

Sanjoy Baruah

THE UNIVERSITY

of NORTH CAROLINA

at CHAPEL HILL

Presented at ECRTS 2013:

- 1. Li, Agrawal, Lu, and Gill. Analysis of global EDF for parallel tasks
- 2. Bonifaci, Marchetti-Spaccamela, Stiller, and Wiese. <u>Feasibility analysis in the</u> sporadic DAG task model

The speedup factor of GEDF for sporadic DAG task systems is $\left(2-\frac{1}{m}\right)$

A speedup-optimal sufficient schedulability test

Phillips, Stein, Torng, and Wein. Optimal time-critical scheduling via resource augmentation. STOC – the ACM Symposium on the Theory Of Computing (1997)

- The speedup factor of GEDF for collections of **independent jobs** is $\left(2-\frac{1}{m}\right)$

Bonifaci, Marchetti-Spaccamela, and Stiller. A constant-approximate feasibility test for multiprocessor real-time scheduling. ESA – the European Symposium on Algorithms (2008)

- The speedup factor of GEDF for collections of ($\mathbf{C_{i}}$, $\mathbf{D_{i}}$, $\mathbf{T_{i}}$) sporadic tasks is $\left(2-\frac{1}{m}\right)$

The speedup factor of GEDF for sporadic DAG task systems is $\left(2-\frac{1}{m}\right)$

A speedup-optimal sufficient schedulability test

An improved sufficient schedulability test

- dominates the one in [Bonifaci et al.]
- Speedup-optimal
- Entirely based on the insights in [Bonifaci et al.]

The sporadic DAG task model

- Work executes as soon as possible
- Intervals ending at deadlines have the minimum possible amount of execution

Any correct schedule must complete at least 4 units of execution over these 10 time units

The work function

 $work(\tau_i, t)$: Minimum amount of execution that must be done by any correct scheduler over some interval of duration t

A generalization, to sporadic DAG tasks, of the concept of demand bound function (dbf) (and forced-forward dbf)

The work function

 $work(\tau_i, t, s)$: Minimum amount of execution that must be done by any correct scheduler over some interval of duration t <u>upon speeds processors</u>

Upon speed-s processors (s < 1) [Here, s = $\frac{1}{2}$]

Any correct schedule must complete at least 6 units of execution over these 10 time units

The Big Result in [Bonifaci et al.]

A system of sporadic DAG tasks is GEDF-schedulable on m speed-1 processors if there is an s, 0 < s < 1, such that for all $t \ge 0$, $\sum_{\text{all } \tau_i} \text{work}(\tau_i, t, s) \le \left(m - (m-1)s\right) \times t$

Such an s is called a witness to the GEDF-schedulability of the task system

The schedulability test of [Bonifaci et al.]: Check whether $\mathbf{s} \leftarrow \left(\frac{\mathbf{m}}{2\mathbf{m}-1}\right)$ is a witness

My improved test: optimally determine whether a witness exists

- Is there any s, 0 < s < 1, that causes this to evaluate to true?

8 processors; randomly-generated tasks

Summary

EDF is a suitable global scheduling algorithm for the multiprocessor scheduling of real-time systems that are generated by recurrent processes, and exhibit internal parallelism