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Message from the Chairs

Welcome to OSPERT’25, the 19th annual workshop on Operating Systems Platforms for Embedded Real-Time
Applications. This year, OSPERT has experienced a resurgence. 10 technical papers, demos, tutorials, and
calls for collaboration have been accepted for presentation during the full-day event. We invite you to join us in
participating in a workshop of lively discussions, exchanging ideas about systems issues related to real-time and
embedded systems.

OSPERT’25 will open with a keynote by Dr. Rich West. He will discuss his challenges and experiences
in building DriveOS, a management system developed with Drako Motors for use in their electric vehicles.
This will be followed by three sessions with presentations of technical papers and case studies. OSPERT will
conclude with two software demos and a call for collaboration, before the closing remarks.

OSPERT’25 received 16 high-quality submissions. After a competitive review process, 10 were selected by
the program commitee to be presented at the workshop. Each paper received at least three individual reviews.
Our special thanks go to the program committee, a team of 10 experts, for volunteering their time and effort to
provide useful feedback to the authors, and of course to all the authors for their contributions and hard work.

This year, OSPERT will also recognize an outstanding submission with a Best Paper Award! The award
goes to Viktor Reusch for his paper, “Bounded Resource Reclamation.”

OSPERT’25 would not have been possible without the support of many people. The first thanks are due to
Renato Mancuso, Antonio Paolillo, Joël Goossens, Sebastian Altmeyer, and the whole ECRTS organizing team
for entrusting us with organizing OSPERT, and for their continued support of the workshop. To Renato Mancuso
and Björn Brandenburg, thank you for stepping in to chair a session. We would also like to thank the chairs of
prior editions of the workshop who shaped OSPERT and let it grow into the successful event that it is today.

Last, but not least, we thank you, the audience, for your participation. Through your stimulating questions
and lively interest you help to define and improve OSPERT. We hope you will enjoy this day.

The Workshop Chairs,

Kuan-Hsun Chen Marion Sudvarg
Universiteit Twente Washington University in St. Louis
The Netherlands The United States

Program Committee

Angeliki Kritikakou University of Rennes, IRISA/INRIA
Arpan Gujarati University of British Columbia
Christian Dietrich Technische Universität Hamburg
Dakshina Dasari Robert Bosch GmbH
Daniel Casini Scuola Superiore Sant’Anna
Gedare Bloom University of Colorado at Colorado Springs
Junjie Shi Technische Universität Dortmund
Marine Sauze-Kadar CEA-Leti
Ning Zhang Washington University in St. Louis
Peter Wägemann FAU Erlangen-Nürnberg
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Keynote Talk

Challenges and Experiences Building a Software-Defined Vehicle Management System

Rich West
Professor, Computer Science, Boston University

No longer seen primarily as electromechanical machines, modern automobiles are becoming ”computers on
wheels”. At the same time, automotive systems are increasingly embracing software technologies to manage
vehicle functionality. As we move away from a multiplicity of electronic control units to manage chassis, body,
powertrain, infotainment, connected and autonomous vehicles, we need to develop new management systems.

This talk builds upon earlier work on DriveOS, a management system developed with Drako Motors, for use
in their electric vehicles. I describe some of the challenges and experiences building DriveOS, including several
key areas of research for future development of such systems.

Rich West is a Professor in the Computer Science Department at Boston University, where he works with his
research team on real-time and embedded operating systems. His work addresses issues concerning safety,
security, predictability and resource management. He has an MS and PhD in Computer Science from the Georgia
Institute of Technology, USA, and an MEng in Microelectronics and Software Engineering from the University
of Newcastle-upon-Tyne, UK. He also works with Drako Motors on the development of DriveOS for next
generation vehicles. DriveOS consolidates vehicle functions on a centralized computing platform, by integrating
real-time and safety critical services with non-critical software using partitioning hypervisor technology.
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UltraScale+ SpinalHDL Wrapper: Streamlining
Ideas to Bitstream on UltraScale+ platforms.

Denis Hoornaert
Technical University of Munich

Munich, Germany
denis.hoornaert@tum.de

Giulio Corradi
Advanced Micro Devices

Munich, Germany
giulio.corradi@amd.com

Renato Mancuso
Boston University

Boston, Massachusetts, USA
rmancuso@bu.edu

Marco Caccamo
Technical University of Munich

Munich, Germany
marco.caccamo@tum.de

Abstract—In an embedded computing landscape that inex-
orably leans into heterogeneity, System-on-Chips (SoCs) featuring
tightly integrated Field Programmable Gate Arrays (FPGA) are
bound to proliferate. In particular, such architectures’ high
degree of flexibility and control caters well to the real-time
community. Despite the appeal, real-time research exploiting
HW/SW co-design on such architectures has remained tepid.
While the usual suspects, such as the complexity of Hardware
Description Languages, can be blamed, recent advancements
in tooling (e.g., languages, frameworks) have proven efficient
in easing the design of FPGA-located accelerators. However,
in the context of SoC with FPGA platforms, these solutions
fall short of addressing the next hurdle: integrating the custom
accelerators with the rest of the SoC, which requires the tedious
implementation of various supporting software resources.

This article presents the first iteration of the UltraScale+
SpinalHDL Wrapper; a SpinalHDL library dedicated to sup-
porting HW/SW co-design on SoC with FPGA platforms. The
support ranges from assisting during the design of accelerators
to automatically inferring and generating ready-to-use software
support, such as Linux Kernel modules and Vivado deployment
scripts.

Index Terms—FPGA, UltraScale+, Hardware/Software co-
design, Hardware Construct Languages

I. INTRODUCTION

Modern System-on-Chip (SoC) for embedded systems are
becoming more performant as the functional requirements
have prompted a surge in computational demand. Combined
with use case-specific Size, Weight, and Power (SWaP) con-
straints, this has pushed SoC architectures to become increas-
ingly heterogeneous by integrating highly specialized accel-
erators. Nowadays, platforms featuring on-chip specialized
units (e.g., GPUs, TPUs) are ubiquitous. Particularly, SoC
architectures featuring tightly integrated Field Programmable
Gate Arrays (FPGAs) have attracted attention due to their
inherent high degree of programmability and on-the-fly re-
programmability. The overall appeal of this SoC architecture is
confirmed by the emergence of many platforms [1]–[4] among
which the AMD-Xilinx UltraScale+ model [5] has garnered
the most attention. This class of platforms is also referred to
as PS-PL to denote the combination of a Processing System
(PS) (i.e., CPU cores and memory) and a Programmable Logic
(PL) (i.e., FPGA). This terminology is used in this article.

Since 2016, the opportunities offered by HW/SW co-design
on UltraScale+ platforms have caught the attention of the
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Fig. 1: Published paper since 2016 employing HW/SW co-
design on UltraScale+ in real-time oriented conferences.

embedded real-time community. Much research has focused
on implementing PL-located accelerators, with application
domains ranging from image processing [6] to artificial
intelligence [7]. Several research groups have also investigated
the impact of inter-accelerator bus activity on the latter’s
performance [8], [9] and proposed mitigation policies [10],
[11]. Frameworks [12], [13] tying together the FPGA’s support
for dynamic and partial reprogramming with scheduling mod-
els have been proposed. Finally, a series of papers explored
the idea of using the PL as part of the SoC’s memory
system, enabling memory requests manipulation [14], [15]
and traffic regulation [16], [17]. However, despite the many
potentials, these research threads have remained tepid within
the embedded real-time community, as illustrated in Fig. 1.

This trend can be in part associated with the notorious
difficulty of designing accelerators for FPGAs compared to
programming for other Processing Elements (PEs, e.g., CPUs,
GPUs). The commonly agreed-upon culprits are the traditional
Hardware Description Languages (HDLs, e.g., VHDL, Ver-
ilog). Aspects such as their verbosity and confusing specifi-
cation model are often considered key factors slowing down
productivity and learning rate. In that regard, considerable
efforts from the research community and the industry have
led to the development of advanced approaches and tooling
to speed up hardware design time. Notably, High-level Syn-
thesis (HLS) and Hardware Construct Languages (HCL) have
addressed these issues by using higher abstraction languages
to design and generate digital circuits.

Unfortunately, however, in the context of PS-PL platforms,
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Fig. 2: Overview of the co-design flow for UltraScale+ platforms. Each layer of the system involves manual work requiring
specialized expertise (dashed ellipse). The “PL Design Flow” can be extended by a HLS or HCL. Our SpinalHDL+USW
(dotted red arrows) only requires human intervention for specifics about the hardware, firmware, and final user application.

the aforementioned tools do not address the next productivity
hurdle: hardware/software interaction. Existing tools [18],
[19] focus solely on the accelerator’s logic while integration
tools [20] consider the PL side in isolation, leaving designers
with the tedious—yet delicate—task of integrating the FPGA
accelerator with the rest of the system by implementing the
necessary software drivers. Nonetheless, proper integration on
such a platform is challenging because it may require firmware
and Operating System (OS) expertise.

As the authors found out, after several years of experience
with the UltraScale+ platform, most of the productivity hurdles
often correspond to repetitive implementation tasks. As such,
instead of curating their experience as a set of guidelines and
documents, the authors propose the UltraScale+ SpinalHDL
Wrapper (USW), an open-source [21] library extending a
HCL (i.e., SpinalHDL) that aims to generate ready-to-use sup-
port to ease HW/SW co-design on AMD-Xilinx UltraScale+
platforms. Such support includes (1) pre-defined specialized
hardware constructs for several UltraScale+ boards (e.g., Kria
KV260 and Kria KR260), (2) the generation of Linux kernel
modules, and (3) the generation of AMD-Xilinx Vivado TCL
scripts to enable “one command line” deployment. Through
this, USW aims to lower the entry barrier of HW/SW co-
designing on UltraScale+ platforms.

II. ANCILLARY CONCEPTS

A. FPGA and Hardware Description Language

A Field Programmable Gate Array (FPGA) is a type of re-
programmable PE capable of emulating virtually any special-
ized digital circuits. FPGAs sit at the cross-road between spe-
cialized hardware accelerators and general purpose (e.g., ISA-
based) PEs. Like the latter, FPGAs can implement workload-
tailored data manipulation and display aggressive parallelism
(e.g., via pipelining) while, like general-purpose PEs, they can
be dynamically re-programmed on demand.

The design of digital circuits in FPGA is done via HDLs
(e.g., Verilog, VHDL), which uses the Register Transfer Level
(RTL) abstraction. As the names suggest, with these languages,
one describes the data flow from registers to registers, wires to
wires, and vice versa. An Electronic Design Automation tool
(e.g., Vivado) is employed to synthesize the RTL description
into a logically equivalent and target-specific bitstream that can
be flashed onto the FPGA. This process, illustrated in Fig. 2
(green-shaded box), is performed through a sequence of steps
referred to as the PL design flow. Essentially, once the HDL
description is created, it must be connected and co-designed
with—potentially vendor-locked—third-party IPs. The output
design is synthesized into an intermediate representation called
a netlist on which a series of optimizations are applied. The
implementation step yields the bitstream.

