
Extending the Amalthea
model to introduce

hardware heterogeneity

Paolo Burgio
paolo.burgio@unimore.it

This Project has received funding
from the European Union’s Horizon
2020 research and innovation
programme under grant agreement:
688860

mailto:paolo.burgio@unimore.it

Next-generation, SWaP-efficient systems…

› Dennard's scaling can't keep the pace of computation power demand

› Also for embedded systems

› The rise of many cores!

2

…also in automotive!

3

Many-core accelerators

4

Accelerator

Core

Core

(Host)

Memory

IC

GP-GPUs

"pure" GP-

many-cores
Reconfigurable

logics

?
DL

accelerators

Problems

(..or opportunities?)

Issue #1 - The importance of memory

6

Beyond traditional predictability

› More degrees of "freedom"
– Shared resources (e.g., memory, SSDs, IOs,

caches..)

– The complexty of analysis grows exponentially
w/number of cores

› Mem accesses: instead of thin lines,
thick bars
– Traditional techniques are too conservative

› Heterogeneous sources of contention

MEM

M
em

o
ry

 a
cc

es
se

s

TT

cores

8 4 2 1

Example: NVIDIA Tegra X2

› Shared memory between CPU/GPU complex
– "Unified Virtual Memory"

– Unlike traditional "discrete" GPU systems

Notable contention points in memory hierarchy

7

1

Tegra X2 – A57 - Test 'A'

8

2017 paper
@ ETFA

Tegra X2 – Denver - Test 'A'

9

2017 paper
@ ETFA

Tegra X2 - Test 'B'

10

2017 paper
@ ETFA

Tegra X2 – A57 - Test 'C'

11

2017 paper
@ ETFA

Tegra X2 – Denver - Test 'C'

12

2017 paper
@ ETFA

(Issue #2) - Offload-based execution models

What parallel programmers do

› Exploit maximum parallelism

› Modern applications are complex! (multi-level, irregular
parallelism)

› Explicit shared-memory programming on NUMA hierarchies

An issue….

13

(Issue #2) - Offload-based execution models

What parallel programmers do

› Exploit maximum parallelism

› Modern applications are complex! (multi-level, irregular
parallelism)

› Explicit shared-memory programming on NUMA hierarchies

..or the solution!?!

14

Device

1) Offload-based execution models: CUDA

› Esposed in the programming model

› Based on the concepts of
– Grid(s)

– Block(s)

– Thread(s)

PARALLEL PROGRAMMING LT – 2017/18 21

Host

Kernel #0

Kernel #1

Kernel #N

Grid #0

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Grid #1

Block
(0)

Block
(1)

Block
(2)

Block (1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,0)

Thread
(4,0)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

dim3 grid_size;

grid_size.x = 3;

grid_size.y = 2;

dim3 blk_size;

blk_size.x = 5;

blk_size.y = 3;

myKernel<<<grid_size,blk_size>>>();

…

2) Exploit NUMA hierarchy in CUDA

› Runtime must be aware of all

› Memory allocations
– cudaHostAlloc➔ Host mem

– cudaMalloc➔ Global mem

– __shared__ keyword ➔ Shared mem

› Data movements
– cudaMemcpy

– cudaMemcpyAsync

28

Core

Core

(Host)
Memory

PCI

EXPRE
SS

CHI
PSE
T

Core

Core

(Host)
Memory

PCI
EXPRESS

CHIPS
ET

Most heterogeneous
programming models

are
memory-centric

programming models

2015 paper
@ RTEST

Meanwhile,
in the RT community…

Graphs for RT systems – RT-DAGs

› Each task is specified by a directed acyclic graph (RT-DAG), where nodes
represent task parts, and edges represent precedence constraints.

› Each node (runnable) τi,j has an associated:
– worst-case computation time 𝐂𝐢,𝐣,

– worst-case memory access size 𝐌𝐢,𝐣,

› Each task 𝛕𝐢,𝐣 is characterized by a period 𝐓𝐢 and a relative deadline 𝐃𝐢 ≤
𝐓𝐢…..

19

Worst case execution time

Worst case memory access time

Period.

Deadline…

Single-Core Equivalence

› A set of techniques to turn the view of the system that
software has..

20

CPU 0

Shared RAM

CPU 1

Shared $

CPU 0

RAM

$

CPU 1

RAM

$

…into this

Cache coloring/
partitioning

Time Division
Multiple Access

Multi-port mem
w/bank partitioning

From this…

Interconnect

Interconnect

Up to 4x predictable performance

on a many-core platform

PREM - PRedictable Execution Models

› Group memory access at the
beginning of every software task

› Co-schedule memory accesses and
tasks-to-cores

› Greatly reduces the complexity of
the scheduling problem

…and increases performance

21

MEM

M
em

o
ry

 a
cc

es
se

s

TT

non-PREM

TT

C

M

C

M

With PREM

Memory
scheduler

2015 paper
@ RTEST

AER Model

› Explicit memory management
– Exploit local SPM memories

– Reserved storage (MPB)

› Mapping + scheduling

› From the avionic domain

22

The explicit, the implicit and the LET

23

Explicit communication, a task access shared
variables at any point during its execution

Implicit communication, tasks accessing shared
labels should work on task-local copies instead of
the original labels.

