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Abstract—In this paper, we present solutions to FMTV 2016
verification challenges, combining the response time analysis and
schedule time bound analysis. The worst case response time of a
task is computed by the conventional response time analysis while
the end-to-end latency of a cause-effect chain is conservatively
estimated by considering the schedule time bounds of associated
runnables. Three separate challenges are discussed in order. The
proposed technique is first explained to address the first challenge
that ignores the memory latency. For the second challenge, we
estimate the memory access latency by computing the maximum
possible arbitration delay with arrival curve analysis. Finally, we
propose a heuristic algorithm that determines the mapping of
data labels to optimize the end-to-end latency.

I. CHALLENGE MODEL AND TERMINOLOGIES

We first review the Amalthea performance model [1] of the
benchmark, making some assumptions for unclear explanation
in the provided problem specification [2][3].
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Fig. 1. Microcontroller architecture used in the challenge

The provided Amalthea model contains a hardware model of
a simplified microcontroller architecture with four symmetric
cores as shown in Fig. 1. Each core ACi has its own local
memory ALi . A crossbar network is used for the interconnec-
tion among cores and a global memory AG.

A task τi is a basic mapping unit onto a core and task-to-
core mapping is given. The core τi is mapped to is denoted
by mi. A task is invoked either periodically or sporadically.
IP and IS denote a set of periodic tasks and a set of sporadic
tasks, respectively. The minimum and the maximum initiation
interval are specified for each task τi and are denoted as pli
and pui . If τi is a periodic task (τi ∈ IP ), pli is equal to pui
which means that the initiation interval becomes the period.
All tasks are simultaneously initiated at the system activation
time. The basic timing requirement for task τi is to finish
execution before its deadline denoted by dτi . Since implicit
deadline model is assumed, deadline dτi is equal to pli.

A task τi consists of a set of runnables {ri,j | 1 ≤ j ≤ |τi|}
where runnable ri,j is an unit of execution and |τi| means
the number of runnables in the task. Runnables in a task are
executed sequentially on the mapped core in the ascending
index order. The lower and the upper bound of execution
time of ri,j , denoted cli,j and cui,j , are specified assuming that
code is executed directly from core-exclusive flashes without
contention. Note that memory access delay is not included
in the execution times. The runnables are assumed to read all
required data at the beginning of their execution and write back
the results after execution is completed. We assume that when
a runnable attempts to access a memory, no preemption is
allowed until the resource request is processed. 1250 runnables
are specified in the provided model.

A distinct priority is assigned to each task for the fixed-
priority scheduling. We assign each task a unique index in
the descending priority order; task τi has a higher priority
than τj if i < j. A task τi is scheduled by either preemptive
or cooperative fixed priority scheduling policy. SP and SC
denote a set of preemptive tasks and a set of cooperative tasks,
respectively. A task τi ∈ SP can preempt lower priority tasks
at any time, whereas a task τi ∈ SC can preempt lower priority
cooperative tasks at the boundary of runnable executions [4].
There are 21 tasks and preemptive tasks have higher priorities
than cooperative tasks in the provided model.
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Fig. 2. End-to-end latency of an example cause-effect chain

A cause-effect chain CECi defines a chain of runnables that
are connected by read/write dependency with labels. Note that
there are no cyclic dependencies between tasks within a cause-
effect chain. Due to the potential different task periods, data
may get lost (undersampling) or get duplicated (oversampling).



We assume an end-to-end latency of a cause-effect chain
as the maximum time duration between the first input that
may be undersampled and the first output generated from the
corresponding or later input. This semantic is as same as the
reaction time constraint of the AUTOSAR [5]. Fig. 2 shows
end-to-end latencies from three stimulus runnable instances
in an example cause effect chain {r0,1, r1,0, r2,3}. Since we
are concerned about reaction time, the second r1,0 instance is
regarded as the reaction of the first r0,1 instance. The third
r2,3 instance is the first response to the second r1,0 instance
so that final reaction of the first r0,1 instance is generated by
the third r2,3 instance. Three cause-effect chains are specified
in the provided model.

