Outline

- **Progress in microelectronics**
- **Limits for Moore’s Law**
- **Power/Energy Wall**
- **Architecture Impact**
 - Homogeneous versus heterogeneous architectures
- **Power/Energy Models**
 - CPU Cores
 - DRAMs
 - WSN
- **Outlook**
Progress in Microelectronics

- First microprocessor 1972
- 2250 transistors, 108KHz, 10um, 11 mm²

Intel Dunnington

- 6 Core processor
- 1900 Mill. Trans.
- 2.66 GHz, 45nm
- 403 mm²
- >130 Watt

#Transistors $x 10^6$ #Frequency $x 30,000$
#Feature size $x 200$ #Chip size $x 40$

© N. Wehn
Source: Intel
Modern 3.5G Smartphone

- **Media:**
 - display, video

- **Baseband:**
 - 10pJ/operation

- **Application:**

Source: Kees van Berkel, DATE2009

Moore’s Law (1965)

- **Integrated Circuit Complexity**

- Scaling based manufacturing process (lithography)

Source: Intel
Technology Progress

Technology Innovation

- SOI
- Cu
- Strain
- High-k
- Scaling

Design Methodology Progress

Disciplined engineering design methodology
- Clustering and abstraction, models and sophisticated algorithms
Limits of Moore’s Law

Not technology but cost
- E.g. 22nm technology node
 - Fab 4.5-6.5 Billion $
 - Process R&D: 1.3 Billion $
 - Design 140 Mill. $
- Design starts in first 5 years
 - 45nm: 526
 - 32nm: 244
 - 22nm: 156

Design Complexity

Power/Energy

© N. Wehn

Power/Energy Wall

Covers entire spectrum of market sectors
- Large datacenters (MW), mobile devices (W), sensor platforms (uW)

Economic impact
- Worldwide CO₂ emission due to I&C technology ~ airplane emission
- 20% increase/year
- Datacenters: energy cost dominate overall costs, cooling cost about 40% of total energy

Thermal issues/hot spots

Reliability

Limited energy resources for mobile and sensor applications

Show stopper for further integration

⇒ **Parallel** and **heterogeneous** architectures

© N. Wehn
Why Multi-core

Pushing clock speed for getting higher performance in uP stopped
INTEL: Speed/Power Trade-off = fundamental theorem of multi-core

<table>
<thead>
<tr>
<th>Frequency reduction by</th>
<th>yields performance reduction</th>
<th>and power reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>13%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Frequency reduction by 20% yields performance reduction 13% and power reduction 50%.

Example calculations:

- Initial:
 - Freq = 1
 - Area = 1
 - Power = 1
 - Perf. = 1

- Reduced:
 - Freq = 0.8
 - Area = 2
 - Power = 1
 - Perf. = 2 x 0.87 = 1.74

(Future) GPP Multi-core Platform

- General Purpose Cores
- Special Purpose HW
- Scalable Interconnect

E.g. Intel's 48 core computer (ISSCC’10)
- 48 Pentium IA-32 processor cores, 576mm², 45nm, 1.3 Billion transistors
- 6x4 2D Mesh NoC
- Speed/Power Trade-Off
 - 1.5GHz@1.3V ⇒ 200W/50C°
 - 1.0GHz@1.14V ⇒ 125W/50C°
 - 125MHz@0.7V ⇒ 25W/50C°

Source: ISSCC’10

© N. Wehn
Homogeneous vs Heterogeneous Architectures

Homogeneous (HPC)
- Regularity simplifies hardware design, validation and manufacturing
- Simplified programming model \(\Rightarrow \) software development
- Large flexibility, no application specific computing platform \(\Rightarrow \) lowers cost
- Many optimization opportunities to operating system i.e. run-time scheduling

But what about energy efficiency?
- Simpler cores are more energy efficient than complex cores
 - E.g. calculating cloud resolving climate model
 - AMD Opteron 2.8GHz 1.700.000 Cores \(\Rightarrow \) 179MW
 - Tensilica Xtensa 500MHz 10.000.000 Cores \(\Rightarrow \) 3MW
- Processor performance has to match task workload and its *characteristic*
 - Voltage scheduling
 - Dynamic task scheduling
 - *But think on its overhead (energy, latency)!*

