at every step.

Referring to the tasks in the task set Γ1, the job J31

undergoes one preemption. The CTMC model of this job

is shown in the Figure 5 which has a state P1 referring to

execution after first preemption. Figure 6 shows the CTMC

model of the job J22. There is the backlog to job J22 from the

job J31 which is incorporated in the transition from P0 to F .
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Fig. 3: Job CTMC model; the pre-

emption effects are added and vali-
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Fig. 4: Joining CTMC

job models with backlog

propagation.
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0.055 6.839
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Fig. 5: CTMC model for job

J31.

4.319

P0
F

Fig. 6: CTMC model for job

J22.

IV. RTPROB TOOL

RTProb is the tool which implements the

formalism briefly explained above. It is an

implementation in python language and is available

at https://forge.onera.fr/projects/probscheduling, the

repository: https://git.onera.fr/probscheduling. The user

must have Python 3.0 with packages NumPy, os, time and

pyplot.

A task set is given as input to RTProb, with the rate of

exponential which represents the pWCET and the deadline

(equal to period). The task periods are used to determine

the hyperperiod which is the scope of the analysis. The jobs

are determined from the tasks, the number of jobs in the

hyperperiod are calculated from the given tasks. Following

this, the scheduling policy, EDF or FP, assigns priorities to

the jobs, forming a list of jobs in the order of their decreasing

priority.

The first step is to determine the backlog for each job. To do

so, the sets J̄prd(Ji j), J̄syc(Ji j) and J̄prm(Ji j) are identified from

the jobs list for each job Ji j. The job sets are the preceding job

in terms of priority (Case1), the synchronously released jobs

(Case2), and the preempting jobs (Case3), respectively,[10].

The Figure 7 shows the overall working of the RTProb

tool. The block RTprob represents the implementation we have

made. Because PRISM model checker is used, an important

https://forge.onera.fr/projects/probscheduling
https://git.onera.fr/probscheduling
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J̄prd(Ji j), J̄syc(Ji j), J̄prm(Ji j)

Fig. 7: The RTProb tool.

step consists of a PRISM script for CTMC model of each job.

The constant interaction between the PRISM model checker

and RTProb is made through a PRISM script of the CTMC

model and a property to be checked. PRISM in returns

provides the probability value for the property that is checked.

To develop the script, certain information is required from the

CTMC model of other jobs like backlog.

Once all the jobs are modelled, they are checked to obtain

the probability of deadline miss in the block ‘Analysis’. The

block ‘Response Time’ performs this model checking in the

PRISM model checker. The Algorithm 1 summarizes the

schedulability analysis process.

procedure MODEL ANALYSE PRTS(tasks, policy)

Order Jobs(Jobs,policy) ⊲ Order Jobs by their increasing priority

for each job in Jobs do

Define J̄pre(Ji j), J̄syc(Ji j), J̄prm(Ji j), T̄p(Ji j) ⊲ The higher priority jobs sets

Declare Xi j = {P0,F};Qi j = {0,0;0,1} ⊲ Initial CTMC

λ f 0 =Backlog(Ji j , J̄
pre(Ji j), J̄

syc(Ji j)) ⊲ Backlog effects

Qi j = {−λ f 0,λ f 0;0,1}
for each preemptive job J[k, J̄prm(Ji j)] in J̄pre(Ji j) do ⊲ Preemption effects

Pr = P(Ji j ,Pk, t
k
p) ⊲ k-th preemption

Compute rates (λ f k ,λpk,Pr)

λ f k+1 = Delta Pre(Ji j ,J[k, J̄
prm(Ji j)])

Update(Xi j ,Qi j ,k)

Pr(DMi j) = 1−P (Ji j ,F, t
K+1
pi j

) ⊲ Probability of deadline miss

for time t do

FRTi j
(t) =PRISM Verify(Ji j ,F, t) ⊲ Function of response time curve

for each task in tasks do

Pr(DMi) = max(Pr(DMi j))
FRTi

(t) = max(FRTi j
(t))

Backlog(Ji j, J̄
pre(Ji j), J̄

syc(Ji j)): determines the backlog to

the job (Ji j) depending on the sets J̄syc(Ji j), J̄pre(Ji j), J̄prm(Ji j).
Delta Pre(Ji j,J[k, J̄

prm(Ji j)]) calculates the exponential rate

for execution after preemption. Compute rates(λ f k,λpk,Pr )

computes the transitions rates for the new transitions after

the addition of a new state. Update((Xi j,Qi j,k)) updates the

CTMC matrix by adding the new state and the corresponding

rates at the appropriate positions. P( job,state, time) returns

the probability of job being in state state at time instance

or time interval time. These functions constantly use PRISM

model checker to obtain the probabilities. PRISM model

checker and its usage is elaborated in the following subsection.