Data is specified by a set of labels: each size is less than
the memory transfer size 32bits. Memory arbitration model is
assumed differently in each challenge as follows:

• Challenge 1: calculate tight end-to-end latencies ig-
noring memory accesses and arbitration
All read/write accesses to labels take zero time so that
only runnable execution times affect the end-to-end la-
tencies.

• Challenge 2: calculate tight end-to-end latencies in-
cluding memory accesses and arbitration
All labels are assumed to be stored in the global memory.
Read and write accesses have symmetric memory access
times. When accessing the global memory, crossbar trans-
fer takes 8 cycles and access to global memory takes 1
cycle. When there is a contention at global memory, the
accesses are assumed to be arbitrated according to the
FIFO policy.

• Challenge 3: optimize end-to-end latencies by map-
ping the labels among the local and global memories
We can map a label in a local memory whose access
latency is 1 cycle. We assume that local memory size is
limited. Local memories are also arbitrated according to
the FIFO policy.

For all challenges, we aim to conservatively estimate the
upper bound of response time of each task τi, denoted as Lτi ,
and end-to-end latency of cause-effect chain CECi, denoted
as LCECi

, as tightly as possible.

II. PROPOSED SOLUTION TECHNIQUE FOR CHALLENGE 1

Since memory access delay is ignored in challenge 1, we
compute the worst-case response time of a task τi, considering
the execution times only.

A. End-to-end latency of a preemptive task

If a higher priority task is released during the execution
of a preemptive task τc ∈ SP , it is preempted by all
runnables in the higher priority task. Thus we can formulate
the upper bound of the latency between the release time of
a runnable rc,i to the finish time of a runnable rc,j , denoted

UBLf (rc,i, rc,j) where 1 ≤ i ≤ j ≤ |τc|, as follows using
the response time analysis:

UBLf (rc,i, rc,j) =

j∑
k=i

cuc,k +
∑

τh∈hp(τc)

⌈UBLf (rc,i, rc,j)

plh

⌉
·
|τh|∑
k=1

cuh,k

 (1)

where hp(τc) = {τh|mh = mc, c > h} is a set of higher
priority tasks. Then the estimated end-to-end latency of a
preemptive task τc becomes Lτc = UBLf (rc,1, rc,|τi|).

B. End-to-end latency of a cooperative task

For a cooperative task τc, the release of τc can be blocked by
at most one runnable execution of a lower priority task mapped
on the same core. Higher priority cooperative tasks released
after the start time of a runnable rc,j have no effect on the fin-
ish time. We formulate the upper bound of the latency between
release time of a runnable rc,i to start time of a runnable rc,j ,
denoted UBLs(rc,i, rc,j) where 1 ≤ i ≤ j ≤ |τc| as follows:

UBLs(rc,i, rc,j) =

(
i = 1? max

rl,k∈∪lp(τi)
cul,k : 0

)
+

j−1∑
k=i

cuc,k

+
∑

τh∈hp(τc)

⌈UBLs(rc,i, rc,j) + 1

plh

⌉
·
|τh|∑
k=1

cuh,k

 (2)

where lp(τc) = {τl|ml = mc, c < l} is a set of lower priority
tasks mapped on the same core. The first, second, and third
terms indicate the maximum blocking from a lower priority
task, the sum of maximum execution times of runnables,
and the maximum preemptions from higher priority tasks,
respectively. Blocking delay is zero when i 6= 1 since any
lower priority task cannot start after the first runnable starts.
Note that UBLs(rc,i, rc,j) + 1 is used in the third term to
include the higher priority tasks released between the finish
of the (j− 1)-th runnable and the start of the (j)-th runnable.
Then UBLf (rc,i, rc,j) can be estimated as follows:

UBLf (rc,i, rc,j) =

(
i = 1? max

rl,k∈∪lp(τi)
cul,k : 0

)
+

j∑
k=i

cuc,k

+
∑

τh∈∈hp(τc)∩SP

⌈UBLf (rc,i, rc,j)

plh

⌉
·
|τh|∑
k=1

cuh,k


+

∑
τh∈hp(τc)∩SC

⌈UBLs(rc,i, rc,j)
plh

⌉
·
|τh|∑
k=1

cuh,k

 (3)

All requests of higher priority preemptive tasks within
UBLf (rc,i, rc,j) are accounted in the third term while the
requests of higher priority cooperative tasks after rc,j starts
are excluded. Then the estimated worst-case response time of
a cooperative task τc becomes Lτc = UBLf (rc,1, rc,|τi|).
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Fig. 3. End-to-end lantency computation of three example cause-effect chains.
A white box indicates the schedule time bound of a runnable while a red or
a blue box indicates an execution time of the runnable.