Logical Execution Time (LET), inputs and outputs
are updated logically at the beginning and at the
end of the so called communication interval

Industrial challenge

AMALTHEA is an XML-based open source document format for modeling
embedded multi-/many-core systems, supporting the AUTOSAR standard.

› The Amalthea platform allows users to distribute data and tasks to the
target hardware platforms, with the focus on optimization of timing and
scheduling.

24

Amalthea – SW modeling

› Tasks & runnables

› Labels

› Effect chains

› …

@See 2017 Waters challenge

25

Put them all
together!

Convergence

Amalthea goes along pretty well with RT-DAGs and
mem-aware models

› Map parallel tasks/RT-DAGs to massively concurrent execution
engines/accelerators

› LABELS/PREM's mem phases naturally open to memory-centric
(co)scheduling

› Conditional DAGs

27

2017 paper
@ WATERS

2017 paper
@ FDL

PCI

PCI

C
a
c
h
e
 m

is
se

s

Raw

C

Min

Memory-aware
(LET, PREM, AER…)

(Mout)

idle

Min

CPU

Mout

Cdev

GP-GPU

K

𝜏𝑖 = 𝑃𝑖 , 𝐷𝑖 , 𝐶𝑖 , 𝑀𝑖𝑛 , 𝑀𝑜𝑢𝑡

- Non PREM vs PREM
- Mout can be moved to subsequent Mins

𝜏𝑖 = 𝑃𝑖 , 𝐷𝑖 , 𝐶𝑖 , 𝐶𝑖
𝑑𝑒𝑣 , 𝑀𝑖𝑛

𝑑𝑒𝑣 , 𝑀𝑜𝑢𝑡
𝑑𝑒𝑣

- Explicit Mem transfer to/from accel.
- Constant offload overhead K

Offload-based, Real-Time, execution models

Only host Host + accel.

28

…challenges

Challenge #1

Scheduling

on heterogeneous

μcore accelerators

1. Schedule data transfers through I/O port

2. Schedule tasks on GPU vs. leave them on CPU

3. Exploit CPU idle time (Async offload execution)

PCI

PCI

idle

Min

CPU

Mout

Accel.

K

CdevC

Min

PREM/LET/AER

(Mout)

𝜏𝑖 = 𝑃𝑖, 𝐷𝑖 , 𝐶𝑖 , 𝐶𝑖
𝑑𝑒𝑣, 𝑀𝑖𝑛

𝑑𝑒𝑣 , 𝑀𝑜𝑢𝑡
𝑑𝑒𝑣

30

Challenge #2

Example: from discrete GP-GPU…

› Comm via PCI-E

..to integrated GP-GPUs (iGPUs)

› Embedded system (automotive)

› Comm via shared mem banks

› Nvidia's Unified Virtual Mem (UVM)

From I/O problem, to memory problem

› Bound CPU-GPU interference

› Remembed ETFA's paper?

PCI

PCI
Min

CPU

Mout

GPU

K

Shared
Memory

Min

CPU

Mout

GPU

K

Cdev

Cdev

31

Challenge #2: the story so far.. (CPU vs. CPU)

C

Mi

HP τ1 LP τ2

How to schedule memory
accesses?

Deterministic platform
software for hard real-time
systems using multi-core
COTS
Sylvain Girbal, et al.

Predictable Execution Model:
Concept and Implementation
Rodolfo Pellizzoni, et al.

Mi

C

Mi

C

Mi

C

Mi

Mi

C

Mi

C

Mi

32

...to accelerator and beyond (CPU vs. GPU)

PCI

PCI

idle

Min

Mout

K

Cdev

HP τ1 LP τ2

C

Mi

Mi

C

Mi

C

Mi

33

HP τ1LP τ2

Challenge #3 – "for real men"

Schedule parallel DAGs onto the
accelerator

› Include app-specific DAG models in
AMALTHEA

– E.g., DNN

› Exploit clustered nature of
accelerators (e.g., GPU SMs)

› Enforce spatial and timing mem.
isolation

PCI

PCI

idle

Min

CPU

Mout

GP-GPU

K

Cdev

?

34

What's missing?

Amalthea – HW

› Cores

› On-chip IC

› Memory
– Local vs. Global

– Access latency

› Heterogeneous PUs
– Accelerators

@See Waters challenge
2018

36

Amalthea – SW modeling

› Tasks & runnables

› Labels

› Effect chains

› Multi-device model

@See 2017/18 Waters challenge

37

SW-HW mapping

Map

› Tasks onto Cores

› Labels onto memory blocks

› Parallel tasks onto Het. PUs
– Runnable-level?

› Labels onto memory transfers

38

Heterogeneous HW model

› Computing unit made of (clusters of) many-cores

› Hierarchical memory with non-global access space
– Chances for unified virtual memory

› Explicit (runtime-compler driven) memory transfers

39

HiPeRT Generator Tool - HGT

› Starting from Amalthea description of a RT application

› Generates ready-to-use, timing accurate synthetic code that
correctly mimics it

› On given target architecture

40

