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Abstract—This paper presents two different approaches for 

verifying the timing properties of the industrial use cases 
proposed as two challenges by WATERS’2015. The system under 
study is an aerial video system which contains two parts, a 
multiprocessor system and a uni-processor multitasking system. 
A timed automata model is constructed for each subsystem with 
the model checker UPPAAL. The symbolic model checking and 
statistical model checking functions of UPPAAL are applied to 
verify the models. Each of the models is modular, reusable and 
extensible, and can act as a general modeling framework for 
analyzing a type of systems. 
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I.  INTRODUCTION 
Real-time systems are widely applied in critical areas such 

as aerospace and aviation. The designers of a real-time system 
have to assure that the system can satisfy its real-time 
requirements before it is deployed. However, to verify such 
systems' timing properties is difficult due to the randomness in 
the behavior of such systems and their operation environment. 
A recent trend is to apply formal methods, especially model 
checking which features fully automated tools, to conduct 
timing verification.  

This paper presents our approaches to the timing 
verification of two types of real-time systems in an industrial 
case. The system under study, proposed as a challenge by 
WATERS’2015, is an aerial video system which detects and 
tracks a moving object. The system comprises two subsystems: 
a multiprocessor system for video frame processing (called 
Video subsystem in the sequel), and a uni-processor 
multitasking system for tracking and camera control (called 
Tracking subsystem in the sequel). The latencies of the two 
subsystems are to be computed, respectively. 

We construct a timed automata model for each subsystem, 
and apply the symbolic model checking and statistical model 
checking functions of UPPAAL [1, 2] to compute the desired 
values. The model for the Video subsystem captures a 
multiprocessor system which processes an infinite data flow. 
The model for the Tracking subsystem describes a 
multitasking system running on a real-time operating system. 
Each of the models is modular, reusable and extensible, and 
can act as a general modeling framework for analyzing a type 
of systems. 

II. CHALLENGE 1: THE VIDEO SUBSYSTEM 

A. The Video Subsystem  
The Video subsystem comprises four tasks T1~T4, which 

process the frame flow produced by a camera and outputs the 
frames to a display. The timing behavior and functions of the 
tasks are summarized in Table 1. The time unit is microsecond 
throughout this section except given otherwise.  

TABLE 1 TASKS IN THE VIDEO SUBSYSTEM 

Question 1: To compute the min/max latency for a given 
frame from the camera output to the display input, for a buffer 
size n = 1 or 3.  

Question 2: To compute the minimum time distance 
between two frames produced by the camera that will not 
reach the display, for a buffer size n = 1 or 3.  

B. Model of the Video Subsystem 
The model comprises two parts: A system-description part 

consists of seven automata: PeriodGen, Camera, T1, T2, T3, 
Buffer and T4. A verification-supplement part consists of two 
automata LatencyBuffer and Monitor, which record the 
frames' latencies and lost frames, respectively.  

1) Latency Buffer 
We define an array flowLatency[] of clock variables as a 

FIFO (First-In-First-Out) buffer to track the latency of each 
frame under processing, and an array latencyTiming[] of 
boolean variables as the stopwatches to control the clocks in 
flowLatency[]. A stopwatch is the derivative of a clock. 
Setting a stopwatch to 1 (or 0) starts (or stops) the 
corresponding clock. Since a frame may be discarded by the 
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buffer hence cannot reach the display, such frames should be 
excluded when calculating the min/max latency. We define 
another clock-stopwatch pair of arrays, reachLatency[] and 
reachTiming[], to record the latency of those frames that 
finally reaches the display. The relationship between the 
clocks and stopwatches is specified in the following formula:  

 
The length of the four arrays, denoted by an integer 

constant WindowSize, should be the maximum number of 
frames under processing at the same time. Whether the value 
of WindowSize is properly set will be confirmed in the 
verification of the model. 