A. PRISM Model Checker

PRISM model checker [6] is used throughout the modelling

process. It is a tool for formal model checking and analysis

of systems that posses random or probabilistic behaviour. For

the following, whenever a model is checked in PRISM, the

required property is typed and saved as text file. A system

command is executed using the os package in python to

execute PRISM by giving the text files of the model and the

property to check. The result is saved in a text file by PRISM.

This text file is scanned and the value after Result: is read

which is the probability demanded from model checking.

1) PRISM Scripting: The process of building CTMC for

each job begins from the highest priority job. A text file is

created which contains the script for the CTMC model in the

language of PRISM model checker. The PRISM script begins

with the name of the formal method ctmc. This is followed

by the name of the module module M in the next line.

State and state transitions. The number of states of the

CTMC are declared. The number of states required is equal to

the number of preemptions that the job has, plus two. The state

variable for the script is x. Moreover, an initial state is required

to be declared. For our modelling, we declare that a state 0

is the finishing state F and the executing states P0,P1, . . . are

declared 1,2, .., respectively. Since there are Ki j preemptions

to the job Ji j, the script becomes: x:[0..Ki j +2] init 1;.

The transitions between the states are defined. The first rate

of transition between the initial states P0 and F (state 1 and 0)

has to account for backlog from the previous high priority jobs.

These are the higher priority jobs which have arrived earlier

and have not yet finished execution and/or the jobs that have

arrived synchronously. These are defined in the sets J̄prd(Ji j)
and J̄syc(Ji j), respectively.

For the job which is arrived earlier (Case1), the CTMC model

representing that job is checked to determine the probabilistic

backlog. This is the probability that the earlier arrived job is



executing when the job under observation has arrived. It is

always possible to find this job because the CTMC modelling

is performed in the sequence of decreasing priority. Moreover,

for the synchronously arrived jobs (Case2), the convolution

operation is performed. The probabilistic backlog and the

convolution are combined to determine the safe exponential

upper bound distribution. The rate of this exponential upper

bound is the label of the transition between the states P0 and

F . Say this rate is λ∗
f 0, the PRISM statement in the script is

[] x=1 -> λ∗
f 0:(x’=0);, which means that from the state 1

(P0), the next state is state 0 (F) and the rate of the transition

is λ∗
f 0.

If there are preemptions to the job (Case3), a new state P1

is added; it is x=2. This adds two new transitions to the

existing CTMC. The transitions from P0 to F and P1 to F

are calculated by splitting the rate λ∗
f 0 into λp0 and λ f 0. This

is done by checking the latest CTMC model (which is in

construction) to obtain the probability that the job not finished

and will move to the new state P1. The rate of transition λ f 1

from P1 to F is calculated by checking the CTMC model

of the preempting job. Here also, the CTMC model of the

preempting job is available because it has higher priority. Thus

the previous statement in the PRISM script changes to [] x=1

-> λp0:(x’=2) + λ f 0:(x’=0) ;. A new statement is added

to model the state P1 (x=2) as [] x=2 -> λ f 1:(x’=0);.

An example PRISM script for a job is:
ctmc

module M

x:[0..2] init 1;

[] x=1 -> 0.0318:(x’=2) + 5.039:(x’=0) ;

[] x=2 -> 10.133:(x’=0);

endmodule

The process formerly listed continues until the last state PKi j
is

added where Ki j is the number of preemptions for the job Ji j.

After the addition of the last states and transitions, the CTMC

model for the job is complete. This process is repreating for

all the jobs in the hyperperiod.