© N. Wehn

Heterogeneous Parallel Architectures

Role of Software
- Provides large flexibility
- Metric in SW: functionality, modularity and reusability
- SW can never improve the energy efficiency, it can just enable it
- Reality: SW often disables energy efficiency

E.g. “Computing” in smart phone 100 GOPS@1W
- SW implementation on embedded ARM11 processor: 20W
- SW implementation on DSP processor: 2..5W
- Dedicated HW implementation: 0.2-0.5W
 - E.g. MPEG decoding: HW \(\Rightarrow \) SW \(\Rightarrow \) HW

Fundamental Trade-off Flexibility/Energy

© N. Wehn
Homogeneous vs Heterogeneous Architectures

- **Heterogeneous**
 - Driven by energy and latency constraints ⇒ application specific
 - Latency and energy efficient tasks ⇒ dedicated /optimized hardware blocks
 - Flexibility for run-time optimization very limited, mainly static scheduling and mapping at design time
 - Increased complexity in hardware design and validation
 - Bound to an application class ⇒ higher cost

- **Energy and latency critical applications (e.g. mobiles)**
 - Heterogeneous architectures are dominating

⇒ Multi-Processor-System-on-Chip (MPSoC)

Heterogeneous MPSoC
(STM/TU Kaiserslautern)

- 2.5G and 3G Baseband Modem Chip
ASIP (TU Kaiserslautern)

- Blurring border HW and SW: Application Specific Instruction Set Processor
 - E.g. ASIP for channel decoding in SDR
 - 65nm technology, 385MHz, 0.7 mm², 100mW

Source: ISSCC’10 © N. Wehn

Magali Chip

(LETI / TU Kaiserslautern)

- 477mW NoC Based Digital Baseband for MIMO 4G SDR (ISSCC’10)
- 96Mtransistors, 27mm², 65nm technology

- 22 processing units:
 - 5 VLIW processors
 - ARM11 processor
 - ASIP processor

- Many HW accelerators
- 15 asynchronous NoC router
- Distributed power management

Source: ISSCC’10 © N. Wehn
Accurate power/energy models are key
Modelling of power/energy of key building blocks
- CPU, DRAM, Wireless Sensor Nodes

Frequently rely on simple assumptions
Standard equations for frequency and voltage scaling/scheduling (DVFS)

\[
P_{\text{active}} \sim f(V_{\text{DD}}) \cdot V_{\text{DD}}^2
\]
\[
E_{\text{active}} \sim P_{\text{active}} \cdot t = \frac{1}{T} \cdot V_{\text{DD}}^2 \cdot T \cdot \text{cycles} = V_{\text{DD}}^2 \cdot \text{cycles}
\]

- Frequency scaling only impacts power and not energy
- Lowest possible voltage/frequency yields power/energy optimum
Dynamic Voltage Scaling/Scheduling

- Given task with known WCET and deadline d
- Find minimum V_{DD}/f such that d is fulfilled on a processor

$$V_{DD}(S) = \frac{WCET + s}{WCET}$$

Trade-off: energy/performance

- Lowering V_{DD} lowers E quadratic but decreases f
- Accurate relation between V_{DD}, frequency f, performance, energy
- Accurate estimation of execution time

Understanding system behavior

A Case Study: XScale Board

- **XScale 80200**
 - 32-Bit CPU with optimized RISC Pipeline
 - Dynamic Frequency Scaling (333MHz to 733MHz)
 - Dynamic Voltage Scaling
 - 32kB data cache, 32kB instruction cache

- **XScale Evaluation Board for measurements**
 - Memory: SDRAMs
 - Memory Controller implemented in FPGA

© N. Wehn
Energy Measurements

- Performed measurements at different voltages V_1, V_2, V_3

Lessons Learnt for Energy

You have to take into account the whole system

- Voltage and frequency scaling does not affect memory

$$E_{\text{active}} = E_{\text{scal}}(V_{\text{DD}}) \cdot P_{\text{fix}}(V_{\text{DD}})$$