   
Figure 1 LatencyBuffer 

The two pairs of clock-stopwatch arrays are maintained by 
the automaton LatencyBuffer shown in Figure 1, and 
manipulated in the following four occasions: 

(A) Frame produced: When a frame is produced by the 
camera, it is associated with the clock at the tail of 
flowLatency[]. Then the frame can be referred to 
by the clock's index in flowLatency[]. 

(B) Frame reaches T4: A frame cannot arrive the display 
if and only if it is discarded by the buffer. When a 
frame is retrieved from the buffer by T4, which 
means it can finally arrive at the display, a clock in 
reachLatency[] is started.  

(C) Frame output: On receiving a message finish?, which 
indicates that T4 finishes its processing of a frame, 
the clocks for the frame are cleared and stopped.  

(D) Frame lost: On receiving a message lost?, which 
means that a frame-loss is detected, the associated 
clock in flowLatency[] is cleared and stopped.  

2) Period Generator  

 
Figure 2 PeriodGen 

The periods of the camera, T3 and T4 are constant 
throughout the running of the system, but their specific values 
are only known to be within their respective ranges. At the 
beginning of the model's execution, the automaton PeriodGen 

in Figure 2 chooses the periods. Note that all the periods are 
multiplied by a factor MUL = 3 so that T3' period can be 
expressed as an integer. We assume that all the tasks' offset is 
0, i.e. all tasks are started simultaneously.  

3) Camera 

  
Figure 3 Camera 

The automaton Camera in Figure 3 simulates the camera' 
periodical producing of frames. The automaton also notifies 
the frame's producing to the automata T1, LatencyBuffer and 
Monitor through synchronization messages.  

4) T1 and T2 
The two automata in Figure 4 simulate the two tasks T1 

and T2, respectively. Each of them is triggered by the arrival 
of a frame, and outputs the frame after processing it. T2 sends 
its output to a 1-size register. A variable registerFrameIndex 
represents the index of the frame in the register .  

  
Figure 4 (A) T1   (B) T2 

5) Task T3 

 
Figure 5 T3 

The automaton in Figure 5 models the task T3, which 
reads the register with a period of 40/3 ms. If the register is 
empty, T3 finishes immediately. Otherwise, T3 processes the 
frame in 8 ms and sends it to a buffer.  

6) Buffer 
A FIFO buffer receives the output of T3, and is 

destructively read by the task T4. The buffer is implemented 
as an array bufferContent[] plus an automaton Buffer. 
bufferContent[] records the indexes of the frames in the buffer. 
We define a C function add() to write a new index to the tail 
of bufferContent[], and pull() to retrieve the head. The 
automaton Buffer tells whether an incoming frame can be 
accepted:  

a) If the frame is new but the buffer is full, the frame is 
discarded.  

b) If the frame is duplicate,  it is ignored. 

forall(i: frameIndex_t) flowLatency[i]'== latencyTiming[i] && 
forall(i: frameIndex_t) reachLatency[i]'== reachTiming[i] 



c) If the frame is new and the buffer is not full, the 
frame enters the buffer. 

But what does duplicate mean? The description of the 
buffer1

(I) A frame with ID N has been in the buffer, no matter 
whether it has been read or not. 

 in Challenge 1 can be interpreted it in two ways: a 
incoming frame with ID N is regarded as duplicate, if: 

(II) A frame with ID N is in the buffer.  

 
(A) Smart Buffer   (B) Normal Buffer 

Figure 6 Buffer 

The automaton of Figure 6 (A) implements (I), where the 
function duplicate() tells whether the incoming frame's index 
is the same as the last stored frame. This buffer is called Smart 
Buffer because it maintains a history of the last frame, no 
matter whether the frame has left or not. After receiving a 
message T3Data2Buffer?, the automaton takes one of the three 
transitions from Process to Start, which represents the three 
cases (a)~(c), respectively. The automaton Normal Buffer 
shown in Figure 6 (B)  implements (II), where the function 
duplicateUnread() tells whether the incoming frame is the 
same as the latest frame in the buffer.  

