
Timing Verification of an Aerial Video Tracking
System Using UPPAAL

Lijun Shan
College of Computer Science,

Northwestern Polytechnical University,
Xi'an, China

 lijunshancn@yahoo.com

Susanne Graf
Verimag/CNRS,

2 avenue de Vignate,
38610 Gières, France
susanne.graf@imag.fr

Abstract—This paper presents two different approaches for

verifying the timing properties of the industrial use cases
proposed as two challenges by WATERS’2015. The system under
study is an aerial video system which contains two parts, a
multiprocessor system and a uni-processor multitasking system.
A timed automata model is constructed for each subsystem with
the model checker UPPAAL. The symbolic model checking and
statistical model checking functions of UPPAAL are applied to
verify the models. Each of the models is modular, reusable and
extensible, and can act as a general modeling framework for
analyzing a type of systems.

Keywords—Real-time systems; verification; model checking

I. INTRODUCTION
Real-time systems are widely applied in critical areas such

as aerospace and aviation. The designers of a real-time system
have to assure that the system can satisfy its real-time
requirements before it is deployed. However, to verify such
systems' timing properties is difficult due to the randomness in
the behavior of such systems and their operation environment.
A recent trend is to apply formal methods, especially model
checking which features fully automated tools, to conduct
timing verification.

This paper presents our approaches to the timing
verification of two types of real-time systems in an industrial
case. The system under study, proposed as a challenge by
WATERS’2015, is an aerial video system which detects and
tracks a moving object. The system comprises two subsystems:
a multiprocessor system for video frame processing (called
Video subsystem in the sequel), and a uni-processor
multitasking system for tracking and camera control (called
Tracking subsystem in the sequel). The latencies of the two
subsystems are to be computed, respectively.

We construct a timed automata model for each subsystem,
and apply the symbolic model checking and statistical model
checking functions of UPPAAL [1, 2] to compute the desired
values. The model for the Video subsystem captures a
multiprocessor system which processes an infinite data flow.
The model for the Tracking subsystem describes a
multitasking system running on a real-time operating system.
Each of the models is modular, reusable and extensible, and
can act as a general modeling framework for analyzing a type
of systems.

II. CHALLENGE 1: THE VIDEO SUBSYSTEM

A. The Video Subsystem
The Video subsystem comprises four tasks T1~T4, which

process the frame flow produced by a camera and outputs the
frames to a display. The timing behavior and functions of the
tasks are summarized in Table 1. The time unit is microsecond
throughout this section except given otherwise.

TABLE 1 TASKS IN THE VIDEO SUBSYSTEM

Question 1: To compute the min/max latency for a given
frame from the camera output to the display input, for a buffer
size n = 1 or 3.

Question 2: To compute the minimum time distance
between two frames produced by the camera that will not
reach the display, for a buffer size n = 1 or 3.

B. Model of the Video Subsystem
The model comprises two parts: A system-description part

consists of seven automata: PeriodGen, Camera, T1, T2, T3,
Buffer and T4. A verification-supplement part consists of two
automata LatencyBuffer and Monitor, which record the
frames' latencies and lost frames, respectively.

1) Latency Buffer
We define an array flowLatency[] of clock variables as a

FIFO (First-In-First-Out) buffer to track the latency of each
frame under processing, and an array latencyTiming[] of
boolean variables as the stopwatches to control the clocks in
flowLatency[]. A stopwatch is the derivative of a clock.
Setting a stopwatch to 1 (or 0) starts (or stops) the
corresponding clock. Since a frame may be discarded by the

Task Period /
Trigger

Input
resource

Output
dest.

Exec.
time

Func-
tion

T1 Frame
arrival

Camera T2 28,000 Pre-
process

T2 Frame
arrival

T1 Register 17,000 ~
19,000

Process

T3 13,333
+/-7

Register Buffer 8,000 Filter

T4 40,000
+/- 4

Buffer Display 1,000 or
10,000

D/A
convert

buffer hence cannot reach the display, such frames should be
excluded when calculating the min/max latency. We define
another clock-stopwatch pair of arrays, reachLatency[] and
reachTiming[], to record the latency of those frames that
finally reaches the display. The relationship between the
clocks and stopwatches is specified in the following formula:

The length of the four arrays, denoted by an integer

constant WindowSize, should be the maximum number of
frames under processing at the same time. Whether the value
of WindowSize is properly set will be confirmed in the
verification of the model.

