Solving the 2015 FMTV Challenge Using
Response Time Analysis with MAST

Julio L. Medina, Juan M. Rivas, J. Javier Gutiérrez, and Michael Gonzalez Harbour

Departamento de Ingenieria Informatica y Electronica, Universidad de Cantabria, 39005-Santander, SPAIN
{medinajl, rivasjm, gutierjj, mgh}@unican.es

Abstract

Abstract—This paper reports solutions and recommendations
regarding the design of the systems proposed in the 2015 edition of
the Formal Methods and Timing Verification Challenge (FMTV). It
uses the modelling formalism and the schedulability analysis
techniques provided by the MAST suite of tools. The paper starts
by clarifying the role of the data provided against the design intent.
Then, for each of the challenges proposed, it discusses the
adequacy of the analysis models used to represent the
corresponding timing characteristics as well as the strengths and
limitations of the underlying analysis approaches, and presents the
results obtained. Finally, we report the effort it took to solve them
and the lessons learned. The solutions are also provided in
electronic form to facilitate their assessment by the community.

1 INTRoDUCTION!

This paper presents a response to the 2015 FMTV
Challenge [6] which asked questions related to the
timing verification of two concrete scenarios taken from
a real industrial case study (fully described in [6]). This
is an aerial video system to detect and track objects
moving on land. Challenge 1 asks for the analysis of the
video frame processing sub-system, which is formed by
four tasks, each running in a separate hardware
processing unit. Challenge 2 also analyses four tasks
running in the processor that tracks objects and controls
the camera orientation. Fig. 1 and Fig. 2 condense their
timing specification.

FPGA GPP1 GPU

™ ¢
(Pre-processing) > (Processing) a5

T3
/' frame ~ (Filtering) R .
4 =S
w, 7
II o Z

/] % J "~ Period = 40/3ms +- 0,05%
4 BCET = WCET = 28ms BCL =17ms GPP2 4

.
Period = 40ms +-0,01% WCL = 19ms ~
~ Period = 40ms +/-0,01%

T4
(DIA converting)
« €<
to display =~ CET=1ms or 10ms

Fig. 1. . Challenge 1 Video frame processing

~~ BCET = WCET = 8ms

1. This work has been funded in part by the Spanish Government and
FEDER funds under grant TIN2011-28567-C03-02 (HI-PARTES). This
work reflects only the authors’ views; the funding organisms are not liable
for any use that may be made of the information contained herein.

Tracking
control
T T

z, o
R i
<3 !
> [4ms,4ms] |
7 1
/ N

Period = 100ms
Jitter =j

Camera

control |7

Targ. pos.
13
| prediction | T2

Processing| T2

From
Pre-processing 7

[4ms,7ms] eriod = 40ms +/-0,01%

v

[17ms,17ms]

[9ms, 10ms]

e

To
Filtering

[4ms,5ms]

[11ms,14ms]

=0
4

Fig. 2. . Challenge 2: Tracking and camera control

The paper faces the timing verification of these
challenges by applying response time schedulability
analysis (RTA). As will be discussed later, the questions
asked for both challenges can be interpreted under the
assumption that the design must prevent frame loss,
which indirectly imposes hard real-time requirements
that can be checked with schedulability analysis. If the
interpretation of the challenges requirements is that it is
acceptable that video frames can get lost, then the
system would have soft real-time requirements. In this
case, although the upper bounds obtained for the
response times would continue to be walid,
schedulability analysis might not be the right tool to
evaluate the system performance.

The tools used for the analysis are offered by MAST
[1], a Modeling and Analysis Suite for Real-Time
Applications. MAST helps in moving the effort needed
to do the analysis from the application of the
mathematical models and the corresponding algorithms
to a much higher level of abstraction. In turn, this
demands for: (1) the correct characterization of the
system in the analysis model, (2) the selection and use of
the least pessimistic technique, and (3) the correct
interpretation of the results provided by the tools. This
approach is significantly much easier to carry out by
real-time practitioners and greatly reduces the gap
between the math in the analysis techniques and the

PR, PR, PR;
(I gl
Dy |
e i |
il 72 73
| b |

Fig. 3. MAST end-to-end flow model

software engineering oriented models that describe the
timing behavior of the applications to be verified.