- Higher frequencies can be more energy efficient

$$E_{\text{total}} = E_{\text{active}} \cdot \delta + P_{\text{leakage_standby}} \cdot t \cdot (\delta - 1) + E_{\text{overhead}}$$
Further Lessons for Energy

- In reality only some discrete voltages possible
- Any voltage change implies overhead (DC/DC converter, PLL)
 - Latency: x 1.000 cycles
 - Energy overhead

Multi-Core architectures

- Processor core energy (performance) is often not dominating
 E.g. INTEL 48 core computer
 - Maximum Speed: Cores@1GHz, NoC@2GHz
 - 125W@1.14V@50C°: 69% cores, 30% NoC and DRAM interface
 - Low Power Mode: Cores@125Mhz, NoC@255Mhz
 - 25W@0.7V@50C°: 21% cores, 70% NoC and DRAM interface

Execution Time Estimation

\[
\text{Execution time } t = \frac{1}{f_{\text{VDD}}} \text{ cycles}
\]

- Relation between \(f \) and \(V_{\text{DD}} \)
 \[
 f_{\text{VDD}} \sim \frac{(V_{\text{DD}} - V_c)^\alpha}{V_{\text{DD}}} \text{ with } \alpha = 1..2
 \]

⇒ But fitting model in valid voltage operation range: \(f_{\text{max}} \sim V_{\text{DD}}^{1.75} \)

- Cycles: processor cycles + cycles for external memory accesses

External memory accesses

- Cache miss modeled in many models/simulators
- Cache miss \(\Rightarrow \) external memory (DRAM) has to be accessed
A modern 1 Gbit DDR2 SDRAM

- Minimize cost/bit ⇒ minimize cell area (cell size 0.02um² 20..30F)
- Access time to individual memory cell nearly constant over time ⇒ CAS latency improvement < 7%/year
- Throughput improvements in periphery/interfaces ⇒ complex interface protocol

![DRAM Diagram](image)

DDR2 SDRAM Timing Protocols

WRITE timing with Burst length=4

READ timing with CL=3 and Burst length=4
DDR2 Timing

- Large difference in timing (factor 6)
- Each activate (ACT) of a wordline is power hungry

State-of-the-art in many models/simulators
- Fixed latency for memory access and fixed energy/access

Energy and performance optimization
- Re-ordering of the DRAM accesses to avoid re-opening of rows

DRAM Power Models

- Many power modes for DRAMs
 - E.g. active (3nJ), standby (0.8nJ), power down (0.005nJ)

- SDRAM Power model from manufacturer Micron available
 - State based model
 - Worst case assumptions
 - Similar models from Rambus

- These models are base of existing simulators and optimizations
- Power model suggests aggressive use of DRAMs low-power modes

- Measurements with modified memory controller
 - Minigzip ➔ high memory activity
 - Djpeg ➔ medium memory activity
 - Vam ➔ very low memory activity
Power Measurements

- Measured power consumption of the minizip benchmark

![Graph showing power consumption over time with labels for system power and time in ms.]

- Switching SDRAM to low power mode after 10 idle cycles on memory bus

Aggressive Use of Low Power Modes

- Predicted reduction of average power (Micron model): 173 mW

![Graph showing power consumption with labels for system power and time in ms.]

- Increase in program runtime due to transition time active ⇔ low power state
- Average power consumption rises by 100mW (prediction -173mW)

© N. Wehn
Power Analysis

- When switching to memory power down mode, a power peak is observed due to a refresh: valid for all DDRx too (JEDEC standard)
- Not modeled in Micron’s power model, not taken into account in any previous publication we know of

Lessons Learnt

- DRAM access protocols are complex and show large latency and energy variations
 - Fixed DRAM access latency and energy is wrong assumption
- Theoretic power models for SDRAM are misleading
 - Overestimate power consumption and energy saving potential
 - Neglect important effects like transition energy
 - Not only wrong absolute numbers but also wrong trends
- Aggressive SDRAM power management is not always beneficial

New Xscale/DRAM simulator (www.inf.u-szeged.hu/xeemu)
 - Average error: 3.0% (runtime), 1.6% (core energy), 3.3% (DRAM energy)
Wireless Sensor Nodes