Figure 1 LatencyBuffer

The two pairs of clock-stopwatch arrays are maintained by
the automaton LatencyBuffer shown in Figure 1, and
manipulated in the following four occasions:

(A) Frame produced: When a frame is produced by the
camera, it is associated with the clock at the tail of
flowLatency[]. Then the frame can be referred to
by the clock's index in flowLatency[].

(B) Frame reaches T4: A frame cannot arrive the display
if and only if it is discarded by the buffer. When a
frame is retrieved from the buffer by T4, which
means it can finally arrive at the display, a clock in
reachLatency[] is started.

(C) Frame output: On receiving a message finish?, which
indicates that T4 finishes its processing of a frame,
the clocks for the frame are cleared and stopped.

(D) Frame lost: On receiving a message lost?, which
means that a frame-loss is detected, the associated
clock in flowLatency[] is cleared and stopped.

2) Period Generator

Figure 2 PeriodGen

The periods of the camera, T3 and T4 are constant
throughout the running of the system, but their specific values
are only known to be within their respective ranges. At the
beginning of the model's execution, the automaton PeriodGen

in Figure 2 chooses the periods. Note that all the periods are
multiplied by a factor MUL = 3 so that T3' period can be
expressed as an integer. We assume that all the tasks' offset is
0, i.e. all tasks are started simultaneously.

3) Camera

Figure 3 Camera

The automaton Camera in Figure 3 simulates the camera'
periodical producing of frames. The automaton also notifies
the frame's producing to the automata T1, LatencyBuffer and
Monitor through synchronization messages.

4) T1 and T2
The two automata in Figure 4 simulate the two tasks T1

and T2, respectively. Each of them is triggered by the arrival
of a frame, and outputs the frame after processing it. T2 sends
its output to a 1-size register. A variable registerFrameIndex
represents the index of the frame in the register .

Figure 4 (A) T1 (B) T2

5) Task T3

Figure 5 T3

The automaton in Figure 5 models the task T3, which
reads the register with a period of 40/3 ms. If the register is
empty, T3 finishes immediately. Otherwise, T3 processes the
frame in 8 ms and sends it to a buffer.

6) Buffer
A FIFO buffer receives the output of T3, and is

destructively read by the task T4. The buffer is implemented
as an array bufferContent[] plus an automaton Buffer.
bufferContent[] records the indexes of the frames in the buffer.
We define a C function add() to write a new index to the tail
of bufferContent[], and pull() to retrieve the head. The
automaton Buffer tells whether an incoming frame can be
accepted:

a) If the frame is new but the buffer is full, the frame is
discarded.

b) If the frame is duplicate, it is ignored.

forall(i: frameIndex_t) flowLatency[i]'== latencyTiming[i] &&
forall(i: frameIndex_t) reachLatency[i]'== reachTiming[i]

c) If the frame is new and the buffer is not full, the
frame enters the buffer.

But what does duplicate mean? The description of the
buffer1

(I) A frame with ID N has been in the buffer, no matter
whether it has been read or not.

 in Challenge 1 can be interpreted it in two ways: a
incoming frame with ID N is regarded as duplicate, if:

(II) A frame with ID N is in the buffer.

(A) Smart Buffer (B) Normal Buffer

Figure 6 Buffer

The automaton of Figure 6 (A) implements (I), where the
function duplicate() tells whether the incoming frame's index
is the same as the last stored frame. This buffer is called Smart
Buffer because it maintains a history of the last frame, no
matter whether the frame has left or not. After receiving a
message T3Data2Buffer?, the automaton takes one of the three
transitions from Process to Start, which represents the three
cases (a)~(c), respectively. The automaton Normal Buffer
shown in Figure 6 (B) implements (II), where the function
duplicateUnread() tells whether the incoming frame is the
same as the latest frame in the buffer.