The difference between the two types of buffer is: at most 
one copy of a frame can enter the Smart Buffer, while two 
copies of a frame may enter the Normal Buffer as long as the 
second copy's arrival is after the first copy's leaving. 

7) Task T4 

 
Figure 7 T4 

The task T4 reads the buffer periodically. T4 spends 
10,000 to process a frame, and 1,000 if there is no frame. The 
function pullBuffer() in Figure 7 destructively reads a frame 
from bufferContent[]. When T4 finishes processing of a frame, 
a message finish! is sent to the automaton LatencyBuffer.  

                                                           
1 "For each frame index value, only one single frame can be stored in the buffer. If 
the buffer has already stored a frame with a given index, any additional received 
frame with the same index is discarded."  

In addition, the automaton T4 detects frame-losses. If the 
frame T4 has just read is neither same nor successive to the 
last one it processed, the frame between the last frame and the 
incoming frame is detected to be lost, and T4 sends a lost! 
message. The variable lostIndex records the lost frame's index. 

8) Monitor 

 
Figure 8 Monitor 

The automaton Monitor shown in Figure 8 records the 
frame's ID, when receiving a frameCount? message from 
Camera. The number and distance of the lost frames are 
recorded when a lost? message is received.  

C. Verification 
For abbreviation, Pi denotes the period of the camera or 

task Ti ; Vi denotes the variance scope of Pi; Vi
Max/Vi

Min 
denotes the max/min value in Vi; L(N) denotes the latency of 
the Nth frame; LMax/Min denotes the max/min latency. The 
model is verified with UPPAAL 4.4.18, and the hardware 
configuration is Intel(R) Core(TM) i7-3520M CPU 2.90 GHZ 
and 8GB RAM.  

The frames' latency and frame loss depend on the period of 
the task. When PC = P4 = 40 ms, P3 = 40/3 ms, the tasks run 
under synchronization, no frame will be lost. With the Smart 
Buffer, LMin = LMax = 90 ms. With the Normal Buffer, LMin = 
L(1) = 90 ms, LMax = L(N) = 130 ms, N>1.  

To calculate the min/max latency and frame loss with other 
settings of the task periods, the following extreme cases are 
investigated. 

1) Latency Decreases 
When PC = VC

Max = 40,000 + 4, P4 = V4
Min = 40,000 - 4, 

each frame's latency decreases successively, hence the min 
latency of the system may happen. For this special case, the 
automaton in Figure 2 is replaced with the one in Figure 9, 
where Delta = 4. 

 

Figure 9 PeriodGen_latencyDec 

The min latency is obtained by analysis or observed from 
the simulation plots of the query (1). The max latency is 
computed with the query (2), which applies statistical model 
checking. The statistical parameters are set by default. Note 
that symbolic model checking is inapplicable, because the 
model has an infinite state space without the tasks' 
synchronization. Table 2 summarizes the min/max latency and 



the computation cost, including the peak (resident and virtual) 
memory usage and time usage for UPPAAL to compute an 
query.  

 

TABLE 2 MIN/MAX LATENCY AND COMPUTATION COST ON THE QUERY (2) (PC 
= VC

Max, P4 = V4
Min, P3∈V3)  

Buffer type Smart  Normal  

Buffer Size 1 or 3 1  3 

Latency  L(1)  89,984 89,984 89,984 

L(2)   89,976 129,972 129,972 

LMin 63 89,984 89,984 

LMax 113,585 137,554 137,811 

Memory  Res 7 9 10 

Virt 31 35 36 

Comp. time (s) 272 320 398 

 

 
Given the queries (3), (4) and (5), statistical model 

checking is applied to computing the number of frame losses, 
the distance between the lost frames' IDs and the first lost 
frame's ID, respectively. Table 3 summarizes the verification 
results and the computation cost. The verification result shows 
that frame loss only occurs with 1-size Normal Buffer.  