C. End-to-end latency of a cause-effect chain

In this section, we compute the end-to-end latency of a
cause-effect chain. Before explaining the latency computation,
we define two variables BCST (rc,i) and WCFT (rc,i) which
mean a lower bound of start time of rc,i and an upper bound
of finish time of rc,i respectively. WCFT (rc,i) is formulated
as WCFT (rc,i) = UBLf (rc,1, rc,i). Since a cooperative
task is not blocked by a low priority task in the best case,
BCST (rc,i) for either a preemptive task or a cooperative task
can be formulated in the same way:

BCST (rc,i) =

i−1∑
k=1

clc,k

+
∑

τh∈hp(τc)

⌈max(0, BCST (rc,i)− δh + 1)

puh

⌉
·
|τh|∑
k=1

clh,k


(4)

where δh = puh −
∑|τh|
k=1 c

l
h,k. For each higher priority task,

the maximum initiation interval and the minimum execution
times are considered to compute the minimum interference.

A cause-effect chain is defined by a sequence of runnables
that have read/write dependency over a label between each pair
of runnables. Fig. 3 shows three example cause-effect chains
and the activation patterns of five tasks are summarized in
Fig. 3 (a). A cause-effect chain CEC0 in Fig. 3 (b) consists

of four runnables in the same task τ3. In this case, we have to
analyze how many task instances are involved in the chain. If
the (i+1)-th runnable of the chain has a smaller index than
the i-th runnable, labels written by the i-th runnable will
be read by the (i+1)-th runnable in the next task instance.
Hence the number of the instances involved in the chain
is computed by counting how many times runnable indices
decrease in the task sequence. In Fig. 3 (b), two task instances
are involved in the chain since index decrease appears only
once in the chain (r3,272 → r3,107). If one task instance covers
the cause-effect chain, the end-to-end latency can be computed
as UBLf (rc,b, rc,e) where rc,b and rc,e are the first and the
last τc runnables in the chain. Otherwise, the worst-case end-
to-end latency becomes the distance from the BCST of the first
runnable to the WCFT of the last runnable plus the task period
multiplied by the count of index decreases in the chain, which
gives pu3 +WCFT (r3,107) - BCST (r3,149) for the example
of Fig. 3 (b).

A cause-effect chain CEC1 in Fig. 3 (c) consists of
three runnables with different activation patterns. In this case,
we consider the schedule time bound of the first runnable
(BCST (r5,7), WCFT (r5,7)) and examine all possible BC-
STs of the second runnable r3,19 that may appear after the
first runnable. In the example of Fig. 3 (c), there are three
possible BCSTs of r3,19. If we consider a pair of runnables
only, the worst-case scenario is that the second runnable starts
just before the first runnable finishes and the label written by
the first runnable is read by the second runnable at the latest
in the next task instance. Based on this observation we define
a set of starting points of the first runnable as shown in blue
color in the figure. The set includes the schedule of the first
runnable whose finish time coincides with a possible BCST
of the second runnable as well as the earliest and the latest
schedule within the schedule bound.

For the subsequent pair of runnables, for instance the second
and the third runnables in the example of Fig. 3 (c), we need
to consider the schedule time bound of the successor and the
WCFT of the predecessor. If the WCFT of the predecessor lies
in the schedule time bound of the successor, the label written
by the predecessor should be read by the successor runnable at
the latest in the next task instance. For each candidate starting
point of the first runnable in the chain, the figure shows the
longest cause-effect chain by green arrows where red and blue
boxes mean the executions of runnables. Among all candidate
starting points, we find one that gives the worst-case chain
latency that is represented by a red bounding box in the figure,
which corresponds to the second candidate starting point.

