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Abstract—In this paper we propose solutions to the FMTV
challenge of a distributed video processing system using the
formalism of Parametric Timed Automata (PTA). The first
challenge is harder because of the very large number of states
to be analysed, so we only provide upper bounds. The second
challenge consists of a real-time scheduling problem for which
we provide exact solutions by using a scheduling analysis based
on the critical instant, and a PTA model.

I. INTRODUCTION

With the increasing size and complexity of concurrent sys-
tems, the need for formal verification techniques has become
higher and higher in the past decades. Systems mixing time
and concurrency are especially subject to undesired behaviours
(deadlocks, race conditions, etc.); often, their complexity
makes the use of formal methods very challenging.

In this paper, we address the Formal Methods for Timing
Verification Challenge (FMTV 2015) proposed by Thales
(http://waters2015.inria.fr/challenge) by using the formal-
ism of parametric timed automata (PTA). Timed automata
(TA) [AD94] are a well-known formalism for specifying and
verifying concurrent real-time systems. TA extend finite-state
automata with a set of clocks (real-time variables growing
linearly) that can be compared with integer constants. TA
are used in several powerful tools such as UPPAAL [LPY97]
or PAT [SLDP09]. However, the binary answer (“yes” or
“no”) output by model checking is not always satisfactory;
indeed, it does not allow to change or optimize some values
of the system constants, nor (in general) to evaluate the system
robustness, i.e., the infinitesimal variation of timing constants
while preserving the reachability. PTA [AHV93] extend TA
with rational-valued parameters allowed in place of constants.
PTA are particularly well suited to verify systems where
some timing delays are known with uncertainty. The natural
drawback of PTA is the infamous state space explosion, that
may prevent the verification to be truly scalable. We will
use the tool IMITATOR [AFKS12] that takes PTA as an input
formalism.

Outline: We briefly review PTA and IMITATOR (Sec-
tion II). Then, we recall the challenge (Section III). We
derive solutions to Challenge 1A empirically (Section IV),
and formally by using IMITATOR (Section V). We provide
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a different PTA model for the much harder Challenge 1B
(Section VI) for which we derive an upper bound. Finally
we analyse the problem in Challenge 2 and provide a solution
based on schedulability analysis (Section VII-A) and a solution
based on a PTA model (Section VII-B). Finally, we conclude
in Section VIII.

II. PARAMETRIC TIMED AUTOMATA

Timed automata are finite-state automata augmented with
clocks, i.e., real-valued variables increasing uniformly, that
are compared within guards and invariants with timing de-
lays [AD94]. Parametric timed automata (PTA) [AHV93] ex-
tend timed automata with parameters, i.e., unknown constants,
that can be used in guards and invariants.

Given a set X of clocks (real-valued variables) and a
set P of parameters (unknown rational-valued constants),
a constraint C over X and P is a conjunction of linear
inequalities on X and P 1. Given a parameter valuation (or
point) v, we write v |= C when the constraint where all
parameters within C have been replaced by their value as in v
is satisfied by a non-empty set of clock valuations.

Definition 1: A parametric timed automaton (PTA) A is
(Σ, L, l0, X, P, I, E) with Σ a finite set of actions, L a finite
set of locations, l0 ∈ L the initial location, X a set of clocks,
P a set of parameters, I the invariant assigning to every l ∈ L
a constraint over X and P , and E a step relation consisting
of elements (l, g, a,R, l′), where l, l′ ∈ L, a ∈ Σ, R ⊆ X is
the set of clocks to be reset, and the guard g is a constraint
over X and P .

The semantics of a PTA A can be found in, e.g., [AHV93],
[AS13].

Most problems related to PTA (e.g., the parametric reacha-
bility of a location) are undecidable [AHV93], [JLR15], with
some decidable syntactic subclasses related to the use of the
parameters [HRSV02], [BL09], [JLR15] or on the number of
clocks [AHV93], [BO14], [BBLS15]. We do not consider it
as drawback, as we use semi-algorithms that “often” terminate
in practice; we will see this is also the case for solving
challenge 1A.

IMITATOR [AFKS12] is a tool for modeling and verifying
systems modeled using parametric timed automata. In its latest

1Note that this is a more general form than the strict original definition of
PTA [AHV93]; since most problems for PTA are undecidable anyway, this
has no practical incidence, and increases the expressiveness of the formalism.
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version (2.7-beta2), IMITATOR implements several algorithms,
among which:
• parametric reachability analysis: “find all parameter val-

uations such that some state is reachable”
• parametric robustness analysis: “given a parameter val-

uation v, find other valuations for which the discrete
(untimed) behavior is the same as v”

• behavioral cartography: “find all parametric subspaces in
which the discrete behavior is uniform”.

