Verification of an Aerial Video System

Youcheng Sun
Dept. of Computer Science
University of Oxford, UK

Abstract—In this paper we propose solutions to the consol-
idated version of the WATERS 2015 industrial challenge of
a distributed video processing system using the formalism of
Parametric Timed Automata (PTA). The first challenge is harder
because of the very large number of states to be analyzed, so
we only provide upper bounds. The second challenge consists
of a real-time scheduling problem for which we provide exact
solutions by using a scheduling analysis based on the critical
instant, and a PTA model.

Furthermore, regarding the second challenge, we provide
formal analysis for the frequency of possible temporal violations
in the system, by applying the latest results from the so called
weakly hard real-time schedulability analysis. This improvement
contributes the major extension of this paper with respect to our
solutions to the previous version of the challenge.

I. INTRODUCTION

With the increasing size and complexity of concurrent sys-
tems, the need for formal verification techniques has become
higher and higher in the past decades. Systems mixing time
and concurrency are especially subject to undesired behav-
iors (deadlocks, race conditions, etc.); often, their complexity
makes the use of formal methods very challenging.

In this paper, we address the “consolidated WATERS indus-
trial challenge 2015” proposed by Thales (http://waters2017.
inria.fr/challenge/#Challenge17) by extending our solutions
[ALS15] (to its previous version) that use the formal-
ism of parametric timed automata (PTA). Timed automata
(TA) [AD94] are a well-known formalism for specifying and
verifying concurrent real-time systems. TA extend finite-state
automata with a set of clocks (real-time variables growing
linearly) that can be compared with integer constants. TA
are used in several powerful tools such as UPPAAL [LPY97]
or PAT [SLDP09]. However, the binary answer (“yes” or
“no”) output by model checking is not always satisfactory;
indeed, it does not allow to change or optimize some values
of the system constants, nor (in general) to evaluate the system
robustness, i.e., the infinitesimal variation of timing constants
while preserving the reachability. PTA [AHV93] extend TA
with rational-valued parameters allowed in place of constants.
PTA are particularly well suited to verify systems where
some timing delays are known with uncertainty. The natural
drawback of PTA is the infamous state space explosion, that
may prevent the verification to be truly scalable. We will use
the tool IMITATOR [AFKSI12] that takes PTA as an input
formalism.

This work is partially supported by the ANR research program PACS (ANR-
14-CE28-0002).

Etienne André
LIPN, CNRS, UMR 7030
Université Paris 13, France

Giuseppe Lipari
CRIStAL - UMR 9189
University of Lille, France

Improvements w.r.t. solutions in [ALSI5] :

e The improvement comes from the solution to Chal-
lenge 2, where we provide also an analysis for the
frequency of possible temporal violations in the video
system. Although this is not explicitly specified by the
challenge itself, we believe the result by natural fits
into the interest of the challenge, and it offers a formal
approach to evaluate the system performance.

o This extension is based on the so called weakly hard
schedulability analysis, which estimates the number of
deadline misses within an arbitrary time window.

Outline: We briefly review PTA and IMITATOR (Sec-
tion I). Then, we recall the challenge (Section III). We
derive solutions to Challenge 1A formally by using IMITATOR
(Section 1V). We provide a different PTA model for the much
harder Challenge 1B (Section V) for which we derive an
upper bound. Then, we analyze the problem in Challenge 2
(Section VI) and the improvement in the new solution is at
Section VI-C. Finally, we conclude in the work (Section VII).

II. PARAMETRIC TIMED AUTOMATA

Timed automata are finite-state automata augmented with
clocks, i.e., real-valued variables increasing uniformly, that
are compared within guards and invariants with timing de-
lays [AD94]. Parametric timed automata (PTA) [AHV93] ex-
tend timed automata with parameters, i.e., unknown constants,
that can be used in guards and invariants.

Given a set X of clocks (real-valued variables) and a
set P of parameters (unknown rational-valued constants),
a constraint C' over X and P is a conjunction of linear
inequalities on X and P'. Given a parameter valuation (or
point) v, we write v = C when the constraint where all
parameters within C' have been replaced by their value as in v
is satisfied by a non-empty set of clock valuations.