In this example, we consider a single runnable involved in
each task. In case more than one runnable of the same task is
included in the chain, we group them as a sub-chain. Then, a
cause-effect chain consists of a sequence of sub-chains where
each sub-chain consists of a set of runnables in the same task.
If the worst-case latency of the sub-chain spans more than one
task instance like the case of Fig. 3 (b), we need to consider
only one starting point for the sub-chain for the second case.

The third case shown in Fig. 3 (d) is the case that the cause-



effect chain starts with a sporadic task: the first runnable in
CEC2 belongs to a sporadic task τ0. Since the sporadic task
may start anytime, we find the worst-case scenario in which
the finish time of r0,3 is aligned with the best case start time
of the first r1,3 instance. Then the end-to-end latency from r0,3

to r1,3 is bounded by UBLf (r0,3, r0,3)+pu1 +WCFT (r1,3)−
BCST (r1,3). Note that we need to check only one starting
point, which makes the finish time of the sub-chain be aligned
with the best case start time of next sub-chain, unlike the case
of periodic tasks in Fig. 3 (c). We repeat this computation
for all task instances of the first periodic task in the chain
within the hyper-period of tasks. In Fig. 3 (d), τ1 is the first
periodic task. If we repeat computation for all τ1 instances,
the maximum latency occurs with the third τ1 instance since
labels written by the third r1,3 instance is missed by the first
r4,36 instance.

Algorithm 1 Algorithm to compute the end-to-end latency of
a cause-effect chain
1: E2E ← 0, d len← 0
2: if the first sub-chain is in a sporadic task then
3: d len←end-to-end latency of the first sub-chain
4: while all sporadic sub-chains before the first periodic sub-chain do
5: d len← d len+ (one period) + (WCFT of the last runnable)−

(BCST of the first runnable)
6: end while
7: end if
8: for all instances of the first periodic sub-chain within hyperperiod do
9: find all candidate starting points of the first runnable

10: for all candidate starting points do
11: start← (candidate starting point)
12: end←corresponding end point
13: for all sub-chains after the first periodic sub-chain do
14: if sub-chain is in a sporadic task then
15: end ← end + (one period) + (WCFT of the last

runnable)− (BCST of the first runnable)
16: else
17: end←minimum WCFT among runnable instances whose

BCST is no smaller than end
18: end if
19: end for
20: E2E ← max(E2E, end− start)
21: end for
22: end for
23: return E2E + d len

Now we summarize the proposed technique for the esti-
mation of the end-to-end latency of a cause-effect chain with
Algorithm 1. At first, if the chain starts with sporadic tasks,
we compute the end-to-end latency d len of those sporadic
sub-chains (lines 2-7). Then for the first periodic sub-chain,
we examine all instances of the first periodic sub-chain within
the hyperperiod of the chain. (lines 8-23). For each instance,
we find all candidate starting points and compute the latency
from the starting point to the end time of the chain (lines 9-
21). If the chain starts with a sporadic task or a sub-chain
that spans more than one task instance, we need to consider
only one starting point which is the BCST of the runnable.
Otherwise, we find all candidate starting points as Fig. 3 (c).
From each starting point, we find the end point of the chain
(lines 13-19).

III. PROPOSED SOLUTION TECHNIQUE FOR CHALLENGE 2

In the second challenge, we consider the worst-case mem-
ory access delay in the latency computation. Since memory
accesses are arbitrated according to the FIFO policy and a core
is assumed to be blocked during memory access, one memory
access may be delayed by at most three accesses (one per each
core). Hence a naive way to find a conservative upper bound
is to assume that each access experiences blocking by three
queued accesses. To find a tighter bound of memory access
delay, however, we analyze the maximum number of memory
accesses issued by tasks in each core within any time window
of size ∆t by adopting the event stream model [6]. Then we
can bound the number of memory accesses that are issued
from remote cores. For example, if there are total 10 accesses
during the worst-case response time of a task τi, Lτi , and all
accesses are assumed to be blocked by three accesses, the total
memory access delay will be 10·(8+3+1) cycles. If we know
that some cores cannot issue more than 10 accesses within any
time window of size Lτi , we can tighten the upper bound of
memory access delay.