B. Analysis

Once the CTMC model is available for each job, the set

of models is analysed to extract the value of probability of

deadline miss and the response time distributionss.

The probability of deadline miss for a job is the probability

that it does not finish execution by the time it reaches the

deadline. In order to know the probability of deadline miss

for the job, the CTMC model is checked using property ‘the

probability that the state F (finished) is not reached by the

deadline’, in the format of the PRISM model checker, 1-P=?

[F=deadline x=0] (state x=0 is F – finished execution).

The response time distribution of a job gives the probability

that the job finishes execution by some time t. The same

property as before can be checked for different times which

gives the response time distribution for the job. That is, CTMC

model for a job can be checked using a property that demands

‘the probability that the state F is reached by time t’. In the

format of the PRISM model checker, P=? [F<=t x=0] (state

x=0 is F) and 0 ≤ t ≤ deadline.

An example task set Γ2 has five tasks τ1,

τ2... τ5 with period 1,1,2,3,4 and pWCET with

exponential rates 7,8,5,6,6 respectively. In the tool

they are declared as task.append(tasks.Task(7,1)),

task.append(tasks.Task(8,1)), etc. with policy=’EDF’.

There are twelve jobs of τ1 and τ2; six jobs for τ3, four jobs

for τ4 and three jobs for τ5. The PRISM script for J11 is:
ctmc

module M

x:[0..1] init 1;

[] x=1 -> 7.0:(x’=0) ;

endmodule

For job J22 :
ctmc

module M

x:[0..1] init 1;

[] x=1 -> 5.905115198235815:(x’=0) ;

endmodule

For job J51:
ctmc

module M

x:[0..3] init 1;

[] x=1 -> 0.1839394900578:(x’=2) + 2.494409499973:(x’=0) ;

[] x=2 -> 0.000922334274523:(x’=3) + 2.677426655757:(x’=0) ;

[] x=3 -> 7.288831696399981:(x’=0);

endmodule

The probability of deadline miss for each job is produced as:
Task: 1 Job: 1 = 0.0009119237964916316

Task: 2 Job: 1 = 0.012767450588983431

Task: 1 Job: 2 = 0.002291065760363531

...
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Fig. 8: EDF: response time

for all the tasks.
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all the tasks.
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Fig. 10: EDF vs FP: all the

tasks.
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Fig. 11: Jobs of task τ1

Figure 8 and Figure 9 show the response time distributions

computed for a second example task set with 5 probabilistic

tasks. EDF and FP scheduling policies are compared. The

times are in cycles. Figure 10 illustrates the deadline miss

probability of all the 5 tasks in example. EDF and FP are

compared in the same plot. Figure 11 details the deadline miss

probability of task τ1; all its 12 jobs deadline miss probability

are presented.

C. Complexity

Given a task set Γ with m jobs in its hyperperiod, d being the

discretisation unit of the distribution for numerical convolution,



and D being the largest deadline a job, the asymptotic com-

plexity of the CTMC modelling is O((m(m+1)/2).(D/d)2).
Figure 12 shows computational complexity as the time taken

by the tool to compute probability of deadline miss for all the

jobs as the number of jobs increase and the type of backlog

changes. Figure 12(b) shows the time taken for analysis in-

creases exponentially as the number of synchronously released

jobs increase. This is because of the convolution operation

required to compute the total execution of the synchronous

jobs. Figures 12(a) and 12(c) show that time taken increases

linearly as the number of non synchronous jobs increase and

the number of preemptions increase.
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Fig. 12: Computational complexity for different interference

scenarios; in the ordinate the computation time in seconds, in

the abscisse the number of jobs that interfere.

V. CONCLUSION

RTProb has been here briefly described. It performs prob-

abilistic schedulability analysis of pRTSs in which task ex-

ecution is described with pWCET. RTProb implements a

formalism based on formal method CTMC modelling of the

jobs of each task. The working of the tool is presented

which involves interactions with the probabilistic formal model

checker PRISM. The tool is currently applied on a variety of

projects.

Future works will be in the direction of removing some of

the assumptions. In particular, the assumption that pWCET

is an exponential distribution will be removed. A hybrid

modelling method will be proposed which is flexible to the

type of the input distribution (continuous or discrete) and other

execution conditions.
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