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Why GPU for real-time computing?

©

Nvidia Fermi hosts 512 Single Instruction Multiple Threads
(SIMT) cores

o Each thread can keep track of its state
o Zero context switching overhead

o Well written code can achieve up-to 10x speed-up over the
CPU

Cost/Performance yield is high compared to the CPU

©

©

GPUs can improve real-time application performance
significantly
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o GPU is command driven
o Copy input data to device
o Execute device code on copied data, produce output
o Copy device output to the host memory
o GPU commands are non-preemptive
o Subject to priority inversions

o Relatively hard to do schedulability analysis
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Example Priority Inversion

Example

Lp CCopy JKernel] >
MP Copy > >
HP * <Cop§)|l?erne1| >

Deadline
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Preemptive Memory Copies

o Data transfers are non-preemptive in both directions

o Transfer speed is predictable

o Instead of doing one big transfer, do multiple memcopies of
small chunks

o Preemption between memcopies of two chunks

Example

mp O OO > OCopy

HPbO

- |:| Kernel

Deadline
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Kernel Execution

o Kernel executions are non-preemptive in GPUs

o A kernel is executed by a grid of CUDA thread blocks
o CPU issues the execute command and waits until completion

Thread

[ 1]
L1 ] [ 1]
Tnput (6PU) LI I JHEN output (6PU)
L1 ] [ 1]
L1 ] [ 1]
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Preemptive Kernels

o Instead of executing a complete CUDA grid, execute sub-grids
o Exploit lack of block level synchronization in Cuda

o Blocks are assumed to execute independently
o Concurrently executing blocks are unknown to each other

o Preemption between sub-kernel boundaries

Block Th{ead

\[! ! !ﬂ I| I'I ||I #'
Sub-Grid
Input (GPU) Output (GPU)
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Kernel Preemption

Example

me —l > OCopy

HP m

> [ I kernet
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Overlapping Preemptive Memcopies and Subkernels

o Separate queues for memcopies and kernel executions per-task

o Fixed priority scheme
o CUDA can overlap memory copies and kernel executions of
different tasks

o As not only memcopies but also (sub)kernels are preemptive,
PKM can overlap a subkernel execution and memcopy of
different tasks regardless of their priorities

o Overlapping a high priority memcopy and a non-preemptive
low-priority kernel incurs priority inversion

o Each queue entry stores a timestamp and task specific
parameters
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Performance Evaluation

o Experimental Setup

GPU: NVIDIA GeForce GTX 460
CPU: AMD Athlon Il X4 630
Memory: 4GB RAM, 500GB HD
OS: Linux 2.6.32.21 kernel
Micro-benchmarks:

© 06 06 0 o

o Linear Search: Search the input for a given string
o Matrix Multiplication: Multiply two matrices

X

NVIDIA.
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Baselines: CUDA and RGEM (RTSS '11)

o RGEM (Responsive GPGPU Execution Model) decreases the
response time of high priority tasks via preemptive memory
copies

o RGEM does not support kernel preemption

o Both PKM and RGEM use Direct Memory Access (DMA) to
copy data between host and device

o RGEM makes an extra copy between application and RGEM
buffers in the OS kernel space

o This extra copy of RGEM is eliminated in the experiments to
favor RGEM
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Linear Search
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_ Experimental Results

Matrix Multiplication
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RGEM
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Experimental Results

RGEM
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Conclu

o GPGPUs can provide significant computational power to
real-time applications

o Preemptive copies and kernel executions to alleviate potential
priority inversion

o Greatly simplifies methods to hide data transfer overhead due
to preemptive memcopies and subkernel execution
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o Schedulability analysis

o Support for dynamic priority scheme
o QoS adaptation

o More advanced applications, e.g., image processing for CPS
applications
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Questions?
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