TABLE 3 FRAME LOSS AND COMPUTATION COST ON THE QUERY (3) (PC = 
VC

Max, P4 = V4
Min, P3∈V3) 

  Buffer type Smart Normal  
Buffer Size 1 or 3 1 3 
Loss Count 0 82.95 0 
1st lost frame ID / 3403 / 
Min Distance / 3201.66 / 
Memory 
(MB) 

Resident 8 9 8 
Virtual 32 33 31 

Comp. time (s) 389 372 357 
2) Latency Increases  
When PC = VC

Min = 40,000 - 4, P4 = V4
Max = 40,000 + 4, 

each frame's latency increases by 8 successively, hence the 
max latency of the system may happen. For this special case, 
we replace the automaton in Figure 2 with the one in Figure 9.  

 

Figure 10 PeriodGen_latencyInc 

The simulation plots show that the first frame has the min 
latency 90,016. The max latency is computed with the query 
(2), and the verification results are summarized in Table 4. 

TABLE 4 MIN/MAX LATENCY AND COMPUTATION COST ON THE QUERY (2) (PC 
= VC

Min, P4 = V4
Max, P3∈V3) 

Buffer type Smart  Normal  

Buffer Size 1  3 1  3 

Latency LMin  90,016 90,016 90,016 90,016 

L(2) 90,024 90,024 130,028 130,028 

LMax 135,505 212,114 139,190 214,087 

Memory 
(MB) 

Res  7 8 9 9 

Virt  31 32 33 34 

Comp. time (s) 397 472 375 509 

Table 5 summarizes the verification results on frame loss 
and the computation cost.  

TABLE 5 FRAME LOSS AND COMPUTATION COST ON THE QUERY (3) (PC = VC
Min, 

P4 = V4
Max, P3∈V3) 

  Buffer type Smart Normal  
Buffer Size 1 3 1 3 
Loss Count 3 1 180.82 2 
1st lost frame ID 5712.14 15581.5 917.62 10740.1 
Min Distance 4631.96 / 301.88 4952.01 
Memory 
(MB) 

Res 8 9 9 10 
Virt 31 33 35 37 

Comp. time (s) 329 502 360 497 
3) Summary  

TABLE 6 MIN AND MAX LATENCY IN ALL CASES 
Buffer type Smart   Normal   

Buffer Size 1  3 1 3 

Latency  Min 63 63 89,984 89,984 

Max  135,505 212,114 139,190 214,087 

Table 6 summarizes the max/min latency with the Smart 
Buffer and the Normal Buffer.  

III. CHANLLENGE 2: THE TRACKING SUBSYSTEM 

A. The Tracking Subsystem  
TABLE 7 TASKS IN THE TRACKING SUBSYSTEM 

Task Period / Trigger Functions  
T2PR 40 +/- 0.01% (ms) Processing 
T6TC 100 (jitter=20) (ms) Tracking control 
T5TP Called by T6 Target position prediction 
T7CC Called by T6  Camera control 

The Tracking subsystem is a concurrent multitasking 
system which comprises three tasks: T6, T5 and T7. The three 
tasks are mapped to a CPU together with T2, one of the tasks 
in the Video subsystem. Table 7 summarizes the periods/ 
triggers and functions of the four tasks, where the tasks are 
listed by their priorities in a descending order. T2PR and T5TP 

E[<=2000000000; 100] (max: Monitor.lostCount)               (3) 
E[<=2,000,000,000; 100] (min: Monitor.lostIdDistance)     (4) 
E[<=2,000,000,000; 100] (max: Monitor.firstLostID)            (5) 

simulate 1 [<=2,000,000,000] { reachLatency[i] }             (1) 
E[<=2,000,000,000;  100] (max: reachLatency[i] )            (2)                



have access to a shared resource. The access to the shared 
resource takes 2ms for each task. 

Question 1: To compute the best-case and worst-case end-
to-end latencies from activation of T6 to termination of T7 for 
a jitter value j = 0 or 20 ms.   

Question 2: To compute the optimum priority assignment 
minimizing the worst-case latency for a jitter value j = 0 or 20 
ms. 