Due to the tediousness of designing hardware accelerators
with traditional HDLs, many projects and industrial products
have sought to lift the level of abstraction. Existing solutions
rely on CPU programming languages to generate HDLs, sitting
atop the usual design flow as shown in Fig. 2. Two notable
approaches exist. (1) HLS [22], [23] aim at transpiling C
code into HDL such as Verilog to take advantage of the
existing code base and enable a fast time-to-bitstream for non-
HDL experts. However, the procedural-to-RTL transformation
is not straightforward and requires designers to expertly guide
the tools via C pragmas. (2) HCL such as Chisel [19] and
SpinalHDL [18] take a different route. They posit that the
limited code re-utilization and associated language features
of HDLs are the main productivity hurdle, not the RTL
abstraction. Hence, these HCLs still use the RTL abstraction
but embed it within high-level programming languages such
as Scala. The latter acts as both a framework and a pre-
processing language, offering object-oriented and functional
programming features, as well as expressiveness to elaborate
and test the designs. Because the final hardware description
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Fig. 3: Overview of a UltraScale+ SoC where only relevant
components are depicted. Components are marked by x .

uses the RTL abstraction, unlike HLSs, the final logic corre-
sponds 1-to-1 to the desired semantics, avoiding any “black-
magic” [18] transformation.

B. PS-PL platforms

As depicted in Fig. 3, the UltraScale+ multi-processor SoC
manufactured by AMD-Xilinx features four ARM Cortex-A53
CPU cores 0 equipped with a 1 MB last-level cache 1 , a
pair of real-time ARM CPU cores 2 , and an FPGA 3 (i.e.,
the PL side). These elements and the DRAM controller 4 are
linked via a system of interconnects 5 and dedicated signals.

A key aspect of co-designing PS software with PL accelera-
tors is their interactions. On UltraScale+, PS-PL interaction is
facilitated by a diverse set of interfaces, including: (1) seven
unidirectional AXI4 interfaces: (a) three of whom are memory
mapped PS-to-PL interfaces used by the PS to fetch data from
the PL 6 and (b) four PL-to-PS interfaces that allow access
to any on-chip memories and the main memory 7 . (2) One
two-way cache coherent interface (ACE) that allows the PL
to become a member of the SoC cache coherence domain 8
(i.e., snoop and be snooped by the CPU cores). (3) Several
direct PS-to-PL and PL-to-PS interrupt 91 and cross-trigger
92 lines enable fast communications to/from the PS-side

interrupt controller and CoreSight debugging infrastructure.
With an increased heterogeneity comes an increase in design

complexity and scope. In fact, not only should designers
take into account the PL, they must also prepare the PS and
its various software requirements. In this widened co-design
flow (shown in Fig. 2), each traditional layer of a system
(i.e., firmware, OS, and user/application) must be set up and
tailored for communication with the PL-located accelerator(s).
On UltraScale+ platforms, it comes as firmware patches (e.g.,
to enable the PL-side ACE port) and OS kernel modules (e.g.,
to map the various ports and interrupt lines).

III. OBJECTIVES AND OVERVIEW

Unlike existing FPGA integration tools (e.g., LiteX [20]),
the proposed approach does not consider the PL side as an
isolated block but instead focuses on its integration with

the PS side. Based on the authors’ experience, much of the
software support required to smoothly interface software with
PL-located accelerators can be automatically generated and,
especially, inferred from the hardware module description. The
proposed approach leans on this observation to ease HW/SW
co-design on UltraScale+ platforms.

This article proposes to extend SpinalHDL [18] (an HCL)
via a dedicated library called the UltraScale+ SpinalHDL
Wrapper (USW). The library assists the hardware designer
by providing pre-defined hardware constructs common to
all UltraScale+ boards and implicitly generating ready-to-
use software resources associated with them. As illustrated
in Fig. 2 by the dashed red arrows, the software resources
generation ranges from Vivado TCL script to kernel modules.
Note that using USW does not lock the designer in, as the
generated support can be used as is or as the starting point
toward further (manual) customization.

This section presents some of the constructs and tools of-
fered by USW. The code snippet displayed in Listing 1 exem-
plifies the use of USW; however, details regarding SpinalHDL
syntax will not be presented due to space constraints. For
further details, readers are invited to look at [18].

A. Top Module, Interfaces, and I/Os

The top module is designed such that it contains all PL’s
elements. As such, it mirrors all PS-PL interfaces and I/Os.
The idea is that the SpinalHDL description is self-contained,
and no subsequent manipulation of the outcome is needed.

This implies that most information must come or be derived
from the SpinalHDL description. In the proposed library, in-
formation such as (1) the target board, (2) the target frequency,
and (3) the desired interfaces and I/Os are specified directly
in the top-module definition. The top module can be created
via a Scala class that inherits a curated class describing the
target board (e.g., Kria KV260, Kria KR260, or ZCU102).
For instance, the code snippet in Listing 1 implements a top
module called ConfigTestPort on the Kria KV260 (see
line 9). This parent class takes two construction parameters: a
frequency and an I/O configuration.

The frequency parameter indicates the desired synthesis
(line 10) but does not imply that the Verilog produced can
operate at that frequency. The library provides an early indi-
cation of whether the target board can support the frequency,
sets the closest if not, and considers it when generating the
Vivado TCL script (see Sec. III-D). The I/O configuration
indicates which interfaces and I/Os should be implemented
(lines 11-13). The associated apertures become available in
the description block by enabling specific options. In our
example, asserting withLPD_HPM0 tethers the design to the
LPD HPM0 PS-PL interface and allows access to the individual
fields in the description via io.lpd.hpm0 ( 61 in Fig. 3).

B. Configuration Port

A configuration port is a key component of any accelerator
on UltraScale+ as it allows the PS-located software layers
to instrument the PL-located accelerators. Implementing an
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1 package example
2

3 import spinal.core._
4 import spinal.lib._
5 import kv260._
6 import ultrascaleplus.scripts._
7 import ultrascaleplus.configport._
8

9 case class ConfigPortTest() extends KV260(
10 frequency = 100 MHz,
11 config = new KV260Config(
12 withLPD_HPM0 = true, withIO_PMOD0 = true
13 )
14 ) {
15 val configPort = ConfigPort(io.lpd.hpm0,

io.lpd.hpm0.getPartialName())↪→

16

17 val clockCount = Reg(UInt(64 bits)) init(0)
18 configPort.read(clockCount,

io.lpd.hpm0.apertures(0).base)↪→

19

20 clockCount := clockCount+1
21

22 for (i <- 0 until io.pmod0.length)
23 io.pmod(i) := clockCount(63-i)
24

25 KernelModule.addIO(io.lpd.hpm0)
26 KernelModule.generate()
27 this.generate()
28 }

Listing 1: SpinalHDL code snippet implementing an AXI4
config. port using USW for the Kria KV260 (line 9). Con-
figuration port is tethered to the LPD HPM0 (line 15) PS-PL
interfaces and enables access to a 64-bit wide counter (lines
17-18).

AXI4 compliant configuration port is tedious, but, luckily,
SpinalHDL provides an easy-to-use generator [24]. However,
the generator lacks a few features to ease the integration with
the PS side.

To this end, our USW library provides a specialized ver-
sion: the ConfigPort generator. The latter extends via
inheritance the SpinalHDL’s generator to provide ready-to-
use C code generation support for the PS side. More pre-
cisely, after being instantiated (line 17), registers can be
added to the configuration in read-only, write-only, and
read-write modes. For example, in Listing 1 line 18, the
clockCount register is added for read-only access at ad-
dress io.lpd.hpm0.apretures(0).base. At Spinal-
HDL elaboration-time, the USW library produces boilerplate
C code that defines a C struct with a field for each register
added to the configuration port. Their placement reflects the
address specified in the hardware description (Listing 1, line
18). When required, padding is automatically added to the
struct. The generated C struct provides the typical code to
memory-map (mmap) the associated PS-PL AXI4 interface
and cast the returned pointer into the generated struct.

C. Kernel Module

Part of the challenge when co-designing an accelerator with
Linux is to allow access to the PS-PL interfaces. In particular,
allocating address ranges falling within the FPD HPM[0,1]
apertures as cacheable regions directly entails the involved
alteration of the Linux kernel or the use of a hypervisor as
done in [15], [16]. An alternative is to create an “insertable”
kernel module that creates /dev file system targets. When
these /dev targets are mapped (via mmap), they return a
pointer to the base address of the desired aperture.

The library’s kernel module generator leverages the latter
option. As shown in Listing 1 line 28, it is as simple as
invoking a singleton named KernelModule and calling
its addIO method on the desired AXI4 port. In this case,
the generated kernel module will create, after insertion, a
/dev/lpd_hpm0 file that, when mapped, allows I/O (i.e.,
uncached) access to the region. Cacheable targets can be
generated using the add method instead.

D. Vivado TCL Script

The generation of TCL scripts is supported and provided
natively by Vivado and is the de facto preferred way to share
and maintain versioning of Vivado projects. However, unless
designers can expertly program in TCL from scratch, the
design and all PS-PL I/O connections must be established
manually over the GUI. This introduces a human-in-the-loop
step that still requires some expertise with the tool, effectively
keeping the entry barrier high and preventing fast prototyping.
Moreover, any future changes to the design’s PS-PL inter-
facing or in-use I/O entail manipulating and regenerating the
TCL script using Vivado. Finally, Vivado projects’ portability
and deployment are challenging because the TCL scripts are
version dependent, and licenses are available only for some
versions.

Following the aforementioned philosophy, our USW library
can generate a Vivado TCL script to easily share and deploy
UltraScale+ designs at the elaboration of a SpinalHDL descrip-
tion (i.e., from SpinalHDL to Verilog). The automated TCL
script generation is made possible by the information provided
in the description’s top module. The produced and ready-to-use
TCL scripts are placed in the vivado/ folder and named after
the design they implement—e.g., ConfigPortTest.tcl
for the design in Listing 1. A clear advantage of inferring the
TCL script from the design is the augmented cross-version
portability. Concretely, with USW, sharing the design sources
is sufficient to allow any collaborator to seamlessly deploy
and implement the design regardless of their installed Vivado
version. We have tested that USW-generated TCL scripts work
correctly for the 2024.2, 2024.1, 2022.2, and 2019.2 versions
of Vivado and expect broad compatibility with other versions.

Like other USW-generated support, TCL scripts do not need
to be regenerated every time. For instance, if no I/O nor PS-
PL interface is altered, removed, or added, the TCL script
can serve as an initial springboard toward further manual
customization by the designer. Alternatively, the TCL script
can be disregarded at the designer’s discretion. Finally, note
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(a) The AES accelerator receives cacheable transactions on the FPD
HPM0 port. The a-la PLIM module deciphers and ciphers data on
reads and writes. The NN and frames remain encrypted in memory.

(b) The PL-located PWM controllers are configured by the CPUs via
the LPD HPM0 port to (1) emit one PWM signal aimed at controlling
the pole’s car and (2) maintain an estimation of the system’s state.

Fig. 4: Abstract overview of the two example use-cases described in Sec. IV implemented on the AMD-Xilinx UltraScale+
platform using SpinalHDL and the USW library.

that any (i.e., small or not) changes applied to a hardware
design (e.g., change of condition operator from & or |)
obligatorily implies going down the PL design flow again.
This is a lengthy process even for smaller projects, making
the redeployment phase of the Vivado project via the USW-
generated TCL script a hardly noticeable overhead.

E. SpinalHDL+USW to Bitstream

Once a SpinalHDL description exists, generating the bit-
stream is a matter of two command lines, as shown below.
The resulting bitstream file is placed in the project’s folder,
and the Vivado project is created in the vivado/ folder.