The rest of the paper is organized as follows. Section 2
describes the basic features supported by MAST and
summarizes the various capabilities that can be used to
solve the challenge. Section 3 and Section 4 discuss the
modeling, analysis alternatives, and results obtained for
FMTV’2015 Challenge 1 and Challenge 2, respectively.
Finally Section 5 discusses the results, the effort required
to obtain them and the lessons we think that practitioners
may learn from this experience.

2 MAST MODELING AND ANALYSIS APPROACH

MAST provides an open source set of tools that enable

engineers developing real-time applications to perform

various kinds of schedulability analysis on them. Some
aspects for further reading about MAST [4] are the
following:

¢ A very rich model of the real time system is used [1][7].
It is an event-driven model that supports complex
dependence patterns among the different tasks. For
example, tasks may be activated with the arrival of
several events, or may generate several events at their
output. This makes it ideal for analyzing or simulating
real-time systems designed in languages like UML/
MARTE [3][5].

e It includes offset-based response time analysis
techniques [8][10][11][12] that can be applied to
heterogeneous systems, combining different
scheduling policies in the processors and networks[14].

¢ The toolset is open source and fully extensible. This has

allowed other teams to provide enhanced versions [2].
® A priority assignment tool is included. The technique

used by default is HOSPA (Heuristic Optimized

Scheduling Parameters Assignment) [14].

The MAST system model assumes a real-time
distributed system with multiple processing resources
(CPUs and communication networks). This system has
distributed end-to-end flows with periodic activations. Each
end-to-end flow is released by a periodic sequence of
external events, and contains a set of steps. A step
represents the execution of a task in a processor, or a
message transmitted in a network. Each periodic release
of an end-to-end flow causes the execution of one instance
of the set of steps, each step being released when the
preceding one in its end-to-end flow finishes its execution.
The model also allows mutual exclusion synchronization
in the processors.

We assume that the steps are statically assigned to
processors. The relative phasing of the activations of
different end-to-end flows is assumed to be arbitrary. The
events activating the flows may have release jitter and
each step may also have an associated initial offset which
is the minimum release time for the step, relative to the
activation of the external event. We assume that both
release jitter values and offsets may be smaller or larger
than the period of its end-to-end flow.

Fig. 3 shows an example of an end-to-end flow with
three steps, each executing in a different processing
resource PR,. The arrival of the external event that
releases the end-to-end flow is represented by a thick
vertical arrow labeled e; The thin horizontal arrows
represent the release of the following steps in the end-to-
end flow; a step cannot be executed before the preceding
step has been completed. Each step has a worst-case
execution time (WCET) and a best-case execution time
(BCET). The model assumes no explicit limit for the event
queue between a step and the next, although from the
analysis results it is possible to obtain the actual size that
ensures no event loss.

The timing requirements that we consider are end-to-
end deadlines that start at the end-to-end flow instance’s
period, and must be met by the final step of interest in the
flow, although intermediate deadlines are also possible.
We allow deadlines to be larger than the periods.
Deadlines are very important for two reasons: they allow
checking the schedulability of the system, and they are
also the optimization criteria to assign priorities.

MAST allows the tasks to use mutually exclusive
resources under a real-time synchronization protocol such
as the immediate priority ceiling. The tool provides
automatic calculation of the priority ceilings of the
resources and upper bounds on the blocking times of each
task caused by the delays introduced by other lower
priority tasks. These blocking times may be pessimistic in
some cases, because precedence relations existing in an
end-to-end flow are not taken into account for their
calculation.

As a result of the schedulability analysis, each step has
a worst-case response time (or an upper bound for it)
(WCRT) and a best-case response time (or a lower bound
for it) (BCRT). These response times are relative to the
arrival of the external event. The WCRTs are calculated
through response-time analysis, while BCRTs are just the
sum of the BCETs of the tasks in the end-to-end flow. As is
shown in [9] this lower bound on the best-case response
times gives results that are quite tight in comparison with
a more accurate analysis.

Among other scheduling policies, MAST supports
fixed priorities allowing the user to specify the value of
the priority of a thread or message stream. It also supports
a boolean parameter called Preassigned with the following
meaning: if this parameter is set to the value “No”, the
priority may be assigned by one of the priority
assignment tools; otherwise, the priority is fixed and
cannot be changed.

MAST also allows modeling different kind of servers
based on fixed priorities. In particular, a polling server can
be modeled through the Polling Policy. This server

represents a periodic task that polls for the arrival of its
input event. Thus, the execution of the event may be
delayed until the next period. Besides the parameters of
the fixed priorities policy, the polling period and the
overhead of the polling task can also be specified.