The difference between the two types of buffer is: at most
one copy of a frame can enter the Smart Buffer, while two
copies of a frame may enter the Normal Buffer as long as the
second copy's arrival is after the first copy's leaving.

7) Task T4

Figure 7 T4

The task T4 reads the buffer periodically. T4 spends
10,000 to process a frame, and 1,000 if there is no frame. The
function pullBuffer() in Figure 7 destructively reads a frame
from bufferContent[]. When T4 finishes processing of a frame,
a message finish! is sent to the automaton LatencyBuffer.

1 "For each frame index value, only one single frame can be stored in the buffer. If
the buffer has already stored a frame with a given index, any additional received
frame with the same index is discarded."

In addition, the automaton T4 detects frame-losses. If the
frame T4 has just read is neither same nor successive to the
last one it processed, the frame between the last frame and the
incoming frame is detected to be lost, and T4 sends a lost!
message. The variable lostIndex records the lost frame's index.

8) Monitor

Figure 8 Monitor

The automaton Monitor shown in Figure 8 records the
frame's ID, when receiving a frameCount? message from
Camera. The number and distance of the lost frames are
recorded when a lost? message is received.

C. Verification
For abbreviation, Pi denotes the period of the camera or

task Ti ; Vi denotes the variance scope of Pi; Vi
Max/Vi

Min
denotes the max/min value in Vi; L(N) denotes the latency of
the Nth frame; LMax/Min denotes the max/min latency. The
model is verified with UPPAAL 4.4.18, and the hardware
configuration is Intel(R) Core(TM) i7-3520M CPU 2.90 GHZ
and 8GB RAM.

The frames' latency and frame loss depend on the period of
the task. When PC = P4 = 40 ms, P3 = 40/3 ms, the tasks run
under synchronization, no frame will be lost. With the Smart
Buffer, LMin = LMax = 90 ms. With the Normal Buffer, LMin =
L(1) = 90 ms, LMax = L(N) = 130 ms, N>1.

To calculate the min/max latency and frame loss with other
settings of the task periods, the following extreme cases are
investigated.

1) Latency Decreases
When PC = VC

Max = 40,000 + 4, P4 = V4
Min = 40,000 - 4,

each frame's latency decreases successively, hence the min
latency of the system may happen. For this special case, the
automaton in Figure 2 is replaced with the one in Figure 9,
where Delta = 4.

Figure 9 PeriodGen_latencyDec

The min latency is obtained by analysis or observed from
the simulation plots of the query (1). The max latency is
computed with the query (2), which applies statistical model
checking. The statistical parameters are set by default. Note
that symbolic model checking is inapplicable, because the
model has an infinite state space without the tasks'
synchronization. Table 2 summarizes the min/max latency and

the computation cost, including the peak (resident and virtual)
memory usage and time usage for UPPAAL to compute an
query.

TABLE 2 MIN/MAX LATENCY AND COMPUTATION COST ON THE QUERY (2) (PC
= VC

Max, P4 = V4
Min, P3∈V3)

Buffer type Smart Normal

Buffer Size 1 or 3 1 3

Latency L(1) 89,984 89,984 89,984

L(2) 89,976 129,972 129,972

LMin 63 89,984 89,984

LMax 113,585 137,554 137,811

Memory Res 7 9 10

Virt 31 35 36

Comp. time (s) 272 320 398

Given the queries (3), (4) and (5), statistical model

checking is applied to computing the number of frame losses,
the distance between the lost frames' IDs and the first lost
frame's ID, respectively. Table 3 summarizes the verification
results and the computation cost. The verification result shows
that frame loss only occurs with 1-size Normal Buffer.

TABLE 3 FRAME LOSS AND COMPUTATION COST ON THE QUERY (3) (PC =
VC

Max, P4 = V4
Min, P3∈V3)

 Buffer type Smart Normal
Buffer Size 1 or 3 1 3
Loss Count 0 82.95 0
1st lost frame ID / 3403 /
Min Distance / 3201.66 /
Memory
(MB)

Resident 8 9 8
Virtual 32 33 31

Comp. time (s) 389 372 357
2) Latency Increases
When PC = VC

Min = 40,000 - 4, P4 = V4
Max = 40,000 + 4,

each frame's latency increases by 8 successively, hence the
max latency of the system may happen. For this special case,
we replace the automaton in Figure 2 with the one in Figure 9.