Definition 1: A parametric timed automaton (PTA) A is
(%, L, 1o, X, P,I,E) with X a finite set of actions, L a finite
set of locations, [y € L the initial location, X a set of clocks,
P a set of parameters, [the invariant assigning to every [€ L
a constraint over X and P, and E a step relation consisting
of elements (I, g,a,R,l"), where [,I' € L,a € ¥, RC X is
the set of clocks to be reset, and the guard g is a constraint
over X and P.

Note that this is a more general form than the strict original definition of
PTA [AHV93]; since most problems for PTA are undecidable anyway, this
has no practical incidence, and increases the expressiveness of the formalism.

http://waters2017.inria.fr/challenge/#Challenge17
http://waters2017.inria.fr/challenge/#Challenge17

The semantics of a PTA A can be found in, e.g., [AHV93],
[AS13].

Most problems related to PTA (e.g., the parametric reacha-
bility of a location) are undecidable [AHV93], [JLR15], with
some decidable syntactic subclasses related to the use of the
parameters [HRSVO02], [BL09], [JLR15] or on the number
of clocks [AHV93], [BO14], [BBLS15] (see [And16] for a
survey). We do not consider it as drawback, as we use semi-
algorithms that “often” terminate in practice; we will see this
is also the case for solving challenge 1A.

IMITATOR [AFKS12] is a tool for modeling and verifying
systems modeled using parametric timed automata. In its
latest version (2.9), IMITATOR implements several algorithms,
among which:

o parametric reachability analysis: “find all parameter val-

uations such that some state is reachable”

e parametric robustness analysis: “given a parameter val-
uation v, find other valuations for which the discrete
(untimed) behavior is the same as v”

o behavioral cartography: “find all parametric subspaces in
which the discrete behavior is uniform”.

IMITATOR extends PTA with some useful constructions,
such as constants, global discrete integer variables, strong
broadcast synchronization between components, and stop-
watches (i.e., the power of stopping some clocks in some
locations).

The input syntax of IMITATOR is a text file, which makes
it possible to write models either manually or using scripts
(e.g., for large models derived from another formalism). For
example, in the past several parametric schedulability analysis
models were generated automatically using scripts.

III. A BRIEF DESCRIPTION OF THE SYSTEM

We only briefly recall the systems and the challenges; the
full description is available at the workshop Web page.

A. Challenge 1

There are four tasks T1, T2, T3 and T4, distributed in differ-
ent processing units and performing respective functionalities.
The task T1 periodically receives frames from the camera
and pre-processes them. Task T2 embeds further tracking
information into the video frame pre-processes by Task TI.
Task T2 then inserts the video frame into a register, denoted as
Register23. Then Task T3 reads the frame from the register,
removes the noise and tries to put the resulting video frame
into a buffer, denoted as Buffer34. In the end, Task T4 reads
frames from the buffer, converts them from digital to analogue
and sends the final frame to the display.

Tasks T1, T3 and T4 are periodic, but their triggering clocks
are subject to drift. That is, their periods Py, P3 and Py
are unknown constants. More specifically, P; € [40 — 40 x
0.01%,40 + 40 x 0.01%]ms, P3 € [42 — 40 x 0.05%, 2 +
40 % 0.05%), and P4 € [40—40 x 0.01%, 40+ 40 x 0.01%]ms.
Task T2 is triggered by the completion of T1.

Each task has its Best-Case and Worst-Case Execution Time
(BCET and WCET) or Latency (BCL and WCL): BCET; =

WCET; = 28ms, BCLy; = 17ms, WCLy = 19ms, BCET3 =
WCET53 = 8ms. As for task T4, when it reads Buffer34 and
there is no frame within the buffer, it performs an empty cycle
with execution 1ms; otherwise, it executes 10ms and sends the
result to display.

For such a video frame processing subsystem, we aim to
tackle the following challenges.

Challenge 1A:

Compute the minimum and maximum latencies for a given frame
from the camera output to the display input, for a buffer size
n = 1 (challenge 1A.1) and n = 3 (challenge 1A.3).

Given the difficulty of Challenge 1A, we will focus on
deriving the lower bound and upper bound of the end-to-end
latency.

Challenge 1B:

Due to the different clock drifts, all frames with a same index
may be discarded at the entrance of the buffer at the input of
the task T4. Compute the minimum time distance between two
frames produced by the camera that will not reach the display, for
a buffer size n = 1 (challenge 1B.1) and n = 3 (challenge 1B.3).