IMITATOR extends PTA with some useful constructions,
such as constants, global discrete integer variables, strong
broadcast synchronization between components, and stop-
watches (i.e., the power of stopping some clocks in some
locations).

The input syntax of IMITATOR is a text file, which makes
it possible to write models either manually or using scripts
(e.g., for large models derived from another formalism). For
example, in the past several parametric schedulability anal-
ysis models were generated automatically using scripts, and
asynchronous circuits of arbitrary size can be modeled in
IMITATOR from VHDL syntax using the tool VHDL2TA2.

III. A BRIEF DESCRIPTION OF THE SYSTEM

We only briefly recall the systems and the challenges; the
full description is available at the workshop Web page.

A. Challenge 1

There are four tasks T1, T2, T3 and T4, distributed in differ-
ent processing units and performing respective functionalities.
The task T1 periodically receives frames from the camera
and pre-processes them. Task T2 embeds further tracking
information into the video frame pre-processes by Task T1.
Task T2 then inserts the video frame into a register, denoted as
Register23. Then Task T3 reads the frame from the register,
removes the noise and tries to put the resulting video frame
into a buffer, denoted as Buffer34. In the end, Task T4 reads
frames from the buffer, converts them from digital to analogue
and sends the final frame to the display.

Tasks T1, T3 and T4 are periodic, but their triggering clocks
are subject to drift. That is, their periods P1, P3 and P4

are unknown constants. More specifically, P1 ∈ [40 − 40 ×
0.01%, 40 + 40 × 0.01%]ms, P3 ∈ [ 40

3 −
40
3 × 0.05%, 40

3 +
40
3 ×0.05%], and P4 ∈ [40−40×0.01%, 40+40×0.01%]ms.

Task T2 is triggered by the completion of T1.
Each task has its Best-Case and Worst-Case Execution Time

(BCET and WCET) or Latency (BCL and WCL): BCET1 =
WCET1 = 28ms, BCL2 = 17ms, WCL2 = 19ms, BCET3 =
WCET3 = 8ms. As for task T4, when it reads Buffer34 and
there is no frame within the buffer, it performs an empty cycle
with execution 1ms; otherwise, it executes 10ms and sends the
result to display.

For such a video frame processing subsystem, we aim to
tackle the following challenges.

2http://www-soc.lip6.fr/∼bara/valmem/vhdl2ta/rapports/vhdl2ta-web/
vhdl2ta.html

Challenge 1A:
Compute the minimum and maximum latencies for a given frame
from the camera output to the display input, for a buffer size
n = 1 (challenge 1A.1) and n = 3 (challenge 1A.3).

Given the difficulty of Challenge 1A, we will focus on
deriving the lower bound and upper bound of the end-to-end
latency.

Challenge 1B:
Due to the different clock drifts, all frames with a same index
may be discarded at the entrance of the buffer at the input of
the task T4. Compute the minimum time distance between two
frames produced by the camera that will not reach the display,
for a buffer size n = 1 (challenge 1B.1) and n = 3 (challenge
1B.3).

B. Challenge 2

The complete system also includes a camera tracking
subsystem that identifies objects on the camera images and
commands the camera motors so to follow the objects. This
subsystem consists of 3 additional tasks: Task T6 is a periodic
task with period P6 = 100 and it can start with a certain jitter
J6. Task T5 is activated by Task T6 with a synchronous call.
Task T7 is activates asynchronously by Task T6 and controls
the motors. Task T6 execution time is: C6,1 = 4ms before
invoking Task T5; C6,2 ∈ [9, 10] ms after the completion of
Task T5 and before the invocation of Task T7; C6,3 ∈ [4, 5]
ms after the invocation to Task T7. Task T5 has an execution
time of C5 ∈ [4, 7] ms. Task T7 has an execution time of
C7 ∈ [11, 14] ms. All tasks execute on the same processor
together with Task T2 (described in the first challenge), and
they are scheduled by a fixed priority scheduler. Task T2 has
a computation time of C2 = 17ms. Finally, task priorities are
assigned so that T2 > T6 > T5 > T7.

Challenge 2A:
1) Compute the best and worst-case end-to-end latencies from the
activation of Task T6 to the completion of Task T7 when J6 = 0.
2) Compute the best and worst-case end-to-end latencies when
J6 = 20ms.

Challenge 2B:
Tasks T2 and T5 have access to a shared mutually exclusive
resource protected by the priority ceiling protocol. The access
to the shared resource takes 2ms for both tasks. 1) Compute the
best-case and worst-case end-to- end latencies from activation of
T6 to termination of T7 for a jitter value J6 = 0ms 2) compute
the best-case and worst-case end-to-end latencies from activation
of T6 to termination of T7 for a jitter value J6 = 20ms. 3) The
optimum priority assignment minimizing the worst-case latency
for a jitter value J6 = 0ms and J6 = 20ms.

IV. SOLVING CHALLENGE 1A EMPIRICALLY

First, we can try to find the latency using a manual es-
timation. We claim that the minimum latency occurs in the
following scenario (times are given in ms):

1) The frame is output by the camera at t = 0
2) The frame is processed immediately by Task T1 t = 28
3) The frame is processed immediately by Task T2, which

takes a minimal time (BCL2=17) t = 45
4) The frame is processed immediately read task 3 t = 45
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5) After task 3’s execution, the frame is inserted into an
empty buffer t = 53

6) Immediately, the frame is got by task 4 t = 53
7) Task T4 processes the frame and sends it to display t =

63

In fact nothing prevents this scenario to happen: with tasks
appropriately synchronised with each other, this scenario can
indeed happen. That is, 63ms is the exact minimum latency.
Even with n = 3, the fastest scenario built above still holds.
And the minimum latency is still 63 ms.

Then, we claim that an upper bound on the maximum
latency occurs in the following scenario (times are given in
ms):

1) The frame is output by the camera t = 0
2) The frame is processed immediately by task 1 t = 28
3) The frame is sent to task 2, which takes a maximal time

(WCL2=19) t = 47
4) The frame can stay within Register23 for at most P1

ms before it is overwritten by the successive frame t ≤
87.004

5) Task T3 processes the frame and puts it in Buffer34
t ≤ 95.004

6) Buffer34 can host the frame for at most P4 ms t ≤
135.008

7) Task T4 takes 10ms to execute the frame t ≤ 145.008

Thus, an upper bound to the maximal latency is 145.008ms.
For the maximum latency with n = 3, based on the result

with n = 1, we can derive a safe upper bound immediately.
This upper bound is ≤ 145.008 + 2× P4 ≤ 225.016ms.

V. SOLVING CHALLENGE 1A USING IMITATOR

In this part, we formally solve the challenge using PTA. At
first, we will solve the case with n = 1 for Buffer34. The
corresponding PTA model is shown in Figure Fig. 1. Later,
we show how to adapt this model to a larger buffer.

Experimental environment: We used the latest version of
IMITATOR (v2.7-beta2, build 1073) with no specific modifica-
tion of the tool. We just used a small Python script to parse the
long list of intervals that IMITATOR outputs, and to produce a
single minimum and maximum. Sources, binary and models
are available at [XP].

A. Camera, Task T1, Task T2

In order to reduce the state space, we model the camera,
Task T1 and Task T2 into a single PTA (Fig. 1a). We also use
this PTA to non-deterministically initialize the buffer and the
frame currently processed by Task T4.

We choose an arbitrary frame with index target for end-
to-end latency estimation and we start from the exact point
such that the target frame is handled from Task T1 to task T2.
A clock ckT1T2 is initialised to be WCET1 and measures
the end-to-end latency of target frame. Discrete variables
frame in 3 and frame in 4 represent the index of frames
in Task 3 and Task 4 respectively. The value 0 is used to
denote that there is no frame in a task. reg2,3 and buffer3,4

are for frames within Register23 and Buffer34. While we

assume frame index in the system is monotonically increased,
highest3,4 denotes the highest frame index among frames
having been stored inside the buffer. For the register, buffer
and Task 3, they may or may not initially contain a frame.

We do not model the period of the camera (or task 1), since
we are only interested in a single frame. Let us now model
the buffer. IMITATOR does not support other kinds of global
variables than discrete integer variables. For a buffer with one
slot (n = 1), its status can be modeled by using two discrete
variables buffer3,4 and highest3,4.
• buffer3,4 denotes the index of current frame inside

Buffer34;
• highest3,4 is the highest index recorded so far.

B. Task T3

The period of Task T3 is a parameter P3 uncertain, that
is initialised as follows:

P3 uncertain ∈ [40− P3 delta, 40 + P3 delta]

where P3 delta = 0, 05 %×40 = 1
150 . Recall that parameters

in PTA are unknown constants, i.e., the value of which cannot
evolve during the execution; this is exactly what we need to
model P3 uncertain.

Task T3 is modeled by a periodic PTA in Fig. 1b. ckT3 is a
clock variable for recording task 3’s activation and execution.
At the initial point, the PTA T3 is non-deterministically
waiting for a new activation or executing. When T3 finishes
execution, it writes into Buffer34 if the buffer is empty and
its current frame has not been put into the buffer. We define
a function call for this writing operation write by T3():

buffer3,4 := highest3,4 := frame in 3

IMITATOR does not support function call in a model; here
we still utilise the notation of function call for simplicity.
Otherwise, task 3’s writing fails. As shown in PTA T3, we
utilise the operator ”||” (”or”) in the edge representing writing
failure. Again, this is for saving some space.

C. Task T4

We use here a modeling mechanism similar to Task T3.
The period of Task T4 is a parameter P4 uncertain, that is
initialised as follows:

P4 uncertain ∈ [40− P4 delta, 40 + P4 delta]

where P4 delta = 0, 01 %× P4 = 0.004.
Task T4 is modeled by a periodic PTA as in Fig. 1c. A

clock variable ckT4 is used for task 4’s periodic activation
and execution. When T4 activates, If the buffer is empty, T4
goes directly back to another waiting cycle. According to the
system specification, there should an empty processing session
for task 4. However, such an empty processing does not affect
the end-to-end latency of any frame, and we omit it in PTA
T4. If the buffer is not empty, task 4 reads a frame from the
buffer by the function call read by T4():

frame in 4 := buffer3,4, buffer3,4 := 0
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camera0 ckT1T2 = WCET1

camera1 ckT1T2 = WCET1

camera2 ckT1T2 = WCET1

camera3 ckT1T2 = WCET1

T1T2 WCET1 + WCL2 ≥ ckT1T2

T1T2done

init buffer empty
buffer3,4 := 0

highest3,4 := 0

init buffer nonempty
buffer3,4 := 1

highest3,4 := 1

frame in 3 := 0 frame in 3 := 2

reg2,3 := 0 reg2,3 := 3

start

ckT1T2 ≥WCET1 + BCL2

T2done
register2,3 := target

(a) PTA cameraT1T2

T3preinit

T3process WCET3 ≥ ckT3

T3wait P3 uncertain ≥ ckT3

start

WCET3 ≥ ckT3
start

(buffer3,4 > 0
||

buffer3,4 = 0
∧highest3,4 ≥ frame in 3)
∧ ckT3 = WCET3

T3 done

WCET3

=
ckT3

∧buffer3,4 = 0
∧frame in 3 >

highest3,4
T3 done

write by T3()

P3 uncertain
=

ckT3
T3 start
ckT3 := 0
frame in 3
:= reg2,3

(b) PTA T3

T4wait

P4 uncertain ≥ ckT4

T4process nonempty

10 ≥ ckT4

T4end ok

ckT4 = 0

P4 uncertain = ckT4
∧ buffer3,4 = 0

ckT4 := 0

P4 uncertain = ckT4
∧ buffer3,4 > 0

ckT4 := 0
read by T4()

10 = ckT4
∧

frame in 4 6= target

10 = ckT4 ∧ frame in 4 = target
ckT1T2 = E2E

ckT4 := 0

(c) PTA T4

Fig. 1: Modeling the system of Challenge 1A for n = 1

Task T4 takes 10ms to process a frame, after the processing,
if its current frame is the target one, ckT4 is reset and T4
moves to an ending location. E2E ≥ 0 is the parameter
for representing all possible end-to-end latencies of the target
frame.

D. Deriving the Latency for n = 1

As we have seen, in order to avoid exploring the exact
configurations in the system, we target a single frame (which
explains the non-cyclic behavior of the PTA modeling the
camera, tasks 1 and 2) that is output from the task 1 at
t = WCET1. The main idea is that, at t = WCET1, the initial
state must be arbitrary, i.e., encode all possible configurations
that could happen in the system. However, such a model
may be pessimistic for containing behaviors that cannot really
happen in the system. Again, we aim to derive upper and lower
bounds on end-to-end latency of an arbitrary frame.

After developing the model, we use IMITATOR to perform
parametric reachability analysis of location T4end ok, that
is we ask IMITATOR to return all parameter valuations such
that T4end ok is reachable. Then, IMITATOR hides (using
existential quantification) all parameters except E2E, and then
returns a list of intervals for E2E. After some post-processing
to unify intervals, we get

E2E ∈ [63, 145.008].

This result is compatible with our empirical estimation. The
maximum end-to-end latency is empirically bounded by ex-
plicitly considering the time a successive frame arrives; while
the PTA model does not consider frames after the target one,
the result by IMITATOR still matches the empirical reasoning.

E. Deriving the Latency for n = 3

For the case of n = 3 for Buffer34, we can keep the same
IMITATOR model, with the exception of the buffer modeling.
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We assume that access to elements in the buffer follows a
FIFO manner.

Let us model Buffer34 for n = 3: besides the vari-
able highest3,4, we need 3 more discrete variables for
frames within each slot in the buffer: buffer1

3,4,buffer2
3,4 and

buffer3
3,4. When non-deterministically initializing the buffer,

we need to take into account all possible scenarios of frame
occupation within it. When T3 writes into the buffer, it needs
to find the first free position (say xth); thus the writing call
becomes write by T3():

bufferx
3,4 := highest3,4 := frame in 3.

Similarly, for T4 to read from the buffer, we call the adapted
function read by T4():

frame in 4 := buffer1
3,4

∀x ∈ {1, 2} bufferx
3,4 := bufferx+1

3,4

buffer3
3,4 := 0

Note that the buffer status is also updated by the reading
operation such that the first slot always contains the oldest
frame.

Then, we can apply parametric analysis on the model for
n = 3 using IMITATOR. A projection of all possible values to
parameter E2E gives the following result:

E2E ∈ [63, 225.016].

Again, this matches our empirical estimation. Finally, we
conclude results for Challenge 1A in Table I.

Buffer34 size min E2E max E2E
n = 1 63 ms 63 ms
n = 3 145.008 ms 225.016 ms

TABLE I: E2E latency results for Challenge 1A

VI. SOLUTION TO CHALLENGE 1B

This challenge is the most difficult to solve with a formal
model. The first problem we encountered is that the analysis
must keep track of many frames to measure the distance
between two frame losses, and the number of frames to analyze
can be very large.

In the long term the average rate of dropped frames
depends on the rate between the period of the producer
task (T1) and the period of the consumer task (T4). In
particular, the average frame loss rate can be computed as
(n1−n4)/lcm(Pmin

2 ,Pmax
4 ) u 0.005, where n1 and n4 are the

number of instances of T1 and T4 in the hyperperiod between
T1 and T4, respectively (and lcm the least common multiple).
By computing the formula, the average distance between 2
frame losses is u 200 sec., i.e., one loss every 5000.5 frames.
Therefore the minimum distance between two frame loss is
≤ 200 seconds.

Unfortunately, computing the actual minimum distance is a
very difficult task. First of all, due to clock drift, periods are

Fig. 2: An example sequence of frame repetitions.

Fig. 3: The Sequence Automaton.

fixed but they can vary in a small interval, so the hyperperiod
can become very large. Also, Task T3 contributes to add a
substantial amount of complexity: in fact, the period P3 is
approximately one third of P2. Therefore, T3 will read the
same frame more than once. However, the exact number of
times that a frame is read (which we call frame repetition)
depends on the periods and on the relative initial offset of T2
and T3. Also it depends on the actual latency of T2. Consider
the situation depicted in Fig. 2. Here T2 writes the frame i in
the register terminating at its worst-case latency, just a little
bit after Task T3 has read frame i− 1. Then T3 reads frame i
twice. Finally the response time of the second instance of T3
is equal to its best case, so frame i + 1 is written just before
task T3 can read the register. This means that Frame i is only
read twice. By inverting the sequence of response times of
T2, it is possible to show that one frame can be read 4 times.
Finally, obviously a frame can be read 3 times.

If T3 has a period that is exactly equal to the period
of T1 divided by 3, it is possible to construct periodic
sequences of repetitions. We denote these periodic sequences
as < f1, f2, . . . , fj−1 >, where f1 denoted the repetitions
of frames 0, j, 2j, . . ., f2 denotes the repetitions of frames
1, j + 1, 2j + 1, . . ., and so on.

Of course, repetitions can obey any pattern, even non-
periodic ones. Assume that P3 = P1/3 and the offsets are
as shown in Fig. 2. Then every possible sequence can be
generated by the automaton in Fig. 3, that we call Sequence
Automaton. Depending on whether the response time of T2 is
equal to the best case or to the worst-case (non deterministic
choice), we generate the next repetition.

Therefore, our strategy for reducing the complexity of the
model to something analysable is the following:
• We fix periods P1 = P2 = Pmin

1 , P3 = P2/3,
P4 = Pmax

4 ;
• We model the sequence of frames generated by T2 with

the Sequence Automaton;
• The frame index is an integer number that varies in
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{0, 1, 2}. In fact, it is easy to see that it is impossible
to have 2 consecutive frame losses, and in the case of
Buffer34 having only one position, there is no risk of
conflicting indexes.

• Buffer34 is modeled by a discrete variable last and a
counter with the number of frames in the buffer. Variable
last maintains the index of the last frame successfully
written in the buffer.

• Task T2 is modeled by a timed automaton that periodi-
cally tries to write the current frame in the buffer. The
write is successful if the buffer is not full and if the frame
index is different from last, in this case both variables
are updated accordingly. Otherwise the frame is dropped.
Every frame is repeated the number of times specified by
the Sequence Automaton. After that, the frame index is
increased (modulo 3) and a new repetition is generated.
If the old frame index is different from last, then the
frame was not successfully written, and we signal the
occurrence of a frame drop.

• The distance between two frame drops is measured by an
automaton Observer that uses an appropriate clock from
measuring this distance.

We do not report here the full model for space constraints:
the interested reader can find it at [XP].

Even fixing the periods, the model is still non-deterministic
due to the Sequence Automaton, and unfortunately after 18
hours of running time IMITATOR had explored only 10 sec-
onds of executions, generating a large number of states and
never encountering two frame losses. Therefore we decided
to further simplify the model by substituting the Sequence
Automaton with a deterministic automaton that generates only
periodic sequences. In this way the model becomes fully
deterministic and can be analyzed in a relatively small time.
Unfortunately we could not try all possible periodic sequences,
nor we could try different values of the periods, therefore the
computed values may not correspond to the minimal distance.
The results are shown in Table II.

Buffer Sequence limit runtime Dist. Frames
full < 2343 > 60,000 660 66.7133 1668
full < 24 > 100,000 2,005 66.7133 1668
empty < 2343 > 60,000 639.54 - -
empty < 24 > 150,000 26,808.23 199,980 5000

TABLE II: Results of deterministic model for problem 1B

In the first column we report the initial state of Buffer34 and
in the second column the periodic sequence. Since the model
does not converge (i.e. it cannot explore all possible states in a
reasonable time), we stop the model after a certain number of
steps, reported in the third column. In the fourth column we
report the running time of the tool in seconds. Finally, the last
two column show the minimum observed distance, in seconds
and in frames.

In the experiments relative to the first two rows in the table,
we force an initial full buffer. However, we do not know if
this specific initial state can actually happen in the model. So

we cannot conclude that 1668 frames is an upper bound to
the minimum loss distance. On the contrary, the last two lines
report the results for an empty initial buffer (which is more
realistic), and hence we conclude that 5000 is a realistic upper
bound to the minimum loss distance. Observe that this value
is very close to the average frame loss value computed at the
beginning of this section.

We did not run any experiment for the case of a Buffer34
with 3 position, but everything leads to think that the results
produced by a deterministic model would be very similar.

VII. SOLUTION TO CHALLENGE 2

A. Schedulability analysis

For Challenge 2A, when it goes to maximum end-to-end
latency, we could employ the critical instant property [LL73],
[LSAF14] to compute it. That is, the maximum latency hap-
pens such that
• T5, T6 and T7 always execute by their worst-case.
• T6 starts to execute coincidently with a release of T2.

We assume the period of T2 is exactly equal to P2 = 40ms;
Then, we obtain the maximum latency 74ms for J6 = 0 and
74 + 20 = 94ms for J6 = 20ms. Notice that they are both
inferior to P6, so there is no possibility that a new instance
of T6 starts before the last instance of T7 completes. Possible
variations in the period of T2 do not have any impact on the
estimated end-to-end latency.

As for the minimum latency, a first intuition is that T5,
T6 and T7 should execute by their best-case, so we compute
4 + 4 + 9 + 4 + 11 = 32ms.
• If the initial offset between T2 and T6 is larger than 32ms,

then the minimum latency is indeed 32ms.
• Otherwise, T2 preempts the execution of T5-T7 at least

once, and the minimum latency would be 32+17 = 49ms.
Therefore, we conclude that the latency of the chain T5-T7

is within [49, 94].
In Challenge 2B, a mutually exclusive resource is shared

between T5 and T2. In this case the minimum and maximum
latencies do not change, whereas task T2 could suffer for a
delay of 2 in accessing the shared resource, so its response
time will vary in [17, 19].

If we have the freedom to manipulate priorities we can
further reduce the end-to-end latency. T2 is part of the chain
for video frame processing, and to avoid interfering the
verification result in Challenge 1, we still assume that T2 has
higher priority than T5, T6 and T7. We can re-arrange the
priorities among T5, T6 and T7 as T5 > T7 > T6, and the
worst-case latency becomes 69ms for J6 = 0 and 89ms for
J6 = 20ms. It is not difficult to see that this is the optimum
priority assignment by enumeration.

B. PTA model for Challenge 2

We modeled the system following the scheduling framework
for PTA proposed in [LSAF14]. We do not report here the
full model for lack of space, it can be found at [XP]. We just
summarize the main points:
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• The scheduler is modeled as a separate automaton, gen-
erated automatically from the priority ordering, and it
interacts with the task automata using synchronization.

• Variable execution times are modeled by non-
deterministic choices.

• Also, initial task offsets are modeled as non-deterministic
choices: the period of T6 is p6 ∈ [0,P6 − 32], whereas
the period of T2 is p2 ∈ [0,P2 − 17].

• An observer automaton measures the end-to-end latency
with a clock. Maximum and minimum latencies are
modeled as parameters, exactly in the same way as the
model developed for Challenge 1A.

• Due to lack of time, we modeled only Challenge 2A,
however an extension of the model to Challenge 2B is
straightforward.

The model converges after 2 seconds to the same values as
the ones computed by the schedulability analysis.This confirms
the results and confirms the fact that this second challenge is
much easier to solve than Challenge 1.

One potential benefit of using IMITATOR is that we can
easily investigate the robustness of the solution with respect
to variations in task worst-case execution times or periods by
choosing them as parameters in the PTA model.

In the end, we report the results for Challenge 2 in Table III.
As we discussed, the existence of a shared resource between
T5 and T6 does not affect the latency for the chain T5-T7.

min latency max latency
J6 = 0 ms 49 ms 74 ms
J6 = 20 ms 49 ms 94 ms

(a) The min/max latency

T2>T5>T7>T6
max latency

J6 = 0 ms 69 ms
J6 = 20 ms 89 ms

(b) The optimal priority assignment

TABLE III: Results for Challenge 2

VIII. CONCLUSION

We proposed solutions to the FMTV challenge both using
empirical analysis and formal methods based on PTA. Thanks
to their expressiveness, PTA are especially convenient for
modeling systems that contain some unknown but constant
configurations. Challenges 1A and 1B were the most difficult,
so we only provided upper bounds on results for them. The
high complexity is mainly due to the large hyperperiods,
therefore a complete model is intractable. We spent about one
week for studying the problem and provide a model that could
converge in a decent time.

Conversely, Challenge 2 is a scheduling problem, whose
solution can be obtained quickly using schedulability analysis
methods. The solution has been validated by a formal model
based on PTA that took half a day to be built using the

framework developed in [LSAF14], and only a few seconds
to converge.

An advantage of using parametric model checking for
challenge 1A is that we do not get only a min/max value
for the end-to-end latency, but a list of all possible values
according to our model. Furthermore, we also get the exact
values of the periods that lead to the smallest and largest end-
to-end latency, which can be of interest to better understand
the model.

IMITATOR is the software tool we rely on for performing
parametric analysis. IMITATOR turned out to be particularly
well-suited for the analysis of such systems with period
constants but with some (unknown) imprecision. We also
note that we used the current version of IMITATOR, with no
dedicated improvement for this challenge (with the exception
of a small Python script to parse the result). Hence, this leaves
space for improvements dedicated to these case studies, i.e.,
specific heuristics or simulation relations for ad-hoc reductions
of the state space.
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