Figure 10 PeriodGen_latencyInc

The simulation plots show that the first frame has the min
latency 90,016. The max latency is computed with the query
(2), and the verification results are summarized in Table 4.

TABLE 4 MIN/MAX LATENCY AND COMPUTATION COST ON THE QUERY (2) (PC
= VC

Min, P4 = V4
Max, P3∈V3)

Buffer type Smart Normal

Buffer Size 1 3 1 3

Latency LMin 90,016 90,016 90,016 90,016

L(2) 90,024 90,024 130,028 130,028

LMax 135,505 212,114 139,190 214,087

Memory
(MB)

Res 7 8 9 9

Virt 31 32 33 34

Comp. time (s) 397 472 375 509

Table 5 summarizes the verification results on frame loss
and the computation cost.

TABLE 5 FRAME LOSS AND COMPUTATION COST ON THE QUERY (3) (PC = VC
Min,

P4 = V4
Max, P3∈V3)

 Buffer type Smart Normal
Buffer Size 1 3 1 3
Loss Count 3 1 180.82 2
1st lost frame ID 5712.14 15581.5 917.62 10740.1
Min Distance 4631.96 / 301.88 4952.01
Memory
(MB)

Res 8 9 9 10
Virt 31 33 35 37

Comp. time (s) 329 502 360 497
3) Summary

TABLE 6 MIN AND MAX LATENCY IN ALL CASES
Buffer type Smart Normal

Buffer Size 1 3 1 3

Latency Min 63 63 89,984 89,984

Max 135,505 212,114 139,190 214,087

Table 6 summarizes the max/min latency with the Smart
Buffer and the Normal Buffer.

III. CHANLLENGE 2: THE TRACKING SUBSYSTEM

A. The Tracking Subsystem
TABLE 7 TASKS IN THE TRACKING SUBSYSTEM

Task Period / Trigger Functions
T2PR 40 +/- 0.01% (ms) Processing
T6TC 100 (jitter=20) (ms) Tracking control
T5TP Called by T6 Target position prediction
T7CC Called by T6 Camera control

The Tracking subsystem is a concurrent multitasking
system which comprises three tasks: T6, T5 and T7. The three
tasks are mapped to a CPU together with T2, one of the tasks
in the Video subsystem. Table 7 summarizes the periods/
triggers and functions of the four tasks, where the tasks are
listed by their priorities in a descending order. T2PR and T5TP

E[<=2000000000; 100] (max: Monitor.lostCount) (3)
E[<=2,000,000,000; 100] (min: Monitor.lostIdDistance) (4)
E[<=2,000,000,000; 100] (max: Monitor.firstLostID) (5)

simulate 1 [<=2,000,000,000] { reachLatency[i] } (1)
E[<=2,000,000,000; 100] (max: reachLatency[i]) (2)

have access to a shared resource. The access to the shared
resource takes 2ms for each task.

Question 1: To compute the best-case and worst-case end-
to-end latencies from activation of T6 to termination of T7 for
a jitter value j = 0 or 20 ms.

Question 2: To compute the optimum priority assignment
minimizing the worst-case latency for a jitter value j = 0 or 20
ms.

B. Model of the Tracking Subsystem
 Our approach to the timing verification of the Tracking

subsystem is inspired by the schedulability analysis approach
proposed by the UPPAAL team [3]. The model of the
Tracking subsystem consists of an automaton for the scheduler,
an automaton for the idle task, and a template for periodic
tasks.

1) RTOS

Figure 11 Scheduler

Figure 12 IdleTask

To exhibit the parallel running of the multiple tasks, the
model has to describe how the RTOS schedules the tasks. The
automaton for the CPU scheduler is shown in Figure 11. The
function main() assigns initial priorities to all tasks according
to their IDs. An array taskqueue represents the queue of ready
tasks. The task queue is manipulated by the functions poll()
and add(): poll() destructively read the head of the queue, and
add() adds a task to the queue and sorts the queue by the tasks'
priorities to a descending order. A variable ctask denotes the
ID of the current running task.