B. Challenge 2

The complete system also includes a camera tracking
subsystem that identifies objects on the camera images and
commands the camera motors so to follow the objects. This
subsystem consists of 3 additional tasks: Task T6 is a periodic
task with period Pg = 100 and it can start with a certain jitter
Js. Task TS5 is activated by Task T6 with a synchronous call.
Task T7 is activates asynchronously by Task T6 and controls
the motors. Task T6 execution time is: Cs; = 4ms before
invoking Task T5; Cgs 2 € [9,10] ms after the completion of
Task T5 and before the invocation of Task T7; Cs 3 € [4, 5]
ms after the invocation to Task T7. Task TS5 has an execution
time of C5 € [4,7] ms. Task T7 has an execution time of
C7 € [11,14] ms. All tasks execute on the same processor
together with Task T2 (described in the first challenge), and
they are scheduled by a fixed priority scheduler. Task T2 has
a computation time of Cy = 17ms. Finally, task priorities are
assigned so that T2 > T6 > TS5 > T7.

Challenge 2A:

1) Compute the best and worst-case end-to-end latencies from the
activation of Task T6 to the completion of Task T7 when Jg = 0.
2) Compute the best and worst-case end-to-end latencies when
Je = 20ms.

Challenge 2B:

Tasks T2 and T5 have access to a shared mutually exclusive
resource protected by the priority ceiling protocol. The access
to the shared resource takes 2ms for both tasks. 1) Compute the
best-case and worst-case end-to- end latencies from activation of
T6 to termination of T7 for a jitter value Js = Oms 2) compute
the best-case and worst-case end-to-end latencies from activation
of T6 to termination of T7 for a jitter value Jg = 20ms. 3) The
optimum priority assignment minimizing the worst-case latency
for a jitter value Js = Oms and Js = 20ms.

IV. SOLVING CHALLENGE 1A UsING IMITATOR

In this part, we formally solve the challenge using PTA. At
first, we will solve the case with n = 1 for Buffer34. The

ckT1T2 = WCET,

buffers 4 := 1
highests 4 :=1

ckT1T2 = WCET,

frame_in_3 := 0 frame_in_3 := 2

ckT1T2 = WCET;

rego 3 =0 ||rego 3 :=3

ckT1T2 = WCET,

WCET; + WCLy > ckT1T2

ckT1T2 > WCET; + BCL2
registers 3 := target

T1T2done

(a) PTA cameraT1T2

= ckT4

buffers 4+ = = ckT4
A)_u, f,l‘_gf 0 A buffers 4 > 0
ckT4:=0
ckT4:=0
' read_by_T4()
[> ckT4] 10 = ckT4
A

frame_in_4 # target

T4process_nonempty

WCET3 > ckT3

ocess WCET3 > ckT3

WCET;3
_ = (bufferz 4 >0
. kT3 ||
kT3 :
b Abufferz 4 =0 bufferz 4 = 0
kT3 = 0 Aframe_in_3 > Ahighests 4 > frame_in_3)
frame. in_3 highests 4 A ckT3 = WCET3
= ree2;s write_by_T3()
[> ckT3

(b) PTA T3

10 = ckT4 A frame_in_4 = target

AckT1T2 = E2E
> T4end_ok

ckT4:=0

10 > ckT4

(c) PTA T4

Fig. 1: Modeling the system of Challenge 1A for n =1

corresponding PTA model is shown in Figure Fig. 1. Later,
we show how to adapt this model to a larger buffer.

Experimental environment: We used the latest version of
IMITATOR (v2.7-beta2, build 1073) with no specific modifica-
tion of the tool. We just used a small Python script to parse the
long list of intervals that IMITATOR outputs, and to produce a
single minimum and maximum. The latest version (2.9) of the
tool automatically does this, and the Python script is therefore
not needed anymore. Sources, binary and models are available
at [XP].

A. Camera, Task T1, Task T2

In order to reduce the state space, we model the camera,
Task T1 and Task T2 into a single PTA (Fig. 1a). We also use
this PTA to non-deterministically initialize the buffer and the
frame currently processed by Task T4.

