Reduction to Uniprocessor Algorithm with Exploitation of Idle Times through Bayesian Networks

Authors:
José Ángel Hermosillo-Gómez and PhD. Héctor Benítez-Pérez
RUN

t_{ini}

$\tau' \in \tau^{RUN}$

WCET
Worst Case Execution Time

$t_{current}$

t
Problem

The execution time of every task $\tau' \in \tau^{\text{RUN}}$ has a stochastic behavior. It is assumed that the tasks in τ^{RUN} are executed in less time than their respective WCETs.

t_{current}
Problem

\[\tau' \in \tau^{\text{RUN}} \]

It is not possible...

Fixed values
Problem

\(\tau' \in \tau^{\text{RUN}} \)

Idle time
Approached solution (1/4)

• Take advantage of the idle times by means of adding an extra set of tasks, be \(\tau \). This extra set is disjoint to \(\tau^{\text{RUN}} \).

\(\Rightarrow \) \(\tau \) is conformed by two types of tasks:

1. Tasks conformed by *just one job*
2. Tasks of type *job-shop*
Approached solution (2/4)
Approached solution (3/4)
Approached solution (4/4)

∀ \tau_i, j \in \tau has an execution time with stochastic behavior

\[t_{\text{ini}} \leq t \leq t_{\text{current}} \]

\[\tau' \in \tau^{\text{RUN}} \]

\[\tau_i, j \in \tau \]
An interruption is thrown every time a task finishes its respective WCET.
Bayesian inference

\[\tau' \in \tau^{RUN} \]

\[\tau_{i,j} \in \tau \]
Bibliography