When the task queue is empty, an idle task, whose priority
is 0 (the lowest) and ID is 0, runs on the CPU. The automaton
IdleTask is shown in Figure 12. The idle task runs before any
task gets ready. After some time, a task gets ready, joins the
ready queue and sends an enqueue! message to Scheduler. On
receiving a enqueue? message, Scheduler takes the transition
from the location Running to Schedule. If the running task's
priority is lower than the head of the task queue, Scheduler
takes the transition from Schedule to Preempt. The function
add() adds the preempted task to the ready queue. The
stopwatch runs[ctask] is set to 0, which stops the timing of the
preempted task's execution. ctask is updated by calling the
function poll(), which retrieves the head of the task queue.

2) Operations in Tasks

Figure 13 Data structure of operations

To display each task's execution, 4 types of commands are
defined: COMPUTE, LOCK, UNLOCK and END.
COMPUTE represents all kinds of operations that need some
CPU time. LOCK and UNLOCK are used for mutual
exclusive access of the shared resource. The data structure for
specifying an operation is defined as a C struct fun_t, as
shown in Figure 13, where minDelay and maxDelay represents
the min and max CPU time of an operation, respectively. The
delay of a LOCK or UNLOCK or END operation is 0. The
operation flow of a task is an array whose elements are
instances of the struct fun_t.

Since T5TP and T7CC are sequentially invoked by T6TC,
the three tasks can be combined into one:

(1) T5TP: it is invoked by a synchronous call of T6TC, hence
can be embedded into the suspension section of T6TC,
whatever its priority is.

(2) T7CC: if its priority is higher than T6TC, its execution is
inserted before the last COMPUTE operation of T6TC.
Otherwise, it runs after the last COMPUTE operation
of T6TC. Since T7CC is pure COMPUTE, its priority
does not influence the timing properties of the system.

Figure 14 The operation flows of T2 and T567

The combination of T5, T6 and T7 is called T567 in the
sequel. Figure 14 shows the operation flows of T2 and T567.

3) Periodic Tasks
We build a timed automaton called PeriodicTask, as the

template of all periodic tasks, to describe the state transitions
of a periodic task from the RTOS' viewpoint. The parameters
of the template PeriodicTask include the task's ID and
operation flow. When the parameters are assigned with

const Flow_t Processing = // T2
{
 { LOCK, 0, 0 }, //1. Lock shared resource
 { COMPUTE, 2000, 2000 }, //2. Write into the resource
 { UNLOCK, 0, 0 }, //3. Release shared resource
 { COMPUTE, 15000, 15000 }, //4. Compute for 15 ms
 FIN, FIN
};
const Flow_t TrackingControl = //T567
{
 { COMPUTE, 4000, 4000 }, //1. TC: Action1
 { LOCK, 0, 0 }, //2. TP: (2.1) Lock resource
 { COMPUTE, 2000 , 2000 }, // (2.2) Write the resource
 { UNLOCK, 0, 0 }, // (2.3) Release resource
 { COMPUTE, 26000, 34000 }, // 5+10+5+14
 FIN
};

typedef struct {
 funtype_t cmd;
 time_t minDelay;
 time_t maxDelay;
} fun_t;

concrete values, as shown in Figure 15, the template is
instantiated to a timed automaton for each task.

Figure 15 Instantiation of periodic tasks

The template for periodic tasks is shown in Figure 16.
Take T567 as an example of periodic task. After initialization,
the automaton moves to the location Ready. When T567 is
scheduled, the automaton goes to GotCPU, and then to
different locations depending on the types of operations in the
operation flow. Since the first operation in T567 is
COMPUTE, the automaton takes a transition to Computing,
and stays at Computing until the specified span of the
operation is spent. At Computing, a stopwatch expression
(sub'==runs[id]) imitates preemptive scheduling. When a task
is preempted, the clock variable sub stops and the Boolean
variable runs[id] is set to 0, indicating that the task stops
running. After executing an operation, the automaton goes to
the location Next, then the task will execute the next operation
in the operation flow. The remaining operations in the
operation flow are executed sequentially until reaching the end
of the program. Then the automaton goes to Release,
representing the task releasing the CPU, and then to Idle. On
the arrival of Period+Offset, the automaton goes to Ready,
then the task joins the task queue again.