We choose an arbitrary frame with index target for end-
to-end latency estimation and we start from the exact point

such that the target frame is handled from Task T1 to task T2.
A clock ckT1T?2 is initialised to be WCET; and measures
the end-to-end latency of target frame. Discrete variables
frame_in_3 and frame_in_4 represent the index of frames
in Task 3 and Task 4 respectively. The value O is used to
denote that there is no frame in a task. regs 3 and buffers 4
are for frames within Register23 and Buffer34. While we
assume frame index in the system is monotonically increased,
highests 4 denotes the highest frame index among frames
having been stored inside the buffer. For the register, buffer
and Task 3, they may or may not initially contain a frame.

We do not model the period of the camera (or task 1), since
we are only interested in a single frame. Let us now model
the buffer. IMITATOR does not support other kinds of global
variables than discrete integer variables. For a buffer with one
slot (n = 1), its status can be modeled by using two discrete
variables buffers 4 and highests 4.

o buffers 4 denotes the index of current frame inside
Buffer34;
o highests 4 is the highest index recorded so far.

B. Task T3

The period of Task T3 is a parameter P3_uncertain, that
is initialised as follows:

P3_uncertain € [40 — P3_delta, 40 + P3_delta]
where P3_delta = 0,05 % x 40 = 1£;. Recall that parameters
in PTA are unknown constants, i.e., the value of which cannot
evolve during the execution; this is exactly what we need to
model P3_uncertain.

Task T3 is modeled by a periodic PTA in Fig. 1b. ckT3 is a
clock variable for recording task 3’s activation and execution.
At the initial point, the PTA T3 is non-deterministically
waiting for a new activation or executing. When T3 finishes
execution, it writes into Buffer34 if the buffer is empty and
its current frame has not been put into the buffer. We define
a function call for this writing operation write_by_T3():

buffers 4 := highests 4 := frame_in_3

IMITATOR does not support function call in a model; here
we still utilise the notation of function call for simplicity.
Otherwise, task 3’s writing fails. As shown in PTA T3, we
utilise the operator ”||” (“or”) in the edge representing writing
failure. Again, this is for saving some space.

C. Task T4

We use here a modeling mechanism similar to Task T3.
The period of Task T4 is a parameter P4_uncertain, that is
initialised as follows:

P4_uncertain € [40 — P4_delta, 40 + P4_delta]

where P4_delta = 0,01 % x P4 = 0.004.

Task T4 is modeled by a periodic PTA as in Fig. 1c. A
clock variable ckT4 is used for task 4’s periodic activation
and execution. When T4 activates, If the buffer is empty, T4
goes directly back to another waiting cycle. According to the
system specification, there should an empty processing session
for task 4. However, such an empty processing does not affect
the end-to-end latency of any frame, and we omit it in PTA
T4. If the buffer is not empty, task 4 reads a frame from the
buffer by the function call read_by_T4():

frame_in_4 := buffers 4, buffers 4 :== 0

Task T4 takes 10ms to process a frame, after the processing,
if its current frame is the target one, ckT4 is reset and T4
moves to an ending location. E2E > 0 is the parameter
for representing all possible end-to-end latencies of the target
frame.

D. Deriving the Latency for n =1

As we have seen, in order to avoid exploring the exact
configurations in the system, we target a single frame (which
explains the non-cyclic behavior of the PTA modeling the
camera, tasks 1 and 2) that is output from the task 1 at
t = WCET;. The main idea is that, at t = WCET}, the initial
state must be arbitrary, i.e., encode all possible configurations
that could happen in the system. However, such a model
may be pessimistic for containing behaviors that cannot really
happen in the system. Again, we aim to derive upper and lower
bounds on end-to-end latency of an arbitrary frame.

After developing the model, we use IMITATOR to perform
parametric reachability analysis of location T4end_ok, that is
we ask IMITATOR to return all parameter valuations such
that T4end_ok is reachable. Then, IMITATOR hides (using
existential quantification) all parameters except E2E, and then
returns a list of intervals for E2E. After some post-processing
to unify intervals, we get

E2E € [63, 145.008].

E. Deriving the Latency for n = 3

For the case of n = 3 for Buffer34, we can keep the same
IMITATOR model, with the exception of the buffer modeling.
We assume that access to elements in the buffer follows a
FIFO manner.