B. Model of the Tracking Subsystem  
 Our approach to the timing verification of the Tracking 

subsystem is inspired by the schedulability analysis approach 
proposed by the UPPAAL team [3]. The model of the 
Tracking subsystem consists of an automaton for the scheduler, 
an automaton for the idle task, and a template for periodic 
tasks.  

1) RTOS 

 
Figure 11 Scheduler 

  

Figure 12 IdleTask 

To exhibit the parallel running of the multiple tasks, the 
model has to describe how the RTOS schedules the tasks. The 
automaton for the CPU scheduler is shown in Figure 11. The 
function main()  assigns initial priorities to all tasks according 
to their IDs. An array taskqueue represents the queue of ready 
tasks. The task queue is manipulated by the functions poll() 
and add(): poll() destructively read the head of the queue, and 
add() adds a task to the queue and sorts the queue by the tasks' 
priorities to a descending order. A variable ctask denotes the 
ID of the current running task.  

When the task queue is empty, an idle task, whose priority 
is 0 (the lowest) and ID is 0, runs on the CPU. The automaton 
IdleTask is shown in Figure 12. The idle task runs before any 
task gets ready. After some time, a task gets ready, joins the 
ready queue and sends an enqueue! message to Scheduler. On 
receiving a enqueue? message, Scheduler takes the transition 
from the location Running to Schedule. If the running task's 
priority is lower than the head of the task queue, Scheduler 
takes the transition from Schedule to Preempt. The function 
add() adds the preempted task to the ready queue. The 
stopwatch runs[ctask] is set to 0, which stops the timing of the 
preempted task's execution. ctask is updated by calling the 
function poll(), which retrieves the head of the task queue.  

2) Operations in Tasks 
 
 
 
 
 
 

Figure 13 Data structure of operations 

To display each task's execution, 4 types of commands are 
defined: COMPUTE, LOCK, UNLOCK and END. 
COMPUTE represents all kinds of operations that need some 
CPU time. LOCK and UNLOCK are used for mutual 
exclusive access of the shared resource. The data structure for 
specifying an operation is defined as a C struct fun_t, as 
shown in Figure 13, where minDelay and maxDelay represents 
the min and max CPU time of an operation, respectively. The 
delay of a LOCK or UNLOCK or END operation is 0. The 
operation flow of a task is an array whose elements are 
instances of the struct fun_t.  

Since T5TP and T7CC are sequentially invoked by T6TC, 
the three tasks can be combined into one: 

(1) T5TP: it is invoked by a synchronous call of T6TC, hence 
can be embedded into the suspension section of T6TC, 
whatever its priority is.   

(2) T7CC: if its priority is higher than T6TC, its execution is 
inserted before the last COMPUTE operation of T6TC. 
Otherwise, it runs after the last COMPUTE operation 
of T6TC. Since T7CC is pure COMPUTE, its priority 
does not influence the timing properties of the system. 

 
Figure 14 The operation flows of T2 and T567 

The combination of T5, T6 and T7 is called T567 in the 
sequel. Figure 14 shows the operation flows of T2 and T567. 

3) Periodic Tasks 
We build a timed automaton called PeriodicTask, as the 

template of all periodic tasks, to describe the state transitions 
of a periodic task from the RTOS' viewpoint. The parameters 
of the template PeriodicTask include the task's ID and 
operation flow. When the parameters are assigned with 

const Flow_t Processing = // T2 
{ 
    { LOCK,      0,     0     },      //1. Lock shared resource  
    { COMPUTE,        2000,  2000  }, //2. Write into the resource 
    { UNLOCK,  0,     0     },      //3. Release shared resource 
    { COMPUTE,      15000, 15000 },  //4. Compute for 15 ms 
    FIN, FIN 
}; 
const Flow_t TrackingControl =  //T567 
{                     
     { COMPUTE,  4000,   4000  },     //1. TC: Action1      
     { LOCK,          0,      0     },             //2. TP: (2.1) Lock resource 
     { COMPUTE,  2000 ,  2000  },    //   (2.2) Write the resource 
     { UNLOCK,     0,      0     },            //    (2.3) Release resource 
     { COMPUTE,  26000,  34000 },  //  5+10+5+14   
      FIN 
}; 

typedef struct {    
    funtype_t cmd;    
    time_t minDelay;                  
    time_t maxDelay;                  
} fun_t; 



concrete values, as shown in Figure 15, the template is 
instantiated to a timed automaton for each task.  