Since we aim to find the maximum number of accesses
within a time window, we consider the lower bound of
execution time and the lower bound of initiation interval in
this section. For brevity, we define a variable Ci as the sum of
best case execution times of all runnables in τi plus memory
access delay without contention.

For a given time window of size ∆t, we have to compute the
maximum memory access requests from each core. To tackle
this problem, several approaches that find an upper bound of
the number of shared resource accesses within a time window
have been proposed ([7], [8]). In this paper, we propose an
improved technique by accounting for the scheduling pattern
of tasks. For each core, we have to find out the task execution
scenario that produces the maximum memory access requests
within the time window. Since the number of task execution
scenarios is enormously large, we consider the partitioning of
the time window to tasks in the core. The partitioned time
means the net execution time of a task. Note that a task may
have multiple task instances in the time window that may not
be continuous due to preemption or periodic appearance. Since
the total execution time within a time window cannot exceed
∆t, we check all combinations of task net execution times. For
instance, suppose that there are two tasks in a core and ∆t = 3.
Then we check all possible combinations of execution time
partitions: (0,3), (1,2), (2,1), and (3,0) where (a,b) means the
net execution times of two tasks. If we compute the minimum
and the maximum bound of net execution time that a task may
take within a time window ∆t, we can eliminate the infeasible
partitions. If the first task cannot take 3 time units in any time
window of size 3, (3,0) becomes impossible. With a given net
execution time of a task, we find the upper bound of memory
access requests.

At first, we define two functions tmini (∆t) and tmaxi (∆t)
that represent the minimum and the maximum execution
time amount a task τi may take within a time window ∆t,
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Fig. 4. The minimum execution time scenario (a) and the maximum execution
time scenario (b) in a time window ∆t

respectively. Fig. 4 illustrates two scheduling patterns of task
τi that correspond to tmini (∆t) and tmaxi (∆t), respectively. In
the figure, a dashed rectangle indicates the time window ∆t,
and the task is invoked with the minimum initiation interval
pli. The start time of a task may be delayed by Lτi −Ci in the
worst-case by preemption or memory arbitration delay, which
is represented as the grey area in the execution profile.

For a task τi to take the minimum net execution time in the
time window, the worst-case interval between two consecutive
job instances should be considered. The worst-case interval is
observed when an instance finishes its execution as soon as
possible with response time of Ci and the start times of all
subsequent instances are maximally delayed by Lτi − Ci as
shown in Fig. 4 (a). Then the minimum net execution time
is found when the time window starts immediately after the
finish time of the first instance. In summary, we can derive
the function tmini (∆t) as follows:

tmini (∆t) = Ci ·
⌊
max(0,∆t− cmini )/pli

⌋
+ min(Ci,max(0,∆t− cmini ) mod pli) (5)

where cmini = pli +Lτi − 2 · Ci. The first term and the second
term indicate fully included executions and partially included
execution, respectively.

On the contrary, we should consider the shortest interval
between two τi instances in order to compute the maximum
execution time in time window ∆t: an instance starts as late as
possible to finish at its end-to-end latency Lτi and subsequent
instances start immediately at their request time. The execution
time amount is maximized in time window ∆t when the time
window starts at the start time of the first task instance, as
illustrated in Fig. 4 (b). The maximum amount of execution
time tmaxi (∆t) is derived as follows:

tmaxi (∆t) = min
(
∆t, Ci ·

⌊
(∆t+ cmaxi )/pli

⌋
+ min(Ci, (∆t+ cmaxi ) mod pli)

)
(6)

where cmaxi = Lτi − Ci. The first term and the second
term indicate fully included executions and partially included
execution, respectively.