Let us model Buffer34 for n = 3: besides the vari-
able highests 4, we need 3 more discrete variables for
frames within each slot in the buffer: buffer; 4, buffer , and
buﬁer%A. When non-deterministically initializing the buffer,
we need to take into account all possible scenarios of frame
occupation within it. When T3 writes into the buffer, it needs
to find the first free position (say xth); thus the writing call
becomes write_by_T3():

buffer , := highests 4 := frame_in_3.

Similarly, for T4 to read from the buffer, we call the adapted
function read_by_T4():

frame_in_4 := bufferé’ 4
Vo € {1,2} buffer , := buﬁergzl
buffergA =0

Note that the buffer status is also updated by the reading
operation such that the first slot always contains the oldest
frame.

Then, we can apply parametric analysis on the model for
n = 3 using IMITATOR. A projection of all possible values
to parameter E2E gives the following result:

E2E € [63,225.016].

Finally, we conclude results for Challenge 1A in Table I.

Buffer34 size | min E2E max E2E
n=1 63 ms 145.008 ms
n=3 63 ms 225.016 ms

TABLE I: E2E latency results for Challenge 1A

V. SOLUTION TO CHALLENGE 1B

Due to the page limit, please refer to our solutions [ALS15]
to the WATERS 2015 industrial challenge for more details.

VI. SOLUTION TO CHALLENGE 2
A. Schedulability analysis

For Challenge 2A, when it goes to maximum end-to-end
latency, we could employ the critical instant property [LL73],
[LSAF14] to compute it. That is, the maximum latency hap-
pens such that

o TS5, T6 and T7 always execute by their worst-case.
o T6 starts to execute coincidently with a release of T2.

We assume the period of T2 is exactly equal to Py = 40ms;
Then, we obtain the maximum latency 74ms for J6 = 0 and
74 + 20 = 94ms for J6 = 20ms. Notice that they are both
inferior to Pg, so there is no possibility that a new instance
of T6 starts before the last instance of T7 completes. Possible
variations in the period of T2 do not have any impact on the
estimated end-to-end latency.

As for the minimum latency, a first intuition is that T3,
T6 and T7 should execute by their best-case, so we compute
4444+94+4+11=32ms.

o If the initial offset between T2 and T6 is larger than 32ms,
then the minimum latency is indeed 32ms.

o Otherwise, T2 preempts the execution of T5-T7 at least
once, and the minimum latency would be 32+17 = 49m:s.

Therefore, we conclude that the latency of the chain T5-T7
is within [49, 94].

In Challenge 2B, a mutually exclusive resource is shared
between TS5 and T2. In this case the minimum and maximum
latencies do not change, whereas task T2 could suffer for a
delay of 2 in accessing the shared resource, so its response
time will vary in [17,19].

If we have the freedom to manipulate priorities we can
further reduce the end-to-end latency. T2 is part of the chain
for video frame processing, and to avoid interfering the
verification result in Challenge 1, we still assume that T2 has
higher priority than T5, T6 and T7. We can re-arrange the
priorities among TS5, T6 and T7 as TS > T7 > T6, and the
worst-case latency becomes 69ms for J6 = 0 and 89ms for
J6 = 20ms. It is not difficult to see that this is the optimum
priority assignment by enumeration.

B. PTA model for Challenge 2

We modeled the system following the scheduling framework
for PTA proposed in [LSAF14]. We do not report here the
full model for lack of space, it can be found at [XP]. We just
summarize the main points.

o The scheduler is modeled as a separate automaton, gen-
erated automatically from the priority ordering, and it
interacts with the task automata using synchronization.

o Initial task offsets are modeled as non-deterministic
choices: the period of T6 is pg € [0,Pg — 32], whereas
the period of T2 is po € [0, P2 — 17].

o An observer automaton measures the end-to-end latency
with a clock. Maximum and minimum latencies are
modeled as parameters, exactly in the same way as the
model developed for Challenge 1A.

In the end, we report the results for Challenge 2 in Table II.