 

Figure 15 Instantiation of periodic tasks  

The template for periodic tasks is shown in Figure 16. 
Take T567 as an example of periodic task. After initialization, 
the automaton moves to the location Ready. When T567 is 
scheduled, the automaton goes to GotCPU, and then to 
different locations depending on the types of operations in the 
operation flow. Since the first operation in T567 is 
COMPUTE, the automaton takes a transition to Computing, 
and stays at Computing until the specified span of the 
operation is spent. At Computing, a stopwatch expression 
(sub'==runs[id]) imitates preemptive scheduling. When a task 
is preempted, the clock variable sub stops and the Boolean 
variable runs[id] is set to 0, indicating that the task stops 
running. After executing an operation, the automaton goes to 
the location Next, then the task will execute the next operation 
in the operation flow. The remaining operations in the 
operation flow are executed sequentially until reaching the end 
of the program. Then the automaton goes to Release, 
representing the task releasing the CPU, and then to Idle. On 
the arrival of Period+Offset, the automaton goes to Ready, 
then the task joins the task queue again. 

 
Figure 16 Template for periodic tasks 

The function lockCeil() increases the resource owner's 
priority. Similarly, when a task's use of the resource finishes, 
unlockCeil() resets the task's priority to the original. 

C. Verification 
We firstly conduct an empirical analysis. Since the worst 

case execution time (WCET) of T567 is 40 ms and the period 
of T2 is 40 +/- 0.01%, T2 will run once or twice during the 
execution of T567. When T567 and T2 arrive at the same time, 
WCRT(T567) may cover two runs of T2. WCRT(T567) = 
CET(T2) + WCET(T567) + CET(T2) = 17*2 + 40 =  74 (ms). 
BCRT(T567) only covers one run of T2, hence BCRT(T567) 
= BCET(T567) + CET(T2) = 32 + 17 = 49 (ms).  

Secondly, given the query (5), the worst case latency of 
T567 can be calculated with the UPPAAL statistical model 
checking, where 2 is the ID of T567 in the model. The result 
shown in Table 8 conforms to the empirical analysis result.  

E[<=1000000000; 100] (max: WCRT[2]) (5) 
TABLE 8 LATENCY IN DIFFERENT SITUATIONS  

Jitter Worst-case latency 
0 73952 
20 73998.2 

The analysis and verification results show that the jitter 
does not affect the WCRT and BCRT. The relative priority of 
T5, T6 and T7 does not influence the WCRT and BCRT. 
Since WCET(T567) + WCET(T2) > Period_T2, the system is 
schedulable only if the priority of T2 is the highest.  

IV. CONCLUSION 
We constructed timed automata models for a multi-

processor system and a uni-processor multitasking system, and 
applied symbolic and statistical model checking of UPPAAL 
to verify their timing properties. The main effort was building 
the two models, which took 20 and 5 man-days, respectively. 
The time for building the models may vary for modelers with 
different proficiency. The weakness of this method includes: 
(1) With symbolic model checking, state space explosion may 
happen. (2) In the statistical model checking of UPPAAL, the 
upper bound of time limit is 2 * 109. For the Video system, 
this time span only represents 2 * 106 / 3 = 666,667 (ms).  (3) 
Statistical model checking may be time-consuming. It may 
take 10 ~ 30 minutes to compute a query with the max time 
limit.   
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//                         taskid,    flow, 
Task2PR_P1  = PeriodicTask(Task2PrID,   Processing);   
Task6TC_P2 = PeriodicTask(Task6TcID,  TrackingControl);   
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