1 sbt "runMain example.ConfigPortTestVerilog"
2 vivado -source vivado/ConfigPortTest.tcl

IV. DEMONSTRATORS

As mentioned in Section I, HW/SW co-design on PS-
PL platforms (and the UltraScale+ platform in particular)
have already been successfully deployed in several real-time
contexts. Naturally, USW can be used (or has already been
used) to replicate the prototypes presented in [10], [15]–[17].
For instance, readers can find SpinalHDL support to generate
PLIM-like IPs1 and a simplified implementation of the PLIM-
style bleacher2 from [15] in the example designs of USW.

The authors selected two divergent HW/SW co-designed
projects to illustrate the PS-PL interfaces and I/O generation
abilities. These examples are individually presented in this
section and illustrated in Fig. 4.

1https://github.com/denishoornaert/ultrascale-spinal-wrapper/blob/master/
hw/spinal/example/Plim.scala

2https://github.com/denishoornaert/ultrascale-spinal-wrapper/blob/master/
hw/spinal/example/Bleacher.scala

A. Security: On-the-fly AES Encryption

This use case, whose rationale is exhaustively presented
in [25], aims to enable on-demand access to confidential
data while always keeping the latter encrypted in memory.
Typically, the PL-located accelerators encrypt/decrypt confi-
dential data block-by-block upon explicit instrumentation by
the PS CPU cores. Instead, as illustrated in Fig. 4a, the design
follows the PLIM [15] approach to allow greater flexibility
and smoother integration with the PS-located software. This
approach creates an alternative PL-traversing route to memory
featuring an encryption engine that encrypts and decrypts
individual transactions.

Concretely, the encryption engine is implemented as a
counter-mode AES-128 accelerator [26] from scratch using
SpinalHDL+USW for the Kria KV260. The tethering of the
three PS-PL interfaces (LPD HPM0, FPD HPM0, and FPD HP0)
with the top module is realized via the USW library and the
generation of the kernel modules mapping the two primary
ports is delegated to the USW library (see Sec. III-C). The LPD
HPM0 port is attached to a configuration port (see Sec. III-B)
that stores crucial information (e.g., encryption key) and USW
generates a ready-to-use C struct for HW/SW interfacing.

On the software side, the confidential (i.e., encrypted) work-
loads consist of (1) the weights of neural network detecting
the presence of humans (implemented and run via TensorFlow
Lite) and (2) encrypted video frames coming from a remote
device (e.g., over the internet). This data is accessible via four
/dev targets as illustrated in Fig. 4a (see arrows); two of
which are generated by the USW library. More accurately,
the orange and red arrows represent the data path created by
the /dev targets generated by USW. They allow the software
direct communication with the PL and access to the decrypted
version of neural network (NN) weights (i.e., /dev/dec_NN)
and the video frame (i.e., /dev/dec_frame) respectively.

From a subjective point of view, contributors to the project
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concurred that the establishment of the /dev targets and C
struct as a high-level and well-specified interface rendered
the HW/SW co-designing more approachable. In particular,
it enabled better cross-team communication. This observation
underscores the usefulness of streamlining software support.

B. Robotic: Inverted Pendulum

This demonstrator showcases the ability of the library to
support HW/SW co-designed robotic systems. In such sys-
tems, software-implemented controllers running on the PS in-
teract with custom PL-located peripheral (i.e., I/O) controllers
to sense and act on their environment. These controllers can
also feature high-frequency stream processing (i.e., acceler-
ated) logic.

We selected a custom inverted pendulum mechanical system
as a use case. To achieve the goal of balancing and maintaining
the free-flowing rod in an upward position, the cart, actuated
by a motor, is controlled by an LQR+Simplex controller. The
latter interacts with the PL to set its action (i.e., motor RPM)
and access an estimation of the system’s state.

For this use case, the Kria KR260 board is used. As
illustrated in Fig. 4b, the PL hosts an inverted pendulum [27]
design consisting of three controllers: two encoders with state
estimation logic ( 0 and 1 ), two buttons indicating each end
of the rail ( 2 and 3 ), and one PWM controller ( 4 ). The
encoder controllers are tasked to monitor all switching activity
on the PMOD0 associated I/O lines and process them to update
state estimation. In our use case, one provides an estimate
of the rod position as an angle w.r.t. to the starting point
(i.e., pointing downwards), and the second one provides an
estimate of the cart’s position as a distance w.r.t. the middle
of the rails. All controllers can be instrumented and their state
accessed by the PS software via a configuration port (see
Sec.III-B; 5 ) generated and connected to the LPD HPM0 port
by USW. The PS-located controller utilizes the associated C
struct and a kernel module (see Sec. III-C) generated by our
USW framework.

V. DISCUSSION

A. Scalability and Portability

The choice of the UltraScale+ platforms as a focus point
is logical considering its widespread availability and om-
nipresence in the few real-time research using PS-PL platform
for HW/SW co-design. However, the USW can be extended
to support virtually any platform. This is greatly facilitated
by the UltraScale+ SoC implementation of standard open-
specification protocols (e.g., AXI) as PS-PL interfaces. The
combined flexibility and agile approach of USW and Spinal-
HDL ease the introduction of new interfaces and protocols.

Naturally, expanding USW support to include closely
aligned SoCs such as AMD-Xilinx’ Zynq and Versal are
expected to be easier as they share a common interface
naming convention and synthesis backend (i.e., Vivado) with
the UltraScale+ platform. The amount of effort required to
support other platforms will vary depending on a few factors.
For instance, the Enzian [3] platform would benefit from

the same backend support as the PL is AMD-Xilinx based.
However, some work will be required to add the bus protocol
specific to their platform. On the other hand, platforms like
[1], [2] rely on different backends, meaning that the TCL script
generation may have to be revamped. This could be addressed
by raising the abstraction level to provide a common interface
and automatic backend selection. Interface-wise, expanding
support is easier as the interface protocols used (e.g., AXI,
TileLink) are already supported by SpinalHDL.

B. PS-PL Interfaces, Interactions, and Timings

Many related research works cited in this paper already
provide timing measurements for accessing PL and PS ele-
ments that traverse their shared interfaces. In particular, [28]
provides an exhaustive analysis and result set for PL-to-PS
communications. It shows that the PS and PL can access the
main memory with up to 4.8 GBps of throughput. In [15],
the authors report that accessing PL-located memory blocks
can be done at ±800 MBps. These results provide insight
into the level of performance one can expect when employing
“simple” direct access means like the memory region mapping
supported by USW (see Sec. III-C).

However, in the future, USW aims to enable the gen-
eration of more sophisticated means of interaction between
the PL-located accelerators and the PS-located OS, such as
io_uring and virtIO. In these cases, the previously reported
measurements only represent a performance upper limit as the
protocols’ control logic must also be considered. The exact
final timings are difficult to predict as they are influenced
by orthogonal factors such as the communication protocol’s
control logic, the PL frequency, bus concurrency, etc. Imple-
menting and evaluating such OS-to-accelerator communication
is part of the authors’ future research.

VI. CONCLUSION AND EXTENSIONS

This article presents USW; an open-source SpinalHDL
library to simplify HW/SW co-design on AMD-Xilinx Ultra-
Scale+ platforms. It does so by conveniently generating ready-
to-use software infrastructure, effectively supporting collabo-
rative development on the UltraScale+ platforms.

At the time of writing, the library is in its inception,
and further development and refinement will take place. The
authors foresee three directions. (1) Expanding the supported
interfaces and I/O types (e.g., CoreSight trace port interface,
Raspberry Pi camera), boards, and Vivado versions. An im-
portant milestone is to provide hardware and software support
for designing cache-coherent PL accelerator in the form of
(a) re-usable hardware templates and (b) generating ready-to-
use Arm Trusted Firmware patches. (2) Addition of support
for established AMD-Xilinx technologies such as partitioning
of the PL and partial reprogramming. (3) Simplification of
PS-PL communication via the generation of software support
and hardware modules following established protocols such as
io_uring, remote_proc, and ROS.
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Abstract—Hardware performance counters (HPCs) on CPUs
are essential for tracking program and system behavior by
recording microarchitectural events. A major challenge is that,
even on modern platforms, the number of available HPCs is
limited compared to the events of interest. Existing software tools
mitigate this by multiplexing events in a round-robin fashion;
however, this approach may introduce significant errors. In
a recently-published paper at OSDI, we introduced Tintin, a
new HPC profiling infrastructure that mitigates multiplexing
errors by characterizing event count uncertainty at runtime and
scheduling events on counters to minimize it. This paper provides
details on Tintin’s elastic model for HPC scheduling that were
omitted from the original paper, including a new method for
interpolating multiplexed event counts, evaluation of Welford’s
method for online variance updates, an elastic scheduling policy
to minimize predictive uncertainty, and handling of overlapping
profiling scopes (e.g., core-level and process-level event moni-
toring). We also provide a roadmap for using Tintin with the
RT-Bench framework for real-time systems benchmarking.

Index Terms—hardware performance counters, measurement
uncertainty, elastic scheduling

I. INTRODUCTION

Hardware performance counters (HPCs), which are widely
available on modern server, desktop, and embedded CPUs,
provide essential tracking of program and system behavior.
HPC data are valuable across a wide range of application
domains, including debugging [1]–[4], workload optimiza-
tion [5]–[7], power analysis [8]–[10], diagnostics [7], online
resource provisioning [11]–[15], and intrusion detection [16],
[17]. Often, HPC data are used to make predictions about
program performance to inform decisions. For each use case,
it is important to model how target metrics or behaviors of
interest depend on hardware event counts.
Brokering HPC Access. HPCs are typically made available
to system software via a per-core performance monitoring
unit (PMU). The PMU provides an interface to program each
HPC to monitor a particular microarchitectural event (e.g.,
cache loads or misses). Effective PMU usage presents a major
challenge even on modern platforms: the number of available
HPCs is limited (often 2–6 per PMU) versus how many
types of events they can monitor (dozens to several hundred).
Towards managing this tension, event profiling tools such as
Linux Perf [18] broker access to HPCs. In much the same way
that threads and address spaces virtualize the limited physical
CPU and memory resources on a system, these tools provide
an abstraction layer over the PMU and its limited HPCs.

However, problems arise when using existing event profiling
tools to broker HPC access. First, those that mitigate the chal-

lenge of limited HPC availability do so via event multiplexing,
monitoring events in a time-shared round-robin manner, where
each event typically receives an equal portion of time. This
implies that events will remain unmonitored for some time;
observed counts are typically interpolated over these intervals,
which may introduce significant errors. Second, event profiling
may be requested from multiple overlapping scopes. For
example, a running process could profile its own hardware
events while event counts are simultaneously collected for
the processor core it’s on. Profiling tools typically treat these
scopes independently, which may exacerbate the effects of
multiplexing, especially when they share events in common.
Moreover, in some cases, scope conflicts can give rise to
starvation scenarios where an event is never monitored.

Tintin. In a recent OSDI paper [19], we presented Tintin, a
new hardware event profiling infrastructure that addresses the
aforementioned challenges while providing flexible specifica-
tion of event profiling scopes with fine granularity. Of primary
relevance to this paper, Tintin characterizes multiplexing errors
as uncertainty, which it dynamically tracks during runtime. We
demonstrated that the problem of scheduling events on HPCs
to minimize overall uncertainty reduces to elastic scheduling,
then implemented our algorithm from [20] to allocate HPC
time in the Linux kernel. Moreover, since multiplexing-based
errors cannot be fully eliminated, Tintin also reports uncer-
tainty via user-space interfaces; applications may use these to
enhance their predictive models or rule-based decision logic.