Now we compute how many instances may exist in a time
window ∆t. Fig. 5 shows the same task schedule scenario of
Fig. 4 (b) and the dashed rectangle indicates the time window
to achieve the maximum execution time tmaxi (∆t) in a time
window ∆t. In order to cover the task instances as many as
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Fig. 5. The shifted time window by Ci − 1 from the time window for
tmaxi (∆t)

possible in the time window, we shift the time window to the
right direction. If the shift amount is greater than or equal to
Ci, the first task instance becomes outside of the time window,
making the number of instances decreases. Hence the shift
amount should be less than Ci. On the other hand, we need
to shift the time window as much as possible to include the
instances at the right side of the time window. In summary, to
make the maximum number of task instances that may lie in
the time window, the time window should be shifted by Ci−1.
In the figure, the shifted rectangle contains one more instance
of the task than the dashed rectangle.

Note that when the number of task instances laid in the time
window is maximized, the net execution time may be smaller
than that for the case when the net execution time in the time
window is maximized. Hence we need to compare two cases
to find the maximum possible resource demand; (1) the case
the number of task instances is maximized and (2) the case the
net execution time is maximized. Then we need to compute
the maximum net execution time for the first case and the
maximum number of task instances for the second case. The
number of instances for the second case can be computed as
ni(∆t) =

⌈
tmax
i (∆t)
Ci

⌉
. We denote the maximum net execution

time for the first case
−−→
tmaxi (∆t), where arrow indicates that

the time window is shifted by Ci− 1 to maximize the number
of instances. Then

−−→
tmaxi (∆t) can be formulated as follows:

−−→
tmaxi (∆t) = Ci ·

⌊
max(0,∆t−

−−→
cmaxi )/pli

⌋
+ min(Ci,max(0,∆t−

−−→
cmaxi ) mod pli) (7)

where
−−→
cmaxi = pli − Lτi . We denote the maximum number of

τi instances laid in the time window ∆t as −→ni(∆t) and −→ni(∆t)
can be computed from

−−→
tmaxi (∆t) to be

⌈
(
−−−→
tmax
i (∆t)−1)
Ci

⌉
+ 1.

Finally, we formulate memory access bound function
D
AC

i ,A
G(∆t) which finds the maximum number of accesses

from a core ACi to global memory AG within any time window
of size ∆t. When we distribute the time amount ∆t to tasks
mapped onto ACi , we should consider the constraint that a task
τk can be assigned the bounded net execution time tk between
tmink (∆t) and tmaxk (∆t). And, for a given ∆t, we consider two
cases where the number of instances of a task τk is nk(∆t)
or −→nk(∆t) as the access bound function of each individual
task, Dτk,AG(tk,∆t). In summary, the memory access bound



function is formulated as follows:

DAC
i ,A

G(∆t) =

max

{ ∑
mk=AC

i

Dτk,AG(tk,∆t)

∑
mk=AC

i

tk = ∆t,

∀mk=AC
i
tk ≥ tmink (∆t)

}
(8)

Dτk,AG(tk,∆t) = max

(
η
e(nk(∆t))

k,AG (min(tk, t
max
k (∆t)))

η
e(−→nk(∆t))

k,AG (min(tk,
−−→
tmaxk (∆t)))

)
(9)

where ηnk,AG(t) is the maximum number of resource accesses
that may be issued from n instances of a task τk to a memory
AG when the net execution time of τi does not exceed t time
units. ηnk,AG(t) can be computed by moving the time window
of size t on the n task instances that are executed one after
another and finding the maximum number of resource accesses
among all time windows.
D
AC

i ,A
G(∆t) can be obtained by the max-plus convolution

of individual demand bound functions of (9) in polynomial
time since the max-plus convolution has associative property
and commutative property. D

AC
i ,A

G(∆t) is used to bound the
arbitration delay during the latency computed by equations (1),
(2), and (3). For a preemptive task, it may be blocked by one
memory access from a lower priority task. For a cooperative
task, we consider the maximum blocking by one lower priority
runnable with its worst case memory access delay (8+3+1 per
one access). This blocking delay is independently computed
and included in the worst-case latency. After computing the
lower priority blocking delay, we consider memory accesses
that are issued from the target task and higher priority tasks. To
bound the interference from a core, we compute the number of
memory accesses from the core during the latency of interest.

IV. PROPOSED SOLUTION TECHNIQUE FOR CHALLENGE 3

In this section, we propose a greedy algorithm that deter-
mines a label-to-memory mapping to optimize the end-to-end
latencies. If a label is mapped to a local memory ALi , we can
save the crossbar transfer delay (8 cycles) which is larger than
the worst-case arbitration delay (4 cycles).