As we discussed, the existence of a shared resource between
T5 and T6 does not affect the latency for the chain T5-T7.

min latency | max latency

J6 =0 ms 49 ms 74 ms

J6 = 20 ms 49 ms 94 ms
(a) The min/max latency

[T2>T5>T7>T6 |
max latency

J6 =0 ms 69 ms
J6 =20 ms 89 ms

(b) The optimal priority assignment

TABLE II: Results for Challenge 2

C. The weakly hard analysis for Challenge 2

This part contains the improvement in our new solutions
with respect to [ALS15]. Regarding the optimal priority
assignment, the scheme in Section VI-A has to maintain
that task T2 is assigned the highest priority, otherwise, T2
cannot be guaranteed to complete the execution before its
next activation, which indicates the violation of the (implicit)
temporal constraint. Different from the previous solution, this
time we respect the optimal priority assignment scheme that
minimizes the end-to-end latency for Challenge 2: T5 > T7 >
T6 > T2. Instead, we are going to formally analyze how often
T2 violates its temporal constraint, and this is the so called
weakly hard analysis.

The weakly hard analysis of a task is also named m-K
analysis, which in principle aims to check if there will be more
than m temporal violations out of arbitrarily K consecutive
activations of a task.

Three kinds of the weakly hard analysis exist. [BBLO1] is
the first work that studies the m-K model, however, it relies
on the explicit system initial status (i.e., the first release time
of every task is predefined) and the periodicity of a periodic
task system for the weakly hard analysis. More recent works
based on the typical worst-case scenario [QHE12] break the
limitation on predefined initial task release times, and they are
eligible for weakly hard analysis of systems in the case of the
occasional sporadic workload.

Both the two approaches above do not fit into Challenge 2,
as it is a periodic system with unknown task release times
and there is no sporadic workload. Instead, we apply the tool

Weakly-hard Schedulability Analyzer (WSA) [WSA], which
implements latest results for the m-K analysis. Different from
other methods,

o WSA is able to conduct weakly hard analysis on general
periodic systems, even when initial task release times are
unknown;

o it supports tasks with release jitters;

o it supports the resource sharing, e.g., the use of Priority
Ceiling Protocol (PCP) [SRLI0];

o its analysis is based on Mixed Integer Linear Program-
ming, and is compatible with parametric task configura-
tions (like the period of task T2).

Finally, for the weakly hard analysis of task T2, we abstract
TS5, T6 and T7 into a single task T6’ that has period 100ms,
best-case execution time 32ms, worst-case execution time
40ms and a jitter value = j (Oms or 20ms). T6’ has a higher
priority than T2. By applying WSA to T2, the weakly hard
analysis results obtained are in Table III, where we list the
maximum number (m*) of temporal violations of T2, within
an arbitrary sequence of K its activations. In this particular
case, the jitter value does not change the weakly analysis
result.

m* | K
1 2
2 5
4 110
6 |15

TABLE III: The weakly hard analysis results of Challenge 2

According to the results in Table III, there will be at most
2 temporal violations for T2 every 5 its activations and this
figure is consistent with the result when K = 10 and 15. Also
note that, in Table III, when K = 2, m* = 1. This implies
that there will be never two consecutive temporal violations
that happen in a row.

VII. CONCLUSION

We proposed solutions, using formal methods based on
PTA, to the consolidated version of the WATERS 2015 in-
dustrial challenge. Thanks to their expressiveness, PTA are
especially convenient for modeling systems that contain some
unknown but constant configurations. Challenges 1A and 1B
were the most difficult, so we only provided upper bounds on
results for them. The high complexity is mainly due to the
large hyperperiods, therefore a complete model is intractable.
We spent about one week for studying the problem and provide
a model that could converge in a decent time.

IMITATOR is the software tool we rely on for performing
parametric analysis. IMITATOR turned out to be particularly
well-suited for the analysis of such systems with period
constants but with some (unknown) imprecision.

Conversely, Challenge 2 is a scheduling problem, whose
solution can be obtained quickly using schedulability analysis
methods. The solution has been validated by a formal model

based on PTA that took half a day to be built using the
framework developed in [LSAF14], and only a few seconds
to converge.

We further apply the weakly hard analysis tool WSA to
evaluate the frequency of temporal violations that appear in
Challenge 2, which helps elaborate more design choices for
the system.

REFERENCES

Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183-235, 1994.

Etienne André, Laurent Fribourg, Ulrich Kiihne, and Romain
Soulat. IMITATOR 2.5: A tool for analyzing robustness in
scheduling problems. In FM, volume 7436 of Lecture Notes in
Computer Science, pages 33-36. Springer, 2012.

Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Para-
metric real-time reasoning. In S. Rao Kosaraju, David S. Johnson,
and Alok Aggarwal, editors, STOC, pages 592-601. ACM, 1993.
Etienne André, Giuseppe Lipari, and Youcheng Sun. Verification
of two real-time systems using parametric timed automata. In
WATERS, 2015.

Etienne André. What's decidable about parametric timed au-
tomata? In FTSCS 2015, volume 596 of Communications in
Computer and Information Science, pages 52—68. Springer, 2016.
Etienne André and Romain Soulat. The Inverse Method. FOCUS
Series in Computer Engineering and Information Technology.
ISTE Ltd and John Wiley & Sons Inc., 2013.

Guillem Bernat, Alan Burns, and Albert Liamosi. Weakly hard
real-time systems. Computers, IEEE Transactions on, 50(4):308—
321, 2001.

Nikola Benes, Peter Bezd¢€k, Kim G. Larsen, and Jifi Srba. Lan-
guage emptiness of continuous-time parametric timed automata.
In ICALP, Part II, volume 9135 of Lecture Notes in Computer
Science. Springer, July 2015. To appear.

Laura Bozzelli and Salvatore La Torre. Decision problems for
lower/upper bound parametric timed automata. Formal Methods
in System Design, 35(2):121-151, 2009.

Daniel Bundala and Joé€l Ouaknine. Advances in parametric real-
time reasoning. In MFCS, volume 8634 of Lecture Notes in
Computer Science, pages 123—134. Springer, 2014.

[HRSVO02] Thomas Hune, Judi Romijn, Mari€lle Stoelinga, and Frits W.
Vaandrager. Linear parametric model checking of timed automata.
Journal of Logic and Algebraic Programming, 52-53:183-220,
2002.

Aleksandra Jovanovié, Didier Lime, and Olivier H. Roux. Integer
parameter synthesis for timed automata. [EEE Transactions on
Software Engineering, 41(5):445-461, 2015.

C. L. Liu and James Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the
ACM, 20(1):46-61, 1973.

Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL
in a nutshell. International Journal on Software Tools for
Technology Transfer, 1(1-2):134-152, 1997.

Giuseppe Lipari, Youcheng Sun, Etienne André, and Laurent
Fribourg. Toward parametric timed interfaces for real-time
components. In SynCoP, volume 145 of Electronic Proceedings
in Theoretical Computer Science, pages 49-64, 2014.

Sophie Quinton, Matthias Hanke, and Rolf Ernst. Formal analysis
of sporadic overload in real-time systems. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2012, pages
515-520. IEEE, 2012.

Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards
flexible verification under fairness. In CAV, volume 5643 of
Lecture Notes in Computer Science, pages 709-714. Springer,
2009.

Lui Sha, Ragunathan Rajkumar, and John P Lehoczky. Priority
inheritance protocols: An approach to real-time synchronization.
IEEE Transactions on computers, 39(9):1175-1185, 1990.
Weakly-hard Schedulability Analyzer (WSA). https://sites.google.
com/site/theyoucheng/wsa.

Experiments. http://www.imitator.fr/static/FMTV15.

[ADY4]

[AFKS12]

[AHV93]

[ALS15]

[And16]

[AS13]

[BBLO1]

[BBLS15]

[BLO9]

[BO14]

[JLR15]

[LL73]

[LPY97]

[LSAF14]

[QHEI2]

[SLDP09]

[SRL90]

[WSA]

[XP]

https://sites.google.com/site/theyoucheng/wsa
https://sites.google.com/site/theyoucheng/wsa
http://www.imitator.fr/static/FMTV15

	I Introduction
	II Parametric Timed Automata
	III A Brief Description of the System
	III-A Challenge 1
	III-B Challenge 2

	IV Solving Challenge 1A Using IMITATOR
	IV-A Camera, Task T1, Task T2
	IV-B Task T3
	IV-C Task T4
	IV-D Deriving the Latency for n=1
	IV-E Deriving the Latency for n=3

	V Solution to Challenge 1B
	VI Solution to Challenge 2
	VI-A Schedulability analysis
	VI-B PTA model for Challenge 2
	VI-C The weakly hard analysis for Challenge 2

	VII Conclusion
	References