- Key devices in “swarm systems”

![MICAz Source: Crossbow Technology](image)

![AmICA TU Kaiserslautern © N. Wehn](image)

Common Assumptions in WSN

Energy: Transmit energy dominates energy consumption

Long distance: Multi-hop is the preferred solution

Robust wireless communication: ARQ is more (energy) efficient than forward error correction (FEC)

Based on theoretical assumptions and simplified models

Accurate Power models for many sensor nodes missing

Our approach:

- State based model
- Flowcharts to represent valid traces the FSM

\[
E = \sum_{\text{state}} P_{\text{state}} \cdot t_{\text{state}} + \sum_{\text{transition}} P_{\text{transition}} \cdot t_{\text{transition}}
\]

© N. Wehn
Short Hops Versus Long Hops in WSN

- Transmission energy has exponential growth with distance \(d \) and path loss exponent \(\alpha \) (1 < \(\alpha \) < 4)

\[E(d) \sim d^\alpha \]

- Theory favours many short hops
- Forward Error Correction inefficient since \(E(FEC) > E(d) \) for small \(d \)

State-Based MICAz Power Model
Observations

Communication vs Computation
- $E_{\text{compute}} \sim 2nJ/\text{operation}$
- $E_{\text{send}} \sim 230nJ/\text{useful bit}$
 - $E_{\text{send}}(127 \text{ bytes}) \sim E_{\text{uC}}(100,000 \text{ cycles})$
 - $E_{\text{send}}(1 \text{ bit}) \sim 100...4000 \times E_{\text{compute}}(1 \text{ instruction})$

Computation vs Flashstorage
- $E_{\text{flash_write}}(127 \text{ bytes}) \sim E_{\text{uC}}(300,000 \text{ cycles})$

Communication
- $P_{\text{receive}} \sim P_{\text{transmit}}$
 - Large energy for ACK based protocols
 - E.g. frame length with 60 bytes
 - Energy$_{\text{RX_ACK}}$/total$_{\text{energy}}$: 80% (10ms), 30% (0.5ms)

Consequences

Frame loss and relaying have to be minimized for energy efficiency

Instead of ARQ
- Use of FEC to trade-off communication versus computation energy
- Only theoretical investigations known

Many applications: single hop asymmetric structure with central powerful node for information aggregation

Measurements in Lab environment
- ARQ with CRC Checksum
- Repetition codes (1/3, 1/6) with majority voting
- Turbo-Code (UMTS, 1/3)
Energy Measurements Results

- 3 MicaZ nodes running in parallel, ~ 1% BER in noisy WLAN environment
- 1 frame/sec sent, measured left-over battery cap after 120 hours runtime

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Only ARQ</td>
<td>431,906</td>
<td>2.34</td>
<td>346,049</td>
</tr>
<tr>
<td>(battery fully depleted after 48 hours, extrapolated to a runtime of 120h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARQ + Rep 1/3</td>
<td>431,737</td>
<td>1.18</td>
<td>16,842</td>
</tr>
<tr>
<td>ARQ + Turbo-Code</td>
<td>431,728</td>
<td>1.12</td>
<td>11,798</td>
</tr>
</tbody>
</table>

- High number of retransmissions requires a large on-time in receive mode
- Overhead for encoding is more than compensated for by higher reliability

Energy Improvement by >20X compared to only ARQ

© N. Wehn

Lessons Learnt

- Careful Trade-off computation vs communication energy
- Not only transmit power dominates, receive power is as important
- Multi-Hop is conclusion of wrong power models
- Forward error correction can be very efficient in star shaped networks

© N. Wehn
Scaling doesn’t solve Low Power Problem

Technology Scaling

Voltage Scaling

Some Look into the Future

- Smaller technology dimensions: variability impacts predictability

Source: Sani Nassif

© N. Wehn
End of Worst Case Design Methodology

- Variability: Worst Case Methodology based on corner cases

![Graph showing cost vs. reliability cost over time with scaling profitable and NOT profitable regions]

Thank you for attention!

For more information please visit
http://ems.eit.uni-kl.de