Contributions. A few details were omitted from [19] due to
space constraints. First, Tintin implements a custom method
for interpolation over multiplexed event counts to address a
problem with the original Trapzeoid Area Method proposed
in [21]. Tintin’s approach is derived and shown to be correct
in §III-A. Second, Tintin uses Welford’s method [22] to
track observed variance in event rates without storing past
observations, which improves efficiency in both time and
memory. In §III-B, we provide additional implementation
details of Tintin’s weighted version of Welford’s method;
this is evaluated in the Linux kernel against a traditional
variance computation in §VI-B. Third, although we’ve already
presented Tintin’s elastic hardware event scheduler in [19],
supplementary details relating input uncertainty to predictive
uncertainty are added in §IV-A. Finally, Tintin handles joint
scheduling of events from multiple profiling scopes; a previ-
ously omitted derivation of its policy is found in §IV-B.

Of particular relevance to the real-time operating systems
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Fig. 1. The Linux perf event subsystem multiplexes events on limited HPCs.
It is not aware of scope overlap; joint scheduling and common attribution
remain unsupported. If a per-core event is pinned to an HPC, per-task events
may be rejected, leading to measurement starvation.

community in general, and this year’s OSPERT workshop
in particular, we provide a roadmap for using Tintin with
the RT-Bench [23] open-source framework which integrates
existing benchmarks into a recurrent real-time task model. A
presentation of its latest updates also appears at this year’s
OSPERT [24]. RT-Bench uses Linux perf event to sample
hardware events during benchmark execution. in §V, we
illustrate the minor code changes necessary to allow RT-Bench
to use Tintin’s elastic scheduling and uncertainty reporting to
enable monitoring of more events than available HPCs with
minimal losses in accuracy.

For completeness, §VI-A summarizes experimental results
from [19] comparing Tintin to the Linux perf event subsystem.

II. BACKGROUND

A. Hardware Performance Monitoring

Hardware Performance Counters. Modern processors make
hardware event profiling available to system software via a
per-core performance monitoring unit (PMU), which provides
a set of programmable hardware performance counters (HPCs)
that can be configured individually to measure a specific
type of microarchitectural event, e.g., cache or bus accesses,
cache writebacks or refills, branch misprediction, etc. When
enabled, an HPC increments whenever its programmed event
occurs. The number of measurable events is substantial, typi-
cally exceeding several dozen on ARM processors (e.g., 58
on the Cortex-A53 [25] and 151 on the Cortex-A78 [26])
and over one thousand on Intel processors (e.g., 1,623 on
HaswellX [27]). However, the number of available HPCs is
very limited; most processors provide only 2-6 per physical
core [27], [28], and this number is effectively halved per log-
ical core when enabling Simultaneous Multithreading (SMT).

The Linux perf event Subsystem. This is Linux’s kernel-
level abstraction layer for interacting with HPCs. It serves as
the de facto infrastructure widely utilized by many tools such
as PAPI [29], Intel EMON [30], VTune [31], pmu-tools [32],
and the Linux Perf utility [28]. It provides access to hardware-
level HPC data and software-level data (e.g., memory footprint
and tracepoints). The former is the exclusive focus of Tintin.

Scheduling Events on Limited HPCs. Existing work has
sought to select relevant events carefully for a given applica-
tion. However, the number of events of interest often remains
larger than the available HPCs. For example, in [33], the 120
events available on an ARMv7-A CPU were narrowed to only
34 of importance for predictive DVFS. CounterMiner [34], an
offline analysis tool for predictive modeling with event counts,
achieves the most accurate IPC predictions for HiBench [35]
workloads using ∼150 events. Furthermore, some applications
profile derived metrics, such as Memory Bound [5]. These
combine as many as 16 individual events [36]. Pond [14],
which we evaluated as a case study for Tintin in [19], provides
a memory pooling model for cloud infrastructure. Its latency-
prediction model takes 7 derived metrics as inputs, spanning
20 events on Intel Skylake.

The current approach to managing this limitation is through
event multiplexing. When an HPC is configured to count a
particular event, we say that the event is scheduled on the
counter. If the number of events to be monitored exceeds the
number of available HPCs, they must time-share the counters;
perf event schedules events for monitoring in round-robin
fashion [21], [27], [37], [38]. Fig. 1 presents an illustrative
example in which there are 4 available HPCs, while Process
#1 requires monitoring for 8 events. In this scenario, the events
{e1, e2, e3, e4} are scheduled in the initial time slice, followed
by events {e2, e3, e4, e5}. HPC measurements for each event
can then be interpolated to estimate the total count, but this
unavoidably introduces errors. For example, we found that the
standard deviation for hardware event counts generated by the
541.leela r Go engine in the SPEC CPU®2017 benchmark
suite [39] as reported by Linux Perf increased by over 6×
when profiling 8 events compared to 4 [19].

Profiling Scope. The perf event subsystem enables specifica-
tion of hardware event monitoring for either individual tasks
(processes/threads) or CPU cores. Upon CPU task scheduling,
it first schedules events bound to the current core before
adding those associated with the active process. Since events
are bound to per-core and per-task data structures, they are
managed independently, even if they share common events of
interest. The right side of Fig. 1 illustrates this scenario: a
user assigns two events, {e4, e5}, to the current core; these
are placed on HPCs #2 and #3. Consequently, events {e4, e5}
monitored for Process #1 are not scheduled, even though they
represent the same event types, resulting in starvation.

B. Tintin

Tintin, a hardware event monitoring infrastructure intro-
duced in our recently-published paper at OSDI [19], aims to
solve these limitations via the three components in Fig. 2.

Quantification of Multiplexing Errors. Multiplexing errors
can be quantified at runtime based on variance in observed
event rates. The Tintin-Monitor component tracks variance,
then reports expected error back to user-space applications
alongside the measured counts, helping to better inform
profiling-based decision-making. Details on Tintin-Monitor’s

16



Applications Anomaly detection

Resource orchestration
Energy analysis Workload optimization

Debugging

…

HPC data + uncertainty

Manager
Contexts

Scheduler

Events of interest Profiling scopes

Monitor

uArch Event 
Source

Sched. Decision

Uncertainty Δ

Scheduling Policy Event Counts Profiling Scopes

Event Uncertainty
Minimizing
Uncertainty

User

Kernel
API

request

Fig. 2. Tintin design overview.

rate-based count interpolation and variance tracking which
were omitted from [19] are provided in §III.

Scheduling to Minimize Uncertainty. By allocating more
HPC time to events with larger variance, overall error is
minimized. The Tintin-Scheduler component uses the errors
reported by Tintin-Monitor to schedule events on HPCs,
assigning each event a unique share of time with the objective
of minimizing overall error. This problem is shown to be
semantically equivalent to elastic scheduling. §IV-A provides
deeper insights into this connection than were given in [19].

Indirection to Handle Profiling Scopes. An additional level
of indirection can provide a uniform mechanism to handle the
heterogeneity of profiling requirements. Tintin provides ab-
stractions to handle issues related to profiling scope, including
a uniform API that enables greater flexibility and granularity
in specification via the Tintin-Manager component. It elevates
a profiling scope to a first-class object, an Event Profiling Con-
text (ePX). Tintin-Manager manages ePXs collectively for all
applications, enabling overlapping events from concurrently-
active scopes to be scheduled jointly. Details on how joint
scheduling is handled within the elastic model, which were
only mentioned cursorily in [19], are provided in §IV-B.

III. COUNT AND UNCERTAINTY ESTIMATION

Formally, an event ei ∼ (xi, σi) has an estimated count xi

and uncertainty σi due to interpolation over multiplexed obser-
vations. In this section, we describe the design rationale behind
Tintin’s interpolation and uncertainty tracking mechanisms.

A. Interpolation with the Trapezoid Area Method

To derive the estimated total count xi from a measured count
x′
i, many tools (e.g., Linux Perf) use count-based interpolation:

xi = x′
i/Ui, where Ui is the fraction of time that event type ei

was scheduled on a counter. Several alternative methodologies
are explored in [21], [40], [41]. Besides those that avoid
multiplexing via multiple program runs and offline analysis,
the trapezoid area method (TAM) —which uses rate-based
interpolation— is suggested to be the most accurate [21].

Formally, an event ei is measured with count xj
i over some

continuous time interval Iji = [aji , b
j
i ] of duration δji . Then its

average rate rji over this interval is xj
i/δ

j
i . Over consecutive

intervals, TAM’s original implementation [40] assumes that

a1 b1 a2 b2 a1 b1 a2 b2

r2r2
r1 r1

Orignal TAM Tintin

Fig. 3. Tintin’s TAM implementation.

the arrival rate follows the straight line connecting the points
(bji , r

j
i ),(b

j+1
i , rj+1

i ), and interpolates the count using the area
of the resulting trapezoid, as illustrated in Fig. 3. However,
this violates the following proposed invariant:

If an event ei is always monitored, the produced event
count estimate x′

i should equal the observed count xi.
Tintin-Monitor instead constructs the trapezoid so that its

top passes through the midpoint ((bj+1
i + aj+1

i )/2, rj+1
i ) of

the second measured interval. This is derived as follows.
For event ei, we assume a constant change in the rate

of event arrival from interval I1 to I2. This is the line
r(t) = mt+ c connecting the center of each interval at points:

(
a1 + b1

2
, r1

)
and

(
a2 + b2

2
, r2

)

Solving for the slope:

m =
r2 − r1

a2+b2
2 − a1+b1

2

=
2(r2 − r1)

a2 + b2 − a1 − b1

Then solving for the intercept c:

r1 =
(r2 − r1)(a1 + b1)

a2 + b2 − a1 − b1
+ c

The formula can then be expressed as:

r(t) =
2(r2 − r1)

a2 + b2 − a1 − b1
t+ r1 −

(r2 − r1)(a1 + b1)

a2 + b2 − a1 − b1

After measuring event ei during interval I2, we interpolate
over the unmonitored time to estimate the total event arrival
count ∆xi since the end of I1 by integrating from b1 to b2:

∆xi = 0.5 · (r(b1) + r(b2)) · (b2 − b1)

This equals:

∆xi =

(
(r2 − r1)(b1 + b2)

a2 + b2 − a1 − b1
+ r1 −

(r2 − r1)(a1 + b1)

a2 + b2 − a1 − b1

)
· (b2 − b1)

=
(b1 − b2)(r1(a2 − b1) + r2(b2 − a1))

a1 − a2 + b1 − b2

Invariance can be proven because, if b1 = a2 then we have:

∆xi =
(a2 − b2)(r1(a2 − a2) + r2(b2 − a1))

a1 − a2 + a2 − b2

∆xi =
(a2 − b2)(r2)(b2 − a1)

a1 − b2
= r2(b2 − a2)

Which is precisely the count in interval I2.
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B. Tracking Variance with Welford’s Method

As described in [19], for an event ei with interpolated count
xi, we define uncertainty as the expected error σi in the count.
The instantaneous rate of event arrival is a random variable ri,
with a mean rate rji obtained during each measurement interval
Iji . Since it is infeasible to measure instantaneous rates, Tintin-
Monitor instead characterizes expected variance E(V (ri)) by
taking the variance of the sample means, weighted by duration.
In many stochastic processes, variance scales linearly with
time [42]; since we are measuring variance in rate, it therefore
follows that the expected variance V (xi, t) in event count xi

over the time t that the event is not monitored can be expressed
as V (xi, t) = V (ri) · t2. Then the expected error σi in the
estimated event count is the standard deviation

√
V (xi, t).

As noted in [19], to update the observed variance in sample
means efficiently during online profiling, Tintin-Monitor uses
a weighted version of Welford’s method [22]. Unlike standard
variance calculations, this only requires one pass through the
data, obviating the need for Tintin to store all sampled data.
At the end of monitoring intervals Iji , variance is updated as

Vi = Vi−1 × (r − µi)× (r − µi−1) (1)

where µ is the time-weighted mean over collected counts.
To avoid involving floating-point operations in the involved
division steps, we apply a scaling factor, where necessary, to
the numerator then perform integer division to achieve a fixed-
precision result. To prevent overflow, we use 64-bit integers
and hand-tune the order of operations to avoid large values.

Because Welford’s method is a one-pass technique, as new
measurements are obtained, variance is updated in constant
time. §VI-B shows an empirical comparison of the kernel
overhead imposed by Welford’s method, versus a traditional
two-pass variance calculation.

IV. ELASTIC SCHEDULING TO MINIMIZE UNCERTAINTY

A. Hardware Event Scheduling

Tintin-Scheduler aims to adjust allocations of time for
events on limited HPCs to minimize overall uncertainty.
Scheduling Model. Formally, for a profiling scope, we define
E = {ei}, the set of events to be monitored, where |E| = n.
Similarly, C = {cj} denotes the set of HPCs available to
monitor them, where |C| = m. The problem is to determine a
schedule S(t) : C → {E, ϕ} that defines, at each time t, the
event assigned to each counter. We define an event’s utilization
Ui as the fraction of time it occupies a counter.
Scheduling Policy. Many applications use HPC data as inputs
to statistical or learning-based models that predict program
performance to inform decisions. For example, Pond [14] is a
Microsoft Azure resource orchestration system. In cloud en-
vironments, memory pooling may improve DRAM utilization
and reduce cost, but using pooled instead of local memory
substantially increases the latency of some virtual machine
workloads. To allocate limited local memory appropriately,
Pond uses hardware event data to predict whether a VM
workload’s latency will be sensitive to pooled memory use.

Uncertainty in input values induces uncertainty in output
predictions. Tintin-Scheduler is designed primarily to schedule
events on HPCs so as to minimize output uncertainty in pre-
diction, although it works in general to minimize overall event
count uncertainty when no single predicted metric is targeted.
Tintin-Miner, an offline analysis tool for which development
is currently a work in progress, uses model-agnostic variance-
based sensitivity analysis to gauge the impact of each input
event on output fidelity. Specifically, Tintin-Miner employs
Sobol’s indices [43], which measure the contribution of each
input variable to the output variance. By changing the counts
of an individual event ei and then measuring the variance
of output, it calculates the event’s first-order sensitivity index
S1
i , which represents the percentage of model output variance

contributed individually by that event as an input to the model
(i.e., the effect of changing the count xi only).

To minimize predictive uncertainty, we therefore want to
minimize the total variance, weighted by sensitivity, of the
inputs. From §III-B, the expected error σi in the estimated
count of event ei is

√
V (ri) · t, where t is the amount of

unmonitored time. Future unmonitored time for event ei is
thus proportional to 1− Ui, where Ui is its utilization; thus, we
express the expected error as σi =

(√
V (rk)

)
·(1−Ui). Vari-

ance is thus σ2
i = V (ri) · (1− Ui)

2. The scheduling problem
is therefore stated as the following constrained optimization:

min
Ui

n∑

i=1

wiV (ri) · (1− Ui)
2 (2a)

s.t.
n∑

i=1

Ui ≤ m and ∀i, Umin ≤ Ui ≤ 1 (2b)

Where Umin is a lower-bound on the scheduling quantum
(minimum schedulable utilization time slice) to avoid event
starvation or floods of timer interrupts. For generality, we use
wi to denote a weight assigned to event ei; from our sensitivity
model described above, this may be set equal to Sobol’s first-
order sensitivity index S1

i . In general, if lacking sensitivity
analysis, Tintin assigns wi =

w∗
i

x2
i

, where w∗
i is a user-specified

weight (set via Tintin’s syscall API) and xi normalizes the
standard deviation by the estimated event count.

Eqn. 2 is equivalent to the formulation in [44] of elastic
scheduling as a constrained optimization problem. The elastic
real-time model, proposed by Buttazzo et al. [45], [46],
adapts task utilizations to avoid overload on limited processor
resources. Here, we solve the similar problem of adapting the
scheduling utilizations of hardware events on limited HPCs.
Tintin-Scheduler uses our quasilinear-time elastic scheduling
algorithm from [20], [47] to assign utilizations. In §VI-A, we
show that Tintin’s dynamic variance-weighted elastic schedul-
ing policy improves the accuracy of its event count estimates,
even in the absence of sensitivity data.

B. Scheduling Multiple Scopes
As mentioned in §II-B, Tintin collectively schedules all

events from any active EPXs. The details were omitted from
our accepted OSDI paper [19]; we outline the approach here.

18



Scheduling Model. The problem remains to determine a
schedule S(t) : C → {E, ϕ} that defines, at each time t, the
event assigned to each counter. The complication now is that
multiple active EPXs may share events in common. For ex-
ample, the system might be monitoring events {e1, e2, e3, e4}
on core 0, while a task running on that core monitors events
{e1, e2, e5, e6}. It does not make sense to treat e1 and e2
separately for each profiling scope for purposes of attribution:
if counts are read for either event, they should be attributed to
both EPXs. Otherwise, unmonitored time becomes unnecessar-
ily inflated, contributing additional uncertainty. However, each
EPX independently tracks counts and variance for its events,
which raises questions about how these should be used as
inputs to the scheduling problem.

We denote event e∗i,j ∼ (xi,j , σi,j , wi,j , ei,j) as the ith

event associated with the jth EPX. As usual, x and σ are the
estimated counts and error; w denotes its weight (see §IV-A)
and e denotes the identifier of the hardware event, implying
that ea,j , eb,j should be unique within a single EPX, but ea,j
and eb,k might be the same, indicating common events among
EPXs. Each EPX is also assigned a weight zj . This defaults
to 1, but is user-settable via Tintin-Manager’s syscall API.
Scheduling Policy. Our objective now is to minimize total
weighted uncertainty among the predictive models underpin-
ning each EPX. By extension of Eqn. 2, this can be stated as:

min
Uk

n∑

i=1

m∑

j=1

zi,jwi,jσ
2
i,j · (1− Uk)

2 (3a)

s.t.
∑

Uk

≤ m and ∀k, Umin ≤ Uk ≤ 1 (3b)

where we assume there are m active EPXs, and we denote
the utilization of event ei,j as Uk to reflect that there may be
events in common. We may instead denote the collection of
monitored events {ek}, where each event is assigned a set of
values {zk,j}, {wk,j}, {σk,j} according to the EPXs that track
it. If an event is not tracked by some EPX, these values may
be set to 0. We can then re-state the optimization problem:

min
Uk

∑

ek




m∑

j=1

zk,jwk,jσ
2
k,j


 · (1− Uk)

2 (4a)

s.t.
∑

Uk

≤ m and ∀k, Umin ≤ Uk ≤ 1 (4b)

Notice that this is exactly the quadratic optimization prob-
lem in Eqn. 2, but with coefficients

(∑m
j=1 zk,jwk,jσ

2
k,j

)

for each event ek. It therefore can be solved using the same
algorithm with transformed inputs.

V. RT-BENCH INTEGRATION

RT-Bench [23] is an open-source tool to address the bench-
marking needs of real-time systems. Rather than providing its
own computational workloads, RT-Bench serves as a frame-
work in which existing benchmarks, such as Isolbench [48] or
SD-VBS [49], can be integrated. RT-Bench provides a wrapper

- read(fd, &measurement, sizeof(struct read_format));       
+ read(fd, &measurement, sizeof(struct tintin_read_format));

long unsigned value = measurement.value;
+ long unsigned uncertainty = measurement.uncertainty;      

-  int fd = syscall(__NR_perf_event_open, &attr, …);           
+  int fd = syscall(__NR_tintin_event_open, &attr, …);         

Fig. 4. Simplified code snippets for using Tintin instead of Linux perf event
in RT-Bench. Both changes are made to files in generator/src. (Top): Set
up monitoring in performance_counters.c. (Bottom): Retrieve count
and uncertainty measurements in performance_sampler.c.

to run benchmark workloads as periodic tasks using a specified
period and deadline under Linux’s real-time schedulers. It sup-
ports processor pinning and constraints on memory allocation.

RT-Bench reports performance statistics from the running
benchmarks, including several hardware event counts. When
initializing a benchmark workload, it establishes monitoring
via Linux perf event. It then launches a dedicated performance
monitoring thread, PMThread, to perform high-frequency HPC
sampling via returned file descriptors. In its original release,
RT-Bench only monitored L2 cache refills [23], but it has since
been updated to monitor L1 and L2 references and refills,
retired instructions, and CPU cycles. These, and other updates,
are also presented at this year’s OSPERT [24].

In its current version, RT-Bench does not monitor more
events than the number of HPCs, and it assigns all events to the
same group, guaranteeing simultaneous monitoring. However,
as stated in [23], RT-Bench may benefit from adding more
performance counters. Indeed, access patterns to other shared
hardware resources, such as the L3 cache, memory bus [50],
and TLB [51], may cause significant contention and delays in
real-time task execution [52]–[55].

With its ability to significantly reduce measurement errors
due to HPC multiplexing, Tintin is a suitable candidate for use
in RT-Bench instead of perf event. Moreover, Tintin can report
both event counts and variance-based uncertainty in those
counts. If greater confidence is desired, an RT-Bench user can
make an informed decision to rerun a benchmark, either as-
signing greater weight to selected events for elastic scheduling
(the wi values in Eqn. 2a), or running the benchmark multiple
times, each time profiling different subsets of the events of
interest. Integrating Tintin into RT-Bench is straightforward,
requiring the minimal code changes shown in Fig. 4.

VI. EVALUATION

A. Overview of Prior Results

Here, we summarize a few of the key results from our OSDI
paper on Tintin’s performance [19].

Accuracy and Overhead. We used the SPEC CPU®2017 [39]
and PARSEC 3.0 [56] benchmark suites to assess the accuracy
of the event counts collected online by Tintin, as well as
its runtime overhead, in comparison to Linux perf event. We
select the 24 default predefined events in Linux perf event to
profile simultaneously [57]. To measure event count accuracy,
we obtain ground truth by pinning one event to an HPC in
each run. We repeat the experiments for the first 5 predefined
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Fig. 5. Benchmark accuracy and overhead results from [19].
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Fig. 6. HPC-based rootkit detection accuracy.

events in PERF_TYPE_HARDWARE in [57]. Runtime over-
heads are obtained by measuring mean benchmark execution
times across 10 runs; these are normalized to the execution
times without profiling. Results are shown in Fig. 5.

Event counts obtained with Linux perf event were, on
average, 9.01% off from the ground truth, with a maximum
error of 53.27%. In comparison, Tintin’s errors remained well
under 5% in most cases, with an average of 2.91%. Tintin
exhibits an average overhead of only 2.4%, only slightly higher
than perf event’s 1.9%. In the worst-case, we observed Tintin’s
overhead reached up to 7.6% while perf event’s reached up
to 12.7%. Tintin’s achieves better execution time performance
in scenarios where elastic scheduling allows fewer interrupts.

Impact of Quantifying Uncertainty. Many applications use
HPC data to make predictions, e.g., to identify malicious
behavior in intrusion detection systems. To evaluate Tintin’s
ability to enhance such systems, we adopted the experimental
setup from [17] on detecting Linux rootkits. As malware, we
use the open-source rootkit Diamorphine [58]. We train a
random forest classifier (as in [17], [59]) on the events defined
under PERF_TYPE_HARDWARE. We compare its accuracy
when collecting event counts using (i) perf event; (ii) Tintin
with just elastic scheduling, weighting each event equally; and
(iii) additionally using the measurement uncertainty reported
by Tintin as additional inputs to the classifier. Fig. 6 presents
the resulting ROC curves. The area under the curve (AUC)
for perf event is 0.57. Tintin improves the AUC to 0.66 with
elastic scheduling, and to 0.70 with reported uncertainty.

B. Benefits of Welford’s Method

To highlight the benefit of using Welford’s method over a
traditional two-pass variance calculation, we profile the in-
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Fig. 7. Comparison of overheads induced by variance computation.

kernel execution time of updating the running variance for an
event. For direct comparison, we implement a Linux kernel
module that simulates HPC reads and run it on a Raspberry
Pi 3 Model B+. Counts and monitoring interval durations are
written into an array for use by traditional weighted variance,
and we use Tintin-Monitor’s update variance function to
update the running variance attached to an ePX with Welford’s
method. Overheads, in processor cycles, are measured for
each approach every time a sample is obtained. Results are
shown in Fig. 7; unsurprisingly, the standard two-pass variance
computation times grow linearly with the number of number of
samples (about 69 cycles per sample), while Welford’s method
remains relatively constant (150 cycles on average). We note
that the initial larger overheads for the first few samples are
likely due to cache effects.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents Tintin [19], a new hardware event
profiling infrastructure originally published at OSDI, to the
real-time systems community. Tintin aims to schedule events
to reduce errors due to multiplexing atop limited HPCs. Tintin
is a general-purpose, Linux-based tool. Although it does not
specifically target real-time systems, hardware profiling is
nonetheless important to our community, as evidenced by the
PMThread functionality in RT-Bench [23], [24]. Moreover,
Tintin leverages the elastic scheduling model of Buttazzo et
al. [45], [46] to minimize measurement uncertainty.

As future work, we intend to release Tintin-Miner, an offline
analysis tool that will identify relationships among events so as
to identify and remove redundant events from the monitoring
pool. It will also perform the sensitivity analysis described
in §IV-A to inform weights for Tintin-Scheduler. We will also
extend the elastic scheduling policy with principled support for
event groups and CPU platforms where certain HPC registers
cannot accommodate certain event types.
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Abstract—Embedded Unikernel Linux (EUKL) is a Linux-
based unikernel designed for resource-constrained embedded
systems, which typically lack an MMU and hardware-assisted
virtualization support. EUKL runs as a real-time operating
system (RTOS) application. To the best of our knowledge, EUKL
is the first approach that enables the simultaneous support of
real-time applications and Linux applications in a single resource-
constrained embedded system without compromising real-time
capability or reliability.

Index Terms—real-time systems, reliability.

I. INTRODUCTION

There are demands to utilize feature-rich software assets
already available in Linux (e.g., GUI frameworks, network
stacks) to reduce development costs in embedded systems.
However, embedded systems often interact with physical world
and require hard real-time performance and high reliability.
Ensuring real-time capability with Linux alone is challenging
due to its enormous code base. Thus, the dual-OS approach by
virtualization that runs Linux and a real-time operating system
(RTOS) simultaneously (Fig.1) is commonly used to support
both Linux applications and RTOS applications.

Resource-constrained embedded systems (e.g., Arm Cortex-
M platform) are embedded systems with strict hardware re-
source constraints and typically lack both a Memory Man-
agement Unit (MMU) and hardware-assisted virtualization
support. These significantly contribute to minimizing size,
weight, power, and cost (SWaP-C), thus they are widely
adopted in real-world products where SWaP-C is important.

If Linux applications are also available in resource-
constrained systems, it is possible to develop feature-rich
and complicated embedded applications with low SWaP-C
and development costs. However, the previously mentioned
virtualization solution is hard to apply to resource-constrained
embedded systems due to the lack of hardware-assisted virtu-
alization support. To the best of our knowledge, there is no
existing solution to simultaneously support real-time applica-
tions and Linux applications in a single resource-constrained
embedded system without compromising real-time capability
or reliability of real-time applications. This situation forces
developers either to compromise SWaP-C by adopting the
virtualization approach with more expensive hardware where
hardware-assisted virtualization is supported, or to incur high
development costs.

Therefore, our goal is to (1) simultaneously support real-
time applications and Linux applications (2) within a single

Hypervisor

RTOS

VM VM

Hardware

Linux

Fig. 1: Conventional approach: Dual OS by virtualization

Hardware

RTOS

Unikernel

Linux
Application

Task

Real-Time
Application

Task

Fig. 2: Proposed approach: Dual OS by running a Linux-Based
unikernel on an RTOS

resource-constrained embedded system (3) without compro-
mising real-time capability or reliability, for the purpose of
reducing both SWaP-C and development costs in feature-rich
embedded applications.

To archive this goal, we propose Embedded Unikernel
Linux (EUKL), a Linux-based unikernel suitable for resource-
constrained embedded systems. EUKL is inspired by and a
fork of Linux Unikernel (UKL) [1], evolved in the cloud-
computing context.

II. BACKGROUND

In this section, we describe the background technologies
relevant to the key idea of EUKL.

A. Reliable RTOSes

Reliable RTOSes are RTOSes which provide strong spatial-
and temporal- isolation to their user-space applications (e.g.,
TOPPERS/HRP3 [2], Zephyr [3]). These can support resource-
constrained embedded systems equipped with a memory pro-
tection unit (MPU), used to spatial-isolation.
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B. Unikernels
Unikernels [4], [5] are single-address-space OSes, highly

optimized for specific applications. They have been primarily
researched in the context of cloud- and edge-computing.
Assuming the presence of a hypervisor, unikernels do not
provide isolated environments to user applications, but provide
rich features which are convenient to implement complex
applications. Some of them provide POSIX-compatibility,
even Linux-compatibility [1], [6]–[9]. This enables to highly
optimize both kernel and application at the same time and
realize high throughput and resource efficiency, while reusing
numerous existing feature-rich and complicated application
code.

Unikernels can be classified into two categories based on
their implementations:

1) Clean-slate unikernels: Are unikernels whose a large
portion of code is developed from scratch [6]–[8].

2) Existing GPOS-based unikernels: Are unikernels re-
alized by modifying an existing general purpose operating
system (GPOS) such as Linux and NetBSD [1], [9], [10].

C. UKL (Unikernel Linux)
UKL (Unikernel Linux) [1] is a prior work on a Linux-based

unikernel. This converts Linux into a unikernel-style OS with
a few modifications (1250 SLOC modifications against the
Linux kernel). UKL provides kernel-level Linux compatibility,
in addition to the characteristics observed in unikernels. The
original implementation targets x86 bare-metal and virtual
machine environments, which is not available in resource-
constrained embedded systems.

D. Nommu Linux
Nommu Linux is a Linux kernel without using an MMU

and available in the upstream Linux kernel source code
with the CONFIG_MMU=n configuration. This is also known
as µCLinux. Nommu Linux is capable of running in some
resource-constrained embedded systems.

Typically, µClibc is used as a C standard library on Nommu
Linux.

III. KEY IDEA OF EUKL
The key idea of EUKL is to run a Nommu-Linux-based

unikernel inside a user-space of a reliable RTOS (Fig.2).
This idea utilizes the strong isolation provided by the

reliable RTOS instead of a hypervisor in the virtualization
solution (Fig.1). Thus, the Linux-based unikernel provides
a Linux execution environment, while the reliable RTOS
protects native RTOS applications from the Linux kernel and
its applications.

Owing to its design principle of single-address-space and
typically single-privilege-level, a unikernel should be feasible
within a user-space of an RTOS. Moreover, basing Nommu
Linux for the unikerenl makes the Linux-based unikernel fea-
sible in resource-constrained embedded systems itself. It also
reduces the effort required to port the Linux-based unikernel
onto an RTOS user-space, compared to the case of utilizing
MMU-enabled Linux as UKL does. Thus, this idea is feasible.

IV. DESIGN OF EUKL

Host RTOS

Real-time
Application

Hardware

Interrupt Task

Linux Interrupt Handler

Host RTOS Interrupt Handler

EUKL
Main Task

Linux Kernel Thread

Linux Application

Fig. 3: Overview of EUKL architecture.

Fig.3 shows the overall architecture of a resource-
constrained embedded system that utilizes EUKL with a
reliable RTOS. All the Linux code completely runs inside an
RTOS user-space to apply isolation by the RTOS. The Linux
code runs inside two dedicated tasks. One (Main Task) is to
run all the tasks in the Linux. The other (Interrupt Task)
is to run interrupt handlers in the Linux. However, interrupt
handlers (Host RTOS Interrupt Handler) run in the
RTOS kernel, in order to virtualize interrupts assigned to the
Linux.

In this section, we describe the detailed design of EUKL.

A. Nommu-Linux-based Unikernel

Nommu Linux is converted into a Linux-based unikernel in
the same way as UKL:

1) Run both kernel and application at the same CPU
privilege level: Mainly, the context switch part in the Linux
kernel is modified.

2) Call a system call via a function call: The code calling
a system call via a software-generated interrupt (e.g., an
interrupt generated by the svc instruction in Arm Cortex-M
) in µClibc is modified to call it via a simple function call.

3) Static link Linux kernel and user application into single
binary: The program loader in the Linux kernel is modified to
minimize dynamic loading applications. This change improves
memory efficiency since memory fragmentation, including that
caused by dynamic loading is a serious problem in resource-
constrained embedded systems where MMU-based virtual
memory is not available.

B. Unikernel on RTOS

Next, the Linux-based unikernel is ported to an RTOS user-
space without modifying the RTOS. The main task of porting
is to solve conflicts between Linux and the RTOS and apply
isolation by the RTOS.

1) Port multi-tasking inside Linux: M:1 model and non-
preemeptive scheduling is adopted to realize multi-tasking
inside Linux. M:1 model (i.e., running all Linux tasks within
a single task of the host RTOS) is adopted over 1:1 model
(i.e., running each Linux task within a dedicated task of
the host RTOS) since 1:1 model requires dynamic generating
tasks, which poses additional requirements to the host RTOS.
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Next, non-preemptive scheduling (also known as co-operative
scheduling) is adopted since preemptive scheduing inside a
single task also poses some requirements to the host RTOS.

2) Virtualize interrupts: Interrupts to Linux have to be
carefully virtualized in order to avoid an effect against real-
time performance of the host RTOS via those interrupts.
Especially, all interrupt disabling used in Linux’s mutual
exclusion is performed by a special atomic operation (e.g.,
cpsid instruction in Arm Cortex-M) and, thereby, affect on
interrupt latencies and responses of other RTOS applications.

Algorithm 1 describes the currently implemented logic
in EUKL, in order to virtualize interrupts assigned to the
Linux. In this algorithm, the operations of global interrupt
disable from Linux are virtualized by disabling only triggered
interrupts during the global disable (EUKLDisableAllInterrupt
/ EUKLEnableAllInterrupt). On the other hand, the interrupt
handler in the host RTOS (HostInterruptHandler) manually
disables all interrupts assigned to the Linux. By doing so, at
most one interrupt assigned to the Linux can occur between
the start of a high-priority task’s execution and the resumption
of the interrupt task’s execution. Therefore this minimizes the
impact on the high-priority task’s worst-case response time
(WCRT).

C. Unikernel Optimization

Link Time Optimization (LTO) is applied to both the Linux
kernel and its applications to improve resource efficiency,
which is important in resource-constrained embedded systems.
LTO is a compiler optimization technique often adopted by
Unikernels. This performs compiler optimizations against a
whole program in a single time. We ported a GCC LTO patch
[11] submitted to a Linux kernel mailing list.

In addition to LTO, the system call table implemented in
Linux is removed in order to make LTO more effective. This
table contains all addresses to a system call function even
if it is not used by any user application. This is required to
realize to call a system call via a software-generated interrupt.
However, each system call is performed via a function call in
EUKL, thus the table is not needed. By removing the table,
system call functions which are not used by a user application
are applied to LTO and expected to be removed.

V. IMPLEMENTATION

Table I lists the pairs of boards and RTOSes currently sup-
ported in EUKL. Firstly, EUKL is implemented on Arm v7-
M (Cortex-M4) and TOPPERS/ASP3 for prototyping. TOP-
PERS/ASP3 is an RTOS that differs from TOPPERS/HRP3 in
that it lacks isolation mechanisms. Thus, ASP3 is not a reliable
RTOS. However, RTOSes without any isolation mechanism are
also applicable to EUKL itself if the system doesn’t require
reliability of other RTOS applications. Now, we also support
Arm v8-M (Cortex-M33) and TOPPERS/HRP3.

We believe EUKL is applicable to other RTOSes (e.g.,
Zephyr) with a few porting efforts since EUKL is designed
carefully so that EUKL avoids using functions unique to
TOPPERS/ASP3 or HRP3 for its portability.

Algorithm 1 Interrupt Virtualization Algorithm
1: function INITIALIZEEUKLINTERRUPT
2: for all irq ← irqs do
3: eukl irq assigned[irq] ← Is irq assigned to the

EUKL?
4: eukl irq enabled[irq]← 0
5: end for
6: eukl all irq enabled← 0
7: eukl active irq ← −1
8: eukl pending irq ← −1
9: end function

10: function EUKLDISABLEINTERRUPT(irq)
11: if eukl irq assigned[irq] then
12: HOSTLOCKCPU
13: eukl irq enabled[irq]← 0
14: HOSTDISABLEINTERRUPT(irq)
15: HOSTUNLOCKCPU
16: end if
17: end function
18: function EUKLENABLEINTERRUPT(irq)
19: if eukl irq assigned[irq] then
20: eukl irq enabled[irq]← 1
21: HOSTENABLEINTERRUPT(irq)
22: end if
23: end function
24: function EUKLDISABLEALLINTERRUPT
25: eukl all irq enabled← 0
26: end function
27: function RAISEEUKLINTERRUPT(irq)
28: EUKLDISABLEALLINTERRUPT
29: eukl active irq ← irq
30: HOSTACTIVATETASK(EUKLInterruptTask)
31: end function
32: function EUKLENABLEALLINTERRUPT
33: eukl all irq enabled← 1
34: if eukl pending irq >= 0 then
35: irq ← eukl pending irq
36: eukl pending irq ← −1
37: RAISEGUESTINTERRUPT(irq)
38: end if
39: end function
40: function HOSTINTERRUPTHANDLER(irq)
41: for all irq ← irqs do
42: if eukl irq enabled[irq] then
43: HOSTDISABLEINTERRUPT(irq)
44: end if
45: end for
46: if eukl all irq enabled then
47: RAISEEUKLINTERRUPT(irq)
48: else
49: eukl pending irq ← irq
50: end if
51: HOSTWAKEUPTASK(EUKLMainTask)
52: end function
53: function EUKLINTERRUPTTASK
54: EUKLINTERRUPTHANDLER(active irq)
55: eukl active irq ← −1
56: GUESTENABLEALLINTERRUPT
57: for all irq ← irqs do
58: HOSTLOCKCPU
59: if eukl irq enabled[irq] and eukl active irq == −1

then
60: HOSTENABLEINTERRUPT(irq)
61: end if
62: HOSTUNLOCKCPU
63: end for
64: end function
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TABLE I: Currently supported boards and RTOSes in EUKL

Board CPU Host RTOS Protection mechanism
STM32F429I-DISC1 Arm Cortex-M4 TOPPERS/ASP3 Not supported

MPS2+ AN505 on QEMU Arm Cortex-M33 TOPPERS/HRP3 Supported
STM32U5G9J-DK1 Arm Cortex-M33 TOPPERS/HRP3 Supported

VI. EVALUATION

We conducted an evaluation of EUKL implemented on
STM32F429I-DISC1 [12](Table II) and TOPPERS/ASP3 by
running a hello world application in C as a test Linux
application.

The impact on the WCRT of a high-priority real-time
application is calculated as 12.4 µs + 0.4µs × (number of
interrupts assigned to EUKL). This shows that the impact on
real-time capability is sufficiently minimal in many cases.

The ROM usage and RAM footprint are also eval-
uated for resource efficiency. The best ROM usage of
EUKL(eukl-lto-effective) decreases by 30% com-
pared to vanilla Nommu Linux(vanilla) (Table III). The
RAM footprint (i.e., the minimum RAM size required to run
the application) of EUKL(eukl) is also decreased by 30%
compared to vanilla Nommu Linux(vanilla) (Table IV).

These results show that the impact on real-time capability
is sufficiently minimal and resource efficiency is improved,
demonstrating that our approach is practical and beneficial for
resource-constrained embedded systems.

VII. RELATED WORKS

Table V shows a comparison table of methods that allow
co-running RTOS and Linux while maintaining real-time ca-
pability.

As previously mentioned, hardware-assisted virtualization
provides isolated execution environments for both Linux and
RTOSes, thereby ensuring the reliability of RTOS applications.
However, it is not suitable for resource-constrained embedded
systems.

The Co-kernel approach [13]–[15] achieves a DualOS ar-
chitecture by sharing the kernel space between the Linux
kernel and an RTOS kernel. While it is feasible in resource-
constrained embedded systems, it lacks isolation between
the kernels, and therefore cannot ensure reliability of RTOS
applications.

EUKL is the only approach that both ensures the relia-
bility of RTOS applications(Reliability) and is feasible
to resource-constrained embedded systems(Feasibility).
Furthermore, by applying unikernel optimizations, it also
achieves improved resource usage efficiency relative to other
methods.

VIII. CONCLUSION

In this paper, we presented EUKL, a Linux-based unikernel
running inside a reliable RTOS user-space. EUKL aims to
allow co-existance of Linux applications and RTOS applica-
tions within a single resource-constrained embedded system
while maintaining real-time capability and reliability of the

RTOS applications. For resource efficiency, imporovements
both in ROM usage and RAM footprint are also observed
in the evaluation. EUKL is expected to reduce SWaP-C and
development costs in feature-rich embedded applications.

As a future work, we will conduct additional detailed
evaluation against real-product-aware and more complicated
demo applications. Moreover, we are considering modifying
the host RTOS in order to enhance the Linux-based unikernel
(e.g., for more better real-time capability) since most RTOSes
do not expect to execute an OS as their application. Finally,
we have a plan to publish EUKL as an open-source project
on the Internet targeting both research and industrial usage
purposes.

REFERENCES

[1] A. Raza, T. Unger, M. Boyd, E. B. Munson, P. Sohal, U. Drepper,
R. Jones, D. B. De Oliveira, L. Woodman, R. Mancuso, J. Appavoo, and
O. Krieger, “Unikernel linux (ukl),” in Proceedings of the Eighteenth
European Conference on Computer Systems, ser. EuroSys ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p.
590–605. [Online]. Available: https://doi.org/10.1145/3552326.3587458

[2] TOPPERS Project, Inc., “TOPPERS Project/HRP3.” [Online]. Available:
https://www.toppers.jp/hrp3-kernel.html

[3] Zephyr Project, “The Zephyr Project – A proven RTOS ecosystem, by
developers, for developers.” https://www.zephyrproject.org/.

[4] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels:
Library operating systems for the cloud,” in Proceedings of the
Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
461–472. [Online]. Available: https://doi.org/10.1145/2451116.2451167

[5] A. Madhavapeddy and D. J. Scott, “Unikernels: The rise of the virtual
library operating system,” Commun. ACM, vol. 57, no. 1, p. 61–69, jan
2014. [Online]. Available: https://doi.org/10.1145/2541883.2541895

[6] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti,
and V. Zolotarov, “OSv—Optimizing the operating system for virtual
machines,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14). Philadelphia, PA: USENIX Association, Jun. 2014, pp.
61–72. [Online]. Available: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/kivity

[7] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran,
“A binary-compatible unikernel,” in Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ser. VEE 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 59–73. [Online]. Available:
https://doi.org/10.1145/3313808.3313817
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TABLE II: Specifications of STM32F429I-DISC1

Component Description
CPU Arm Cortex-M4 (Arm v7-M) @ 168MHz

Number of Cores Single Core
MPU Implemented (PMSAv7)
MMU Not implemented

Hardware-Assisted Virtualization Not supported
RAM Built-in SRAM: 245KB, External SDRAM: 8MB
ROM 2MB

TABLE III: ROM Usage

Target Usage [KB] Description of Target
vanilla 1353 vanilla Nommu Linux
vanilla-lto 990 vanilla + LTO applied
vanilla-lto-kernel-only 988 vanilla Nommu Linux kernel only with LTO applied
eukl 1506 EUKL without LTO
eukl-lto 963 eukl + LTO applied
eukl-lto-effective 886 eukl-lto + improved LTO efficiency by removing system call table

TABLE IV: RAM footprint

Target Footprint [KB] Description of Target
vanilla 2646 vanilla Nommu Linux
eukl 1860 EUKL without LTO

TABLE V: Comparison of approaches co-running RTOS and Linux

approach Feasibility Reliability Resource Efficiency
EUKL (proposed) ✓ ✓ ✓
Hardware-Assisted Virtualization - ✓ -
Co-kernel ✓ - -
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Abstract—We present a preliminary evaluation of real-time
scheduling policies for GPU kernels modeled as moldable tasks.
Our framework maps periodic real-time jobs to CUDA kernels
and uses libsmctrl to assign Texture Processing Clusters
(TPCs), enabling gang scheduling with variable parallelism.
A calibration tool provides per-kernel WCET estimates across
different TPC counts, allowing the scheduler to trade execution
time for resource usage.