Finally, the model includes the possibility of having
multipath end-to-end flows, where for example an event
flow can be divided into several paths with a fork
(multicast) construct.

The MAST model can be expressed as the combination
of three complementary sub-models: (1) the platform
model, which has processors, networks, schedulers, and
threads (called servers), (2) the logic units model, which
has operations and shared resources, and (3) the end-to-
end flows or real-time situation model, which has the
causal flows of externally triggered activities.

3 CHALLENGE 1: VIDEO FRAME PROCESSING

Before entering into the modeling of the problem we will
clarify our interpretation of the specified timing
requirements. The input stimulus for the end-to-end flow
has a periodicity of 40 ms +/- 0.01%. The separate periods
for tasks T3 and T4 suggest that the best model for these
tasks is as polling servers. The polling period for task T4 is
also 40 ms +/- 0.01% while the one for task T3 is 40/3ms +/-
0,05%. On the one hand, this variability is too high in
absolute terms to be the drift of a hardware clock and thus
it could be understood as a lack of resolution for the clock.
On the other hand the specification states that the period
is fully stable along the time. This brings up two
interpretations of the variability of the clocks. In case (1-1)
all three clocks use their nominal periods and the
resolution acts as a release jitter; in case (1-2) each clock
has a fully stable period, which can be any inside its range
of variability. For each of these cases we need to use the
worst case situation. All the time values will be expressed
in milliseconds.

For case (1-2), the period of T1 is chosen as the one
bringing in more work per time unit, which is the lower
bound of the period interval: 39.996. The polling periods
are chosen to introduce the longest delay, and thus are the
upper bounds of the period intervals: 40.004 for T4, and
13.34 for T3. The worst case response time of the system is
clearly unbounded since T4 is not able to catch up with all
the frames produced by the camera and, disregarding the
size of the queue, some frames will be lost.

For case (1-1) and for the same reason, even if we
consider release jitter for T1, we need T4’s polling period
to be less than or equal to T1’s period. We will use the
most restricting values for them: 39.996ms.

3.1 Modeling

The platform of Challenge 1 has four processors, each
with one schedulable resource (task). All of them use a
fixed priority (FP) policy scheduler. The four tasks have
an FP scheduling parameter assigned (a priority value).
Tasks T4 and T3 are scheduled as polling servers, and so
additional parameters are needed to include the polling
period and polling overhead. There is no overhead
associated to the polling servers, as there are no other

tasks in their processors that could suffer it. Fig. 4 shows
the platform model and the logic units model for this

system.

Platform Model

fpga: Regular processor

gpp1: Regular processor

gpu: Regular processor

gpp2: Regular processor

Speed Factor: 1.00
Worst ISR Switch: 0.00

Speed Factor: 1.00
Worst ISR Switch: 0.00

Speed Factor: 1.00
Worst ISR Switch: 0.00

Speed Factor: 1.00
Worst ISR Switch: 0.00

s_fpga: Primary Scheduler

s_gpp1: Primary Scheduler

s_gpu: Primary Scheduler

s_gpp2: Primary Scheduler

Host: fpga

Policy: Fixed Priority
Worst Context: 0.00

Host: gpp1
Policy: Fixed Priority
Worst Context: 0.00

T1: Regular server

T2: Regular server

Sched: s_fpga
Policy: Fixed Priority
Priority: 1

Sched: s_gpp1
Policy: Fixed Priority
Priority: 1

Host: gpu
Policy: Fixed Priority
Worst Context: 0.00

Host: gpp2
Policy: Fixed Priority
Worst Context: 0.00

T3: Regular server

T4: Regular server

Sched: s_gpu
Policy: Polling
Priority: 1

Peiod: 13.34

Worst Overhead: 0.00

Sched: s_gpp2
Policy: Polling
Priority: 1

Peiod: 39.996

Worst Overhead: 0.00

Logic Units Model

o_t1: Simple Operation

0_t2: Simple Operation

o_t3: Simple Operation

0_t4: Simple Operation

WCET: 28.00

BCET: 28.00

WCET: 19.00
BCET: 17.00

WCET: 8.00
BCET: 8.00

WCET: 10.00
BCET: 10.00

Fig. 4. . Platform and logic units models for Ch_1

The logic units model for Challenge 1 has four
operations, each characterized by its worst and best case
execution times (WCET and BCET). Since the interactions
between tasks in this case do not involve mutual exclusion
in the access to shared resources, there are no such
elements in the model.

The real-time situation model for Challenge 1 is
depicted in Fig. 5. T1 is activated periodically and T2
starts when T1 ends. T3 and T4 work periodically by
processing the data provided at their input buffers.

T=39.996;jitter=0.008 T=13.34 T=31'996
T1/o_t1 » T2/0 12 » T3/0_t3 » Tajo t4 >
i1 2 i3 ol

Fig. 5. . Real-time situation for Challenge 1

3.2 Analysis

When launching the MAST analysis it is possible to select
the default tool, but in some cases it is possible to get a
less pessimistic result by using the technique called offset-
based with precedence relations [11]. For Challenge 1 this
is the technique that provided the best results.

3.3 Results

MAST expresses the results as response times and output
jitter values associated to the events that connect steps
along the causal flow (i1, i2, i3 and ol in this case). Their
values are relative to the triggering external stimulus. The
analysis results obtained for Challenge 1 case (1-1) are
shown in Table 1.

Table 1Response times for Challenge 1 (ms)

i1 i2 i3 o1
BCRT 28 45 53 63
WCRT 28.008 | 47.008 | 68.348 | 118.344
Max. Output Jitter | 0.008 | 2.008 | 15.348 | 55.344

The questions posted in Challenge 1 are divided in two
sets: 1A and 1B.

Challenge 1A: Compute:

1. The minimum (b1al) and maximum (w1al) latencies
for a given frame from the camera output to the
display input, for a buffer sizen=1

2. The minimum (b1a3) and maximum (w1a3) latencies
for a given frame from the camera output to the
display input, for a buffer sizen=23

Response. As stated at the beginning of this section, in
the worst interpretation for case (1-2) the WCRT is
unbounded for any finite buffer size; so wlal = wla3 =
unbounded.

For case (1-1), supposing correctly designed polling
periods, the BCRT and WCRT for unlimited buffer size
are 63 and 118.344 ms, respectively (see Table 1).

The MAST results model includes a result called
Num_Of_Queued_Activations, which is defined as the
maximum number of pending activations in the input
queue of the activity preceding the referenced event.
Currently, only the MAST simulator produces this
parameter. We have an analytical method based on the
response times to calculate that value, but it is not yet
implemented in the analysis tool. The response times are
calculated by assuming an unlimited buffer size and from
these values we obtain the worst case latency of an
internal event in the buffer. An upper bound for this
buffer latency is the WCRT of the step consuming the
event minus its WCET and minus the BCRT of the step
injecting the event in the buffer. Finally, the number of
queued activations is obtained as the ceiling of this buffer
latency divided by the period.

By applying this method the buffer size should be n=2
for the period of 39.996ms in the frame production.
Therefore, with n=1 we cannot assure that the system is
schedulable; since frames arriving at a full buffer are
discarded the response time for n=1 is bounded by the
response time for unlimited buffer size, as the system
would have less work to process, thus wlal= 118.344ms.
With n=3 there is no frame loss and therefore the results
for unlimited buffer size (Table 1) apply: b1a3= 63ms and
w1a3=118.344ms.

Challenge 1B: Due to the different clock drifts, all frame
with a same index may be discarded at the entrance of the
buffer at the input of the task T4. Compute:

1. the minimum time distance between two frames
produced by the camera (d1b1) that will not reach the
display, for a buffer sizen=1

2. the minimum time distance between two frames
produced by the camera (d103) that will not reach the
display, for a buffer sizen=3

Response. As mentioned in the introduction, we interpret
these questions as finding the minimum distance between
two frames such that there is no frame loss. In this way, if
the time distance is just below the computed value then
there might be a frame loss and a frame will not reach the
display.

As said, if polling periods are allowed to be larger than
the camera frame generation period the system is not

schedulable, so here again our response will consider
properly designed polling periods for T3 and T4.

As mentioned in the response to Challenge 1A, the
buffer size should be n=2 for the period of 39.996ms in the
frame production. The challenge states that all additional
frames with the same index are discarded at the entrance
of the buffer, so there is only one frame stored at this
buffer per frame produced by the camera, thus resulting
in a real period of 39.996ms for the event generated at the
output of task T3. Notice that this period can be affected
by the maximum output jitter of its event (i3), which is
15.348ms as shown in Table 1.

If we have a buffer size of n=1 then the minimum time
distance between two frames produced by the camera
should not be less than d1b1=55.344ms (according to our
method for calculating the buffer size), which allows task
T4 to process the frame awaiting in the buffer before the
next frame is injected in the buffer by task T3. We assume
that the rest of the characteristics of the system remain the
same, in particular the activation periods of tasks T3 and
T4 (13.34ms and 39.996ms, respectively).

In this challenge, considering the buffer size n=3 is
equivalent to saying that we can produce frames at a
higher rate. By simple inspection of task T1, we find a
lower bound of 28ms for its period in order to have the
utilization of the FPGA resource below 100%. We also
assume that reducing the period of task T1 implies
reducing the period of task T4 to the same value, to
prevent frame loss. Keeping the timing consistency for
task T3 we assume that its period is a third of this value.
Taking all these changes into account, we repeat the
calculation of response times and re-evaluate the size of
the buffer resulting in a value of n=2. Therefore, n=3 will
not help in reducing T1’s period any further, and so
d1b3=28ms.

4 CHALLENGE 2: TRACKING AND CAMERA
CONTROL

The relevant characteristics for modeling Challenge 2 are:
Each function is mapped to one task. All tasks are in the
same processor using FP preemptive scheduling with
priority order: T2 > T6 > T5 > T7. All tasks are triggered by
the arrival of data at their inputs. T7 is invoked from an
action in the middle of T6.

4.1 Modeling

Challenge 2 analyses processor GPP1. This platform is
modeled by a processor and a scheduler, and has 4 tasks
in it. This is shown in Fig. 6.

gpp1: Regular processor |_s_gpp1: Primary Scheduler |
Speed Factor: 1.00 || Host: gpp1

L Policy: Fixed Priority
Worst ISR Switch: 0.00 Worst Context: 0.00

—

T7: Regular server

T5: Regular server

T6: Regular server

T2: Regular server

Sched: s_gpp1
Policy: Fixed Priority
Priority: 1

Sched: s_gpp1
Policy: Fixed Priority
Priority: 2

Sched: s_gpp1
Policy: Fixed Priority
Priority: 3

Sched: s_gpp1
Policy: Fixed Priority
Priority: 4

Fig. 6. . Platform model for Challenge 2

Challenges 2A and 2B differ in the use of a shared
resource protected by the priority ceiling protocol
between T5 and T2. Fig. 7 shows the logic units model for
Challenge 2B.

o1: Simple Operation

o04: Simple Operation

WCET: 4.00
Locked res: 0
Unlocked Res: 0

WCET: 5.00
Locked res: 0
Unlocked Res: 0

Resource: Immediate Ceiling

02: Enclosing Operation

Ceiling: 32767
Preassigned: NO

WCET: 7.00
Num Of Operations: 1

03: Simple Operation

05: Simple Operation

Simple Operation

_access:

WCET: 10.00
Locked res: 0
Unlocked Res: 0

WCET: 14.00
Locked res: 0
Unlocked Res: 0

WCET: 2.00
Locked res: 1
Unlocked Res: 1

06: Enclosing Operation

-

WCET: 17.00
Num Of Operations:1

Fig. 7. . Logic units model for Challenge 2B

The real-time situation for Challenge 2 has two external
stimuli, hence it is described by means of two end-to-end
flows. Fig. 8 shows the model for the flow containing the
processing task (T2), choosing the most demanding
period of 39.996ms.

T=39.996:iitter=0.008

T2/06)

i8
Fig. 8. . End-to-end flow for task T2 in Challenge 2

The second flow has a period of 100 (T100). To model
the invocation of T7 from an action in the middle of T6
this task is broken up in two steps: T6/03 before the
invocation of T7 and T6/o4 after. The straightforward
model includes a fork construct as it is shown in Fig. 9.

The current version of MAST uses the holistic analysis
technique [15][13] to analyze this kind of multipath end-
to-end flow containing fork elements. This analysis is
more pessimistic than the offset-based techniques used to
analyze linear end-to-end flows; for this reason two
versions of the real-time situation are proposed. One
directly models the scenario proposed in the challenge
using a fork construct (multipath), and the other works
with an equivalent linear version (linear) that assumes a
concrete order for the execution of the steps that follow
the fork, considering the priorities they have assigned and
the fact that the flow executes in a single processor.