Algorithm 2 presents a pseudo code of the proposed greedy
algorithm to determine label-to-memory mapping. Initially
labels are mapped to a global memory AG (line 8). At first, we
compute each fitness value of a mapping of L[i] to ALj , F [i][j]
(line 9). The fitness value is higher if L[i] is more frequently
accessed from ACj . Then we determine a mapping of each
label (lines 11-18). We select the most beneficial mapping
according to the fitness values (line 12). Since we assume a
limited local memory size, the label L[l] can be mapped to
ALm in case ALm has enough memory size (lines 13-16). The
progress is repeated until there is no mapping that optimize
the memory access delay (line 11).

Unlike the latency computation in challenge 2, the memory
accesses from ACi to ALi do not involve transfer delay so that
only arbitration delay at the memory should be considered.
The technique to compute memory arbitration delay bound

Algorithm 2 Greedy algorithm to determine label-to-memory
mapping
Input: a set of labels L, an array of label sizes SL and local memory size s
Output: an array of label mapping M
1: SM ← one dimensional array of size 4
2: F ← two dimensional array of size |L| × 4
3: . SL[i] is a label size of L[i]
4: . M [i] is a memory a label L[i] is mapped to
5: . SM [i] indicates available memory size of ALi
6: . F [i][j] is a fitness value of a mapping of L[i] to ALj
7: for 0 ≤ i < |L|, 0 ≤ j < 4 do
8: M [i]← AG, SM [j]← s

9: F [i][j]←
∑

mk=A
C
j

#accesses of τk toL[i]

pl
k

10: end for
11: while ∃i,jF [i][j] > 0 do
12: find indices l and m that F [l][m] = maxi,j F [i][j]
13: if SM [m] ≥ SL[l] then
14: SM [m]← SM [m]− SL[l]
15: M [l] = ALm
16: end if
17: F [l][m]← 0
18: end while

explained in challenge 2 can be easily extended to compute
the memory access bound function of each memory separately.

V. CHALLENGE RESULTS

The estimated end-to-end latencies of all tasks and cause-
effect chains from the proposed technique are summarized in
Table. I. In the table, WCRT and E2E L. mean the worst-
case response time and the end-to-end latency, respectively.
(C1), (C2), and (C3) columns show the estimated results for
challenge 1, challenge 2, and challenge 3, respectively. We
assume unlimited local memory size in the experiment since
no constraints are given.

Even without memory access delay, 6 out of 21 tasks in the
challenge model are unschedulable according to our analysis
results since core utilizations are too high: utilizations are
97%, 133.5%, 106.8%, and 117.9% for each core. There is
even a task that has the worst-case execution time larger
than its deadline (Task 10ms). End-to-end latencies of cause-
effect chains cannot be analyzed due to the runnables in
unschedulable tasks. We claim that the worst-case execution
time should be decreased to make the system schedulable.

Results show that the portion of the memory access delay
in the worst-case response time is not significant. Task 50ms
becomes unschedulable when memory access delay is not
ignored. Because of the memory access delay, its worst-
case response time becomes over 8,000,000 and one more
preemption of Task 20ms whose worst-case execution time
is 2,093,688 occurs, making the response time larger than the
deadline. Almost all read/write accesses go to local memory
after label-to-memory mapping is done so that the mem-
ory access delay decreases accordingly. Task 20ms is barely
schedulable after label-to-memory mapping.

We conducted additional experiment to find maximum ex-
ecution times of tasks satisfying all task deadlines. For each
core, we scale down all worst-case execution times of mapped



TABLE I
END-TO-END LATENCIES OF TASKS AND CAUSE-EFFECT CHAINS

SPECIFIED IN THE PROVIDED SYSTEM MODEL (UNIT: CYCLE)

Task WCRT (C1) WCRT (C2) WCRT (C3)

CORE0

ISR 10 (τ0) 6,068 6,308 6,112
ISR 5 (τ1) 57,704 58,256 57,785
ISR 6 (τ2) 63,894 64,698 63,996
ISR 4 (τ3) 137,054 138,278 137,206
ISR 8 (τ4) 261,725 263,843 261,973
ISR 7 (τ5) 530,598 534,453 531,061

ISR 11 (τ6) 853,378 859,207 854,081
ISR 9 (τ7) unschedulable unschedulable unschedulable

CORE1 Task 1ms (τ11) 152,870 156,345 153,588
Angle Sync (τ12) unschedulable unschedulable unschedulable

CORE2

Task 2ms (τ13) 80,817 82,425 81,188
Task 5ms (τ14) 267,180 270,252 267,900
Task 20ms (τ16) 3,709,404 3,760,278 3,719,254
Task 50ms (τ17) 7,973,611 unschedulable 7,992,287

Task 100ms (τ18) unschedulable unschedulable unschedulable
Task 200ms (τ19) unschedulable unschedulable unschedulable
Task 1000ms (τ20) unschedulable unschedulable unschedulable

CORE3

ISR 1 (τ8) 7,011 7,383 7,066
ISR 2 (τ9) 10,560 11,160 10,635
ISR 3 (τ10) 15,347 16,247 15,448

Task 10ms (τ15) unschedulable unschedulable unschedulable
Cause-effect chain E2E L. (C1) E2E L. (C2) E2E L. (C3)

EffectChain 1 unschedulable unschedulable unschedulable
EffectChain 2 unschedulable unschedulable unschedulable
EffectChain 3 17,817,190 unschedulable 17,835,552

tasks by the same percentage and find the maximum percent-
ages that make all estimated end-to-end latencies of tasks
below deadlines. Table II summarizes the scaled worst-case
execution times and the end-to-end latencies for challenge 3.
Note that the percentage decrease for each core is proportional
to the utilization of the core.

VI. CONCLUSION

We present a solution technique to FMTV 2016 verification
challenges, combining the response time analysis and schedule
time bound analysis. The main contribution is that we con-
sider schedule time bounds of runnables to tightly compute
end-to-end latencies of cause-effect chains. Memory access
bound functions are described to find the maximum possible
arbitration delay with arrival curve analysis. A simple greedy
algorithm is proposed to determine label-to-memory mapping.
It took about one month to understand the challenge model
and to solve the problem, applying the technique we have
developed beforehand.
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TABLE II
SCALED WORST-CASE EXECUTION TIMES FOR SCHEDULABLE SYSTEM

AND END-TO-END LATENCIES (UNIT: CYCLE)

Task WCET WCRT Deadline

CORE0 (96%)

ISR 10 (τ0) 5,825 5,867 140,000
ISR 5 (τ1) 49,570 55,472 180,000
ISR 6 (τ2) 5,942 61,434 220,000
ISR 4 (τ3) 70,233 131,706 300,000
ISR 8 (τ4) 58,345 251,485 340,000
ISR 7 (τ5) 62,375 509,791 980,000

ISR 11 (τ6) 58,729 814,042 1,000,000
ISR 9 (τ7) 71,133 896,985 1,200,000

CORE1 (71%) Task 1ms (τ11) 108,537 109,164 200,000
Angle Sync (τ12) 540,360 1,197,321 1,332,000

CORE2 (93%)

Task 2ms (τ13) 75,159 75,511 400,000
Task 5ms (τ14) 173,317 249,170 1,000,000
Task 20ms (τ16) 1,947,129 3,383,696 4,000,000
Task 50ms (τ17) 573,714 7,358,075 10,000,000

Task 100ms (τ18) 1,751,74319,908,947 20,000,000
Task 200ms (τ19) 25,75819,933,318 40,000,000
Task 1000ms (τ20) 25,51119,958,468 200,000,000

CORE3 (83%)

ISR 1 (τ8) 5,819 5,869 1,900,000
ISR 2 (τ9) 2,945 8,834 1,900,000
ISR 3 (τ10) 3,973 12,832 1,900,000

Task 10ms (τ15) 1,944,313 1,986,787 2,000,000
Cause-effect chain E2E Latency

EffectChain 1 2,269,514
EffectChain 2 2,628,493
EffectChain 3 13,888,054
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