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Introduction: Why Thermal Constraints
are Important
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Rapid rise in Power densities of Integrated Circuits

Localized power densities 2 orders of magnitude higher than average power
densities

High power densities cause thermal hotspots decreasing reliability/performance




Our Work

* This work considers the scheduling of periodic
tasks with thermal and timing constraints
e All periodic task deadlines have to be met
e System temperature has to be less than A

* Propose a thermally optimal scheduling
strategy for uni-core

* Propose a thermally optimal partitioned
scheduling algorithm for execution on multi-
core




Challenges

* Processor temperature typically reduced by
employing DVFS
* DVFS causes reduction in processor

performance
* Lead to deadline miss in real-time systems

e Additional challenges exist for multi-core
systems




Thermal Models

Duality between heat transfer and electrical
phenomenon:

* Heat transfer modeled [=,. .. ..o
as current passing
through resistance

I,JTC:. —Heat Spr' ader

ﬁf;f _— Silicon Die/ )

* Delay in heat increase
modeled as a thermal
capacitance

* RC pair for each
architectural Unit




Total Thermal Impact

 Example

e Task 7 with computation time of C, =0.5sec

* Power consumption of T is constant = Pr

30 -

0 0,5 1 1,5 2

e TTlof T isthe area under its thermal profile (Red region)
e TTlis only dependant on the energy consumption of 7T




Thermal Steady State

 Temperature at the start of successive
hyperperiods increases monotonically
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 Thermal Steady State

 Temperature at the start and end of
hyperperiod are equal




Theoretical Results

* Integral of processor temperature at thermal steady state is
independent of the schedule. (RTCSA 2013)

* Integral is equal to the TTI of all periodic task instances within the
hyperperiod
* Integral is only a function of the periodic taskset.
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Thermal Utilization: Single Core

e Thermal Utilization of a taskset defined as

LB(Orex )
A

* where LB(4,,) isalower bound on
maximum temperature over all possible
scheduling policies

 Hence, tasksets with thermal utilization >1
are not thermally feasible




Scheduling Strategy (GPS)

* Each periodic task is executed at a constant rate
equal to C

T

* Distributes power uniformly across the hyperperiod

e Optimal in the sense that if GPS cannot meet thermal
and deadline constraints of a taskset, then no other
scheduling policy can meet the same constraints

* On unicore processors, GPS guarantees thermal
feasibility if thermal utilization <1
* |deal policy which cannot be implemented in practice

e Can be approximated well by Worst-case Fair Weighted
Fair Queueing (WF2Q+)




GPS: Unicore Results
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 Empirically validates that thermal utilization less than
or equal to 1 is necessary and sufficient for thermal
feasibility




Additional Unicore Results
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WF2Q+ successfully schedules more tasksets when
minimum preemption duration decreases

WF2Q+ performs very well for reasonable minimum
preemption duration




Multicore Extension

* Unit Thermal Impact ¢ is asquare matrix with
dimensions equal to number of core
* < is the TTI of Core i when core j consumes unit power.
e Consider partitioned scheduling of periodic tasks on
multicore

* If each task 7T is assigned to core j:

b P.C;
O(t)dt =L - Ce;
J, ou=t-3 e

Tl

e Thermal utilization of core i is defined as:

1 E
e /D O(t):dt




Thermal Utilization Minimization using
Partitioned Scheduling (TRUMPS)

* Partitioned scheduling

» All instances of a periodic task execute on the
same core

* TRUMPS

* Formulate task assignment to core as a Mixed
Integer Program (MIP) with an objective of
minimizing the maximum thermal utilization
across all cores

e Use GPS/WF2Q+ to execute task instances on
each core
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 No taskset with thermal utilization >1 is

schedulable

e Some tasksets with thermal utilization less

than or equal to 1 are not schedulable, possibly

due to partitioned scheduling
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Multicore Results Cont’d
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* Approach close to the lower bound on temperature in most cases

* Some tasksets have large temperature difference due to
partitioned scheduling approach




Multicore Results Cont’d
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* Maximum temperature and thermal
utilization have strong correlation




Presentation Takeaways

* Necessary and Sufficient Conditions for
Thermal Schedulability

 GPSis athermally optimal scheduling
scheme for unicore

* No scheduling algorithm can have lower
maximum temperature

 TrUMPS performs very well for multi-core
* Optimal partitioned scheduling scheme

* Performance loss due to No-Migration task
execution model







Total Thermal Impact contd..

« Unit Thermal Impact ¢ is defined as the TTI when 1W power is
consumed for 1 second

* Due to linearity of RC network TTl of 7 isthe ¢ F.-C,

* TTlis only dependant on energy consumption NOT how that
energy is consumed.
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% tasksets with no violation

* High Frequency periodic tasks less likely to cause thermal
violations

* CRS performance does not depend on frequency of periodic tasks
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* EDF has large variations in temperature

 DCRS and CRS have similar performance




Multicore Extension

e Challenges

 Thermal Interaction between cores adds additionally
complexity to the thermal scheduling problem.
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On going research

 Work on Global scheduling approaches on
multi-core platform

* Formulation of better scheduling schemes for
multi-core

e Schemes consider task-migration/instance
migration model