T=100; jitter=j (j=0 or j=20)
T6/o4 [
i4 i6
T6/01 —» T5/02 —» T6/03
i i3
il 2 T7/05 |
i5 output

Fig. 9. . Direct model of T100 in Challenge 2 with a fork construct.

Since T6’s priority is greater than T7’s, 04 precedes 05
and it is possible to build the equivalent linear model for
T100 shown in Fig. 10. If their priorities were the same we
would need to build two equivalent linear models and use
the worst results.

T=100; jitter=j (j=0 or j=20) b

T6/01 o T5/02 » T6/03 —| Te/oa [—»| T7/05

il i2 i3 i4

output

Fig. 10. . Linear model for T100 in Challenge 2.

The questions in Challenge 2 need two additional
variants for T100, one with jitter 0 and another one with
jitter 20.

4.2 Analysis

Challenge 2 not only requires analysis but also an
optimum assignment of priorities. RTA has been applied
to both, the multipath, and the linear models. For the
multipath model only the holistic technique is available
[15], while for the linear version three offset-based
techniques have been essayed: The approximate with
precedence relations (Approx_w_Pr) [11], Slanted [8], and
Brute-Force [16]. The blocking time caused by the shared
resource (in Challenge 2B) is automatically taken into
account by all the analysis techniques in MAST.

For the assignment of priorities only the least
pessimistic linear version of T100 is used. Since priorities
are to be changed by the optimizer, and this change may
lead to a different linear model, two scenarios of the
model are analyzed. Each has sufficiently separated
priority values preassigned to T6 and T7. Variant A is
designed so that step 04 goes before 05 (T6>T7). Variant B
uses the opposite order (T7>T6). The linear model for
variant B is shown in Fig. 11; its deadline is attached to i4.
The deadline for variant A, shown in Fig. 10, is at the
output event.

T=100; jitter=j (j=0 or j=20,
jitter=j (j j=20) D=100;
T6/01 » T5/02 » T6/03 [—»| T7/05 1» T6/04 [
il i2 i3 i4 output

Fig. 11. . Linear model for priority assignment in T100, variant B

Additionally it is important to notice that for doing the
priority assignment the tool requires the specification of
deadlines (D) for the end-to-end flows of interest. The
deadlines are the input specifying the optimization
criteria. From the specification it seems that the latency of
interest is only the one from the activation of T6 to the
termination of T7, so for T100 let D=100ms (case h). In the
understanding that this processor is just a part in a system
we also searched the cases when T2 has D=1000ms (case
m) and deadlines are equal to periods (case n).

4.3 Results

Table 2 summarizes the results of the analysis for
Challenge 2A using the initial priority assignment, while
Table 3 summarizes the results of the analysis for
Challenge 2B.

Table 2 RTA for Challenge 2A, no shared resource (ms)

Multipath Offset-based | Offset-based | Offset-based
Holistic Approx_w_Pr Slanted BruteForce
jitter 0 20 0 20 0 20 0 20

BCRT 28 28 32 32 32 32 32 32
WCRT 726 | 831 74 94 463 | 498 | 463 498

To search for the priority assignment requested in
Challenge 2B, we used the default MAST tool (HOSPA).
The values used for T6 ad T7 priorities in variants A and B
were 16 and 8, in a range of 1 to 32 (32 the highest). The

Table 3 RTA for Challenge 2B, with shared resource (ms)

Multipath Offset-based | Offset-based | Offset-based
Holistic Approx_w_Pr Slanted BruteForce
jitter 0 20 0 20 0 20 0 20

BCRT 28 28 32 32 32 32 32 32
WCRT 730 | 856 78 98 465 | 545 465 545

combinations of the two variants and three cases for the
deadlines give way to the following six scenarios:

® (ScAh) Priority T6 > T7, T100 D=100

® (ScAm) Priority T6 > T7, T100 D=100, and T2 D=1000

® (ScAn) Priority T6 > T7, and D=T

(ScBh) Priority T6 < T7, T100 D=100

(ScBm) Priority T6 < T7, T100 D=100, and T2 D=1000
(ScBn) Priority T6 < T7, and D=T

The results for all these scenarios including the
obtained priority assignments are shown in Table 4.

Table 4 Priority assignment and WCRTs (ms)

WCRT Priority Assignment

T100 T2 T6* T5 T7* T2

j=0 |Sc4h 42 57.008 16 27 8 1
ScAm 74 24.008 16 29 8 22
ScA4n 74 19.008 16 22 8 29
ScBh 39 57.008 8 24 16 1
ScBm 54 31.008 8 24 16 12
ScBn 88 19.008 8 12 16 24
j=20 [Sc4h 62 57.008 16 27 8 1
ScAm 94 24.008 16 29 8 22
ScA4n 94 19.008 16 22 8 29
ScBh 59 57.008 8 24 16 1
ScBm 74 31.008 8 24 16 12
ScBn 106 19.008 8 21 16 27

* These priority values were preassigned in the model to make them
consistent with the chosen variant, A or B

The concrete questions posted in Challenge 2 are:

Challenge 2A. With no shared resource, compute:

1. The best-case (b2A0) and worst-case (w2A0) end-to-
end latencies from the activation of T6 to the
termination of T7 for a jitter value j=Oms

2. The best-case (b2A20) and worst-case (w2A20) end-to-
end latencies from the activation of T6 to the
termination of T7 for a jitter value j=20ms

b2A0=32ms; w2 A0=74ms;
b2A20=32ms; w2A20=94ms;

Response.

Challenge 2B. With the 2ms mutually exclusive access to

the shared resource between Tasks T2 and T5, compute:

1. The best-case (b2B0) and worst-case (w2B0) end-to-end
latencies from the activation of T6 to the termination of
T7 for a jitter value j = Oms

2. The best-case (b2B20) and worst-case (w2B20) end-to-
end latencies from the activation of T6 to the
termination of T7 for a jitter value j=20ms

3. The optimum priority assignment minimizing the
worst-case latency for a jitter value J= Oms (priorder-
2B0) and J=20ms (priorder-2B20)

Response. b2B0=32ms; w2B0=78 ms;
b2B20=32ms; w2B20= 98ms;

Minimizing the worst-case latency from the activation
of T6 to the termination of T7, the priority order for both
jitter values is:

priorder-2B0(wcrt 39ms)=priorder-2B20(wcrt 59ms)

= T5>T7>T6>T2 (Scenario Bh)

Notice that for that priority order T2 will have a latency
larger that its period.

Minimizing the worst-case latency for T2, the best
result is:

priorder-2B0=priorder-2B20 (T2 WCRT 19.008ms)

= T2>T5>T6>T7 (Scenario An)

5 CONCLUSIONS

This paper gives responses to all the questions posted in
this challenge. This has been done using the MAST suite
of tools for response time schedulability analysis. The
interpretation of the system requirements that has driven
the models and corresponding analyses has been that
there should be no loss of video frames. All digital
material with the input models as well as the results from
the tools can be retrieved from http://mast.unican.es/
waters15challenge/mastmodels.zip

Understanding the challenge took a PhD student about
an hour and a half, let us say, the time to read it carefully.
But identifying the correct models and tools, required
several trials and organized experiments plus the
experience of a senior practitioner. The actual time used
for solving challenge 1 was about two labor days
distributed along a week. Half a day for creating the
models and running the tool, and the rest for
understanding the results and iterating to bring up all the
alternatives, put them in shape and formalize the
response. Challenge 2 was much easier to understand but
the fork issue made it more difficult to model and much
more laborious for finding the best priority assignment.
The actual time devoted for solving challenge 2 was about
three days, one for modeling and getting the first results
using different tools, the rest for iterating over the
analysis in search of a proper priority assignment and for
keeping all the documentation in order.

Besides the work for formalizing the paper, the most
difficult part was trying to avoid inferring the reasoning
behind the design choices... we just had to accept them.
This surely comes from the fact that the challenge
description does not include all the nasty constraints the
actual Aerial Video System designer faces, but presents
only an abstracted view that is meant to be sufficient for
timing verification.

Some hints that may help designers to get less
pessimistic worst case response times by schedulability
analysis are: (1) Avoid using polling servers if direct
activation is possible. This way of synchronization
between tasks and processors is much more flexible and
gets better response times. If not avoidable, ensure that
the periods are faster than the minimum time between
arrivals. (2) Use asynchronous calls (forks) only to trigger
steps in other processors. For local interactions
synchronous calls are easier to analyze and produce less

pessimistic results. (3) Translate user requirements into
end-to-end deadlines. This helps to automate the
assignment of priorities to tasks and the calculation of
slacks, hence to optimize the use of resources. In the
accompanying material a solution to these challenges is
posted on a version of the given system whose design
takes these hints into account. Another optimization
could be using time offsets for the tasks of the end-to-end
flows. This could help in minimizing jitter and thus
increasing schedulability. MAST is able to use these
offsets in the analysis.

Real-time systems theory has developed a large
number of scheduling policies and analysis techniques.
Engineers trying to develop industrial real-time systems
need adequate skills to master those techniques, but also
the tools that allow them to model their systems and
apply the techniques with confidence. MAST was created
to serve both as an engineering tool and as a research
platform for developing such modeling and analysis
techniques. If analysis tools such as MAST are to be used
by engineers who do not master real-time analysis, it is
necessary that the system architecture is automatically
generated to ensure a smooth mapping between the
software implementation and its real-time model.

REFERENCES

[1] M. Gonzélez Harbour,].J. Gutiérrez, J.C.Palencia and
J.M.Drake, MAST: Modeling and Analysis Suite for Real-Time
Applications, in Proc. of the Euromicro Conference on Real-Time
Systems, June 2001.

[2] Marco Panunzio and Tullio Vardanega, Schedulability analysis
of Ravenscar systems with MAST+ http://www.artist-
embedded.org/docs/Events/2011/Models_for_SA/06-
MAST+Marco_Panunzio.pdf.

[3] Object Management Group, UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems,
version 1.1, OMG document formal/2011-06-02, 2011.

[4] MAST home page: http://mast.unican.es/
[5] http://mast.unican.es/umlmast/marte2mast

(6]

(71

(8]

Bl

(10]

(11]

(12]

(13]

[14]

[15]

[16]

https://waters2015.inria.fr/files/2014/11/FMTV-2015-
Challenge.pdf

M. Gonzalez Harbour,].J. Gutiérrez,] M. Drake, P. Lépez
Martinez, and J.C. Palencia, “Modeling distributed real-time
systems with MAST 2,” Journal of Systems Architecture 59(6),
pp- 331-340, 2013.

Jukka Méki-Turja and Mikael Nolin, “Efficient implementation
of tight response-times for tasks with offsets,” Journal of Real-
Time Systems. Volume 40 Issue 1, pp. 77 - 116, 2008.

]J. C. Palencia, J. J. Gutiérrez and M. Gonzalez Harbour, “Best-
Case Analysis for Improving the Worst-Case Schedulability
Test for Distributed Hard Real-Time Systems”, Proceedings of
10th Euromicro Workshop on Real-Time Systems, IEEE
Computer Society Press, pp. 35-44, June 1998.

J.C. Palencia and M. Gonzalez Harbour, “Schedulability
Analysis for Tasks with Static and Dynamic Offsets,” Proc. of
the 18th. IEEE Real-Time Systems Symposium (RTSS), Madrid,
Spain, pp. 26-37, 1998.

J.C. Palencia, and M. Gonzdlez Harbour, “Exploiting
Precedence Relations in the Schedulability Analysis of
Distributed Real-Time Systems,” Proc. of the 20th IEEE Real-
Time Systems Symposium, USA, pp. 328-339, 1999.

J.C. Palencia and M. Gonzalez Harbour, “Offset-Based
Response Time Analysis of Distributed Systems Scheduled
under EDF,” Proc. of the 15th Euromicro Conference on Real-
time Systems (ECRTS), Porto, Portugal, pp. 3-12, 2003.

K. Tindell, and J. Clark, “Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems,” Microprocessing &
Microprogramming, Vol. 50, Nos.2-3, pp. 117-134, 1994.

JM. Rivas, J.J. Gutiérrez,].C. Palencia, and M.Gonzalez
Harbour, “Distributed Schedulability =~ Analysis and
Optimization of Heterogeneous EDF and FP Real-Time
Systems,” Proc. of the 23rd Euromicro Conference on Real-
Time Systems (ECRTS), Porto, Portugal, pp. 195-204, 2011.

J. J. Gutiérrez, J.C. Palencia and M. Gonzalez Harbour,
“Schedulability Analysis of Distributed Hard Real-Time
Systems with Multiple- Event Synchronization,” Proc. of 12th
Euromicro Conference on Real-Time Systems, Stockholm
(Sweden), pp. 15-24, 2000.

K. Tindell, “Adding Time-Offsets to Schedulability Analysis”,
Technical Report YCS 221, Dept. of Computer Science,
University of York, England, January 1994.