Figure 16 Template for periodic tasks

The function lockCeil() increases the resource owner's
priority. Similarly, when a task's use of the resource finishes,
unlockCeil() resets the task's priority to the original.

C. Verification
We firstly conduct an empirical analysis. Since the worst

case execution time (WCET) of T567 is 40 ms and the period
of T2 is 40 +/- 0.01%, T2 will run once or twice during the
execution of T567. When T567 and T2 arrive at the same time,
WCRT(T567) may cover two runs of T2. WCRT(T567) =
CET(T2) + WCET(T567) + CET(T2) = 17*2 + 40 = 74 (ms).
BCRT(T567) only covers one run of T2, hence BCRT(T567)
= BCET(T567) + CET(T2) = 32 + 17 = 49 (ms).

Secondly, given the query (5), the worst case latency of
T567 can be calculated with the UPPAAL statistical model
checking, where 2 is the ID of T567 in the model. The result
shown in Table 8 conforms to the empirical analysis result.

E[<=1000000000; 100] (max: WCRT[2]) (5)
TABLE 8 LATENCY IN DIFFERENT SITUATIONS

Jitter Worst-case latency
0 73952
20 73998.2

The analysis and verification results show that the jitter
does not affect the WCRT and BCRT. The relative priority of
T5, T6 and T7 does not influence the WCRT and BCRT.
Since WCET(T567) + WCET(T2) > Period_T2, the system is
schedulable only if the priority of T2 is the highest.

IV. CONCLUSION
We constructed timed automata models for a multi-

processor system and a uni-processor multitasking system, and
applied symbolic and statistical model checking of UPPAAL
to verify their timing properties. The main effort was building
the two models, which took 20 and 5 man-days, respectively.
The time for building the models may vary for modelers with
different proficiency. The weakness of this method includes:
(1) With symbolic model checking, state space explosion may
happen. (2) In the statistical model checking of UPPAAL, the
upper bound of time limit is 2 * 109. For the Video system,
this time span only represents 2 * 106 / 3 = 666,667 (ms). (3)
Statistical model checking may be time-consuming. It may
take 10 ~ 30 minutes to compute a query with the max time
limit.

REFERENCES
[1] G. Behrmann, A. David, K.G. Larsen, J. Hakansson, P.

Petterson, W. Yi, and M. Hendriks: "UPPAAL 4.0", in
Editor (Ed.)^(Eds.): Book UPPAAL 4.0 (IEEE, 2006,
edn.), pp. 125-126

[2] P. Bulychev, A. David, K.G. Larsen, A. Legay, M.
Mikucionis, and D.B. Poulsen: "Checking and
distributing statistical model checking": NASA Formal
Methods (Springer, 2012), pp. 449-463

[3] A. David, K.G. Larsen, A. Legay, and M. Mikucionis:
"Schedulability of Herschel revisited using statistical
model checking", International Journal on Software
Tools for Technology Transfer, 2014, pp. 1-13

// taskid, flow,
Task2PR_P1 = PeriodicTask(Task2PrID, Processing);
Task6TC_P2 = PeriodicTask(Task6TcID, TrackingControl);

	I. Introduction
	II. Challenge 1: The Video Subsystem
	A. The Video Subsystem
	B. Model of the Video Subsystem
	1) Latency Buffer
	2) Period Generator
	3) Camera
	4) T1 and T2
	5) Task T3
	6) Buffer
	7) Task T4
	8) Monitor

	C. Verification
	1) Latency Decreases
	2) Latency Increases
	3) Summary

	III. Chanllenge 2: The Tracking Subsystem
	A. The Tracking Subsystem
	B. Model of the Tracking Subsystem
	1) RTOS
	2) Operations in Tasks
	3) Periodic Tasks

	C. Verification

	IV. Conclusion
	References