We compare several scheduling strategies, including CUDA’s
default concurrent kernel execution (“all-out”), a sequential EDF
policy using all TPCs per job, and a moldable EDF scheduler
that dynamically allocates just enough TPCs to meet each job’s
deadline. Using static per-task memory allocation, we eliminate
prior sources of interference and achieve WCET predictability.

Our results show that deadline-aware scheduling outperforms
the default CUDA strategy in scenarios with urgency mismatches.
Moreover, moldable EDF improves over sequential EDF by
reducing deadline misses under non-preemptive execution, espe-
cially when long-running jobs could block shorter urgent ones.

Index Terms—GPU Partitioning, Gang Scheduling, Moldable
Tasks, WCET Estimation, Non-Preemptive Scheduling, CUDA.

I. INTRODUCTION

GPUs are increasingly integrated into real-time and safety-
critical systems, including autonomous vehicles, robotics, and
industrial automation. While their parallelism offers significant
performance benefits, GPUs remain challenging to integrate in
systems requiring predictability. One key obstacle is the lack
of fine-grained control over how GPU resources are shared
and scheduled across concurrent workloads.

In response to this, recent efforts have explored ways to
partition GPU resources, such as using NVIDIA’s Streaming
Multiprocessor (SM) partitioning feature, exposed via tools
like libsmctrl [1]. Partitioning promises isolation between
workloads by assigning subsets of SMs—called Texture Pro-
cessing Clusters (TPCs)—to different jobs. This opens the
door to applying real-time scheduling techniques such as
Earliest Deadline First (EDF), gang scheduling, or moldable
parallelism on GPUs.

Following the terminology of Goossens and Berten [2], a
parallel job in a gang scheduling system is said to be rigid if
its processor allocation is fixed externally and never changes,
moldable if the scheduler decides the allocation at release time,
and malleable if the allocation can change during execution.

In our case, the allocated resource under consideration is the
number of TPCs assigned to a kernel launch.

In this work, we explore the feasibility and benefits of
deadline-aware moldable scheduling for GPU kernels, lever-
aging runtime TPC assignment to adapt to system load. We
develop a custom CUDA scheduling framework that models
periodic real-time task sets, where each job corresponds to a
GPU kernel execution. Using libsmctrl, we assign TPC
masks at runtime based on the job’s urgency and its worst-
case execution time (WCET) profile, measured as a function
of TPC count.

We implement several schedulers, including CUDA’s default
concurrent launch policy (“all-out”), a sequential EDF policy
that assigns all TPCs to one job at a time, and a moldable EDF
scheduler that dynamically adapts job parallelism based on
deadline constraints. Our evaluation shows two key findings.
First, the “all-out” strategy, while aggressive in parallelism,
is unaware of deadlines and can underperform even simple
sequential EDF in deadline-sensitive workloads. Second, the
moldable EDF scheduler improves over both baselines by
assigning only the resources necessary to meet each job’s
deadline, thus avoiding deadline misses—particularly in non-
preemptive scenarios where greedy jobs might otherwise block
shorter, urgent ones.

These results demonstrate that combining SM partitioning
with moldable real-time scheduling can outperform default
GPU execution strategies, and offer a promising direction for
predictable GPU integration in real-time systems.

II. FRAMEWORK OVERVIEW

We developed a custom runtime framework for evaluating
GPU scheduling strategies under a real-time task model. Each
task corresponds to a periodic stream of GPU jobs, imple-
mented as CUDA kernels, and is characterized by a period,
relative deadline, and kernel type. The kernel type of a task
defines the specific workload executed by its jobs. It implicitly
determines the Worst-Case Execution Time (WCET) of a job
as a function of the GPU resources (e.g., TPCs) assigned to
it, as detailed below. All jobs are released on a fixed periodic
schedule and are executed non-preemptively. The scheduler is
invoked on each job release and completion event to determine
which jobs to run next and how to assign GPU resources.
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Fig. 1. Execution times (top row) and speedups (bottom row) of CUDA kernels under increasing TPC count (from 1 to 12). Compute-bound kernels
(FlopBurn, MatMul, Reduction) show near-linear speedups, closely tracking the ideal scaling line (dashed). Stencil1D also scales well, but with
diminishing returns due to memory reuse patterns (non-coalesced accesses). In contrast, memory-bound kernels (VecAdd4MB) saturate early, showing limited
speedup beyond 4-6 TPCs. These results are used by the scheduler to estimate empirically the worst-case execution time as a function of TPC count.

SM Partitioning and TPC Masks. To control GPU re-
source usage, we use libsmctrl, a library that enables fine-
grained partitioning of NVIDIA GPUs by restricting kernels to
specific subsets of Streaming Multiprocessors (SMs). On our
GPU model, a TPC corresponds to two SMs, and the TPC
mask of a job defines the subset of SMs it is allowed to run
on. This allows the scheduler to enforce isolation policies by
selecting non-overlapping TPC masks for concurrent jobs.

Scheduler and Policy Interface. The framework supports
pluggable scheduling policies. Schedulers implement a uni-
form interface and maintain their own internal state, such as
the list of pending jobs. The interface consists of:

• on_job_release(GpuJob*)

• on_job_complete(GpuJob*)

• std::vector<GpuJob*> select_jobs_to_run()

For example, EDF-based schedulers use a priority queue
internally, sorted on absolute deadlines, and allocate TPCs
based on job urgency. All scheduling decisions are made
online and are executed by a central loop that launches
jobs using their assigned TPC masks. This design enables
experimentation with various scheduling policies, including
those supporting parallel jobs. We support:

• seq-edf: a sequential EDF policy where jobs run one
at a time with all TPCs;

• global-edf-1tpc: each job runs with one TPC,
allocated greedily;

• moldable-edf: each job is assigned the smallest TPC
count that satisfies its WCET–deadline pair;

• all-out (baseline): every job is launched immediately,
in a default-priority CUDA stream, with a full TPC mask
(i.e., no partitioning). On current NVIDIA GPUs, the
Task Management Unit (TMU) and Work Distribution
Unit (WDU) dispatch such kernels in FIFO order within
each priority level [1]. Because all our streams use the
default (equal) priority and no kernels spawn child kernels
(i.e., no CUDA Dynamic Parallelism), the dispatch order
is reproducible across repeated runs of the same task set.
This policy represents the default behavior of the CUDA
runtime.

WCET Calibration. To estimate per-job execution time
under different TPC configurations, we developed a WCET
calibration tool. This tool runs each kernel type in isolation
across 1 to N TPCs and records execution times. These
measurements populate a per-kernel-type WCET vector made
available to the scheduler. During execution, the scheduler can
use this vector to reason about how many TPCs to assign to
a job in order to meet its deadline.

Task-Based Memory Management. To ensure consistency
and eliminate memory-related timing anomalies, each task acts
as a “vessel” for its jobs, encapsulating both the kernel type
and the memory buffers needed for execution. At program
startup, each task allocates the required data structures in GPU
device memory; these buffers are then reused by every job
released by the task, avoiding any per-job allocation or deallo-
cation during execution. This setup prevents host-to-device and
device-to-host data transfers during execution, ensuring that all
data resides in GPU memory throughout the experiment. It also
isolates compute behavior from interference caused by shared
memory traffic or copy engines—issues we leave to future
work. This design significantly improves timing predictability.
In earlier experiments, dynamic allocations and implicit data
transfers introduced substantial timing noise and unintended
synchronization effects, as also observed by Yang et al. [3].
With this simplification, execution times became remarkably
more stable, and WCET overruns were largely eliminated.

Experimental Testbed. All experiments were conducted
on an NVIDIA RTX 2000 Ada Generation Laptop GPU,
a discrete GPU with 24 Streaming Multiprocessors (SMs),
corresponding to compute capability 8.9. The system was con-
figured with NVIDIA driver version 570.133.20 and CUDA
toolkit version 12.8.

Frequency Control. To reduce variability and ensure re-
peatable WCET measurements, we disabled dynamic fre-
quency scaling (DVFS) and fixed both the core and memory
clocks using nvidia-smi. Specifically, we enabled persis-
tence mode and locked the graphics and memory clocks to
2115 MHz and 7001 MHz, respectively: nvidia-smi -pm
1, -lgc 2115, -lmc 7001,7001. This eliminates one
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Fig. 2. Impact of TPC placement on execution time for a fixed TPC count (k = 4). Each subplot corresponds to a different CUDA kernel and shows
execution time variation across all valid 4-TPC masks (out of 12 total). Only a few representative masks are shown on the x-axis for readability. Compute-
and memory-bound kernels exhibit consistent runtimes regardless of which TPCs are selected, suggesting minimal sensitivity to placement.

major source of temporal jitter and ensures that observed
WCET overruns are not artifacts of frequency throttling.

III. WCET SCALING AND PLACEMENT SENSITIVITY

To support moldable scheduling and inform resource allo-
cation decisions, we precompute the execution time of each
CUDA kernel type across different levels of parallelism. Our
WCET calibration tool executes each kernel in isolation using
TPC masks ranging from 1 to 12 active TPCs, and records the
corresponding execution times. The kernels used in this study
span a range of compute and memory intensities:

• FlopBurn: a compute-bound kernel that performs re-
peated trigonometric operations to saturate the floating-
point ALUs,

• MatMul: a tiled matrix multiplication using shared mem-
ory, representative of structured compute workloads,

• Reduction: a parallel reduction that combines shared
memory and atomic operations, with moderate control
divergence,

• Stencil1D: a 1D stencil operation with neighborhood data
dependencies and moderate memory reuse,

• VecAdd1MB / VecAdd4MB: simple element-wise vector
additions over 1MB or 4MB arrays, limited by global
memory bandwidth.

Figure 1 shows the measured WCETs of these kernels
and the corresponding speedups as a function of TPC count.
Compute-bound kernels such as FlopBurn and MatMul
scale nearly linearly with the number of TPCs, achieving close
to ideal speedup. Memory-bound kernels such as VecAdd1MB
and VecAdd4MB, however, exhibit diminishing returns be-
yond 4–6 TPCs. Stencil1D kernels fall in between: they
benefit from parallelism but scale sub-linearly.

These WCET profiles are exposed to the scheduler at
runtime and enable reasoning about the trade-off between
parallelism and execution time of a job, based on the number
of TPCs it is assigned. They serve our moldable scheduler’s
decision process, which aims to assign the minimum number
of TPCs needed to meet a job’s deadline.

To assess the robustness of these measurements, we con-
ducted a sensitivity study on TPC placement. Even when the
number of assigned TPCs is fixed, the specific SMs selected
(i.e., the bit pattern of the TPC mask) could, in principle, affect
execution time due to undocumented architectural asymmetries

or locality effects. We fixed the number of active TPCs to
k = 4 and systematically evaluated each kernel across all valid
TPC masks with exactly four bits set, resulting in 495 unique
placements out of 12 TPCs. Note that the bit logic in our masks
is inverted relative to the convention used by libsmctrl:
a bit set to 1 denotes an active TPC in our encoding. Each
mask configuration was executed 50 times following a warmup
phase. Figure 2 summarizes the resulting distributions. We
observe no significant impact of TPC placement on execu-
tion time. Compute-intensive kernels such as FlopBurn,
MatMul, Reduction, and Stencil1D exhibit narrow and
consistent distributions across all placements. Even memory-
bound kernels like VecAdd1MB and VecAdd4MB do not
exhibit systematic sensitivