Why real-time scheduling theory still matters

Sanjoy Baruah
The University of North Carolina at Chapel Hill
Our discipline $=$ Systems + Theory

is about systems
...that require formal/theoretical analysis

Has over-emphasized the theory
- A distinguishing characteristic of the discipline

Is starting to remedy this
- The “only theory?” test
- Hard to get a uniprocessor paper into ECRTS/RTSS!
- Special issues/invited talks are systems-oriented

Let’s not over-compensate
Scheduling theory remains relevant to real-time systems.
Scheduling theory remains relevant to real-time systems. Some forms of scheduling theory are particularly important.
Scheduling theory remains relevant to real-time systems. Some forms of scheduling theory are particularly important. These important forms can be identified.
Scheduling theory remains relevant to real-time systems. Some forms of scheduling theory are particularly important. These important forms can be identified.

Outline of presentation

1. Why theory mattered (and matters)
2. What forms of scheduling theory are important
3. What specific areas are most important
Our discipline = Systems + Theory

The window of scarcity

Real-time systems often have resource constraints

why theory? - what kinds? - which areas?
Our discipline = Systems + Theory

The **window of scarcity**
- Real-time systems often have **resource constraints**

Often **safety-critical**
- Very high cost of error
- Must be validated correct by **Certification Authorities**

Use **theory** to prove correctness
The window of scarcity

Often safety-critical
What counts as good theory?

Should potentially be useful

The “pure” sciences legitimately take the discovery of facts and laws as an end in itself. A new fact, a new law is an accomplishment, worthy of publication. But in [computer science and engineering] novelty in itself has no merit. We test our artifacts by their

“Industrially relevant research is … research that is usable when industry decides it is relevant”

-Bjorn Andersson

1. new facts and laws are needed
 - but present them elsewhere (e.g., theory conferences)

2. need not be useful immediately
What counts as good theory?

In that empire, the art of cartography attained such perfection that [...] the cartographers guilds struck a map of the empire whose size was that of the empire, and which coincided point for point with it.

In the deserts of the west, still today, there are tattered ruins of that map, inhabited by animals and beggars.

- Jorge Luis Borges

* Using the appropriate abstractions
 - highlights a few salient features or principles
* Computationally tractable abstractions
 - E.g., for hard-real-time schedulability analysis

Obtaining appropriate abstractions is an important research area
Promising research areas

Multiprocessors

Component-based design

Mixed criticalities
Promising research areas

Multiprocessors
* Future RT systems will be multiprocessor ones
 - the multicore revolution

Component-based design
* Multiprocessor scheduling theory is not mature enough

Mixed criticalities
* Important questions
 - models
 - metrics
 - scheduling algorithms

Big-picture question: what critical insights are needed for multiproc. scheduling?
Promising research areas

Multiprocessors

Component-based design

Open systems and componentization

- more powerful platforms
- SWaP considerations
- software engineering issues

Mixed criticalities

Some work has been done... but much remains

- abstraction and interface specification
- an algebra for composition

why theory? - what kinds? - which areas?

Size, Weight, and Power (i.e., Energy)
Mixed criticalities: Promising research areas

Multiprocessors

Component-based design

Mixed criticalities
Different sub-systems have different certification requirements
- Defense avionics example. Flight-critical and mission-critical functionalities

Flight critical: certified by Certification Authorities
Mission-critical: validated by design team

Example: Determining worst-case execution time (WCET)
- flight-critical certification: cycle-counting under pessimistic assumptions
- mission-critical validation: extensive experimentation
Mixed criticalities: Promising research areas

J_1 is flight-critical; J_2 is mission-critical
Both arrive at $t=0$; have deadlines at $t=10$
WCET of J_1 is 6; WCET of J_2 is 5

$6 + 5 > 10 \Rightarrow$ not schedulable

But...
- flight-criticality certification does not need J_2 to meet its deadline
- for mission-critical validation, J_1’s WCET of 6 may be too pessimistic
 * Suppose J_1’s WCET, obtained by extensive experimentation, is 5

Priority-based scheduling: $J_1 > J_2$
Mixed criticalities: Promising research areas

\(J_1 \) is flight-critical; \(J_2 \) is mission-critical
Both arrive at \(t=0 \); have deadlines at \(t=10 \)
WCET of \(J_1 \) is 6; WCET of \(J_2 \) is 5

But...
- flight-criticality certification does not need \(J_2 \) to meet its deadline
- for mission-critical validation, \(J_1 \)'s WCET of 6 may be too pessimistic

* Suppose \(J_1 \)'s WCET, obtained by extensive experimentation, is 5

Priority-based scheduling: \(J_1 > J_2 \)

Flight-criticality certification

\(J_1 \) meets deadline

\(J_2 \) misses deadline
Mixed criticalities: Promising research areas

J_1 is flight-critical; J_2 is mission-critical
Both arrive at $t=0$; have deadlines at $t=10$
WCET of J_1 is 6; WCET of J_2 is 5

But...
- flight-criticality certification does not need J_2 to meet its deadline
- for mission-critical validation, J_1’s WCET of 6 may be too pessimistic
 * Suppose J_1’s WCET, obtained by extensive experimentation, is 5

Priority-based scheduling: $J_1 > J_2$

Mission-critical validation

J_1 meets deadline

J_2 meets deadline
Mixed criticalities: Promising research areas

J_1 is flight-critical; J_2 is mission-critical
Both arrive at $t=0$; have deadlines at $t=10$
WCET of J_1 is 6; WCET of J_2 is 5

Validated at both criticalities

The same system is being validated, twice

<table>
<thead>
<tr>
<th>Flight-critical certification</th>
<th>Mission-critical validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>at a very high level of assurance</td>
<td>at a lower level of assurance</td>
</tr>
<tr>
<td>of only a subset of the system</td>
<td>of the entire system</td>
</tr>
</tbody>
</table>

Interesting open issues:
- How do we represent MC systems?
- How do we reason about them?
 - “parallel worlds”? space-time partitioning?
- What scheduling strategies are suitable?
A thesis...

Scheduling theory remains relevant to real-time systems.

...and its justification

- The window of scarcity; safety-critical nature of applications
Summary

A thesis...
Scheduling theory remains relevant to real-time systems. Some forms of scheduling theory are particularly important.

...and its justification

• The window of scarcity; safety-critical nature of applications
• Must be relevant; must be at appropriate level of abstraction
Scheduling theory remains relevant to real-time systems. Some forms of scheduling theory are particularly important. These important forms can be identified.

...and its justification

- The window of scarcity; safety-critical nature of applications
- Must be relevant; must be at appropriate level of abstraction
- Multiprocessors; component-based design; and mixed criticalities
REAL-TIME SYSTEMS

SCHEDULING THEORY
A thesis...
Scheduling theory remains relevant to real-time systems. Some forms of scheduling theory are particularly important. These important forms can be identified.

...and its justification

• The window of scarcity; safety-critical nature of applications
• Must be relevant; must be at appropriate level of abstraction
• Multiprocessors; component-based design; and mixed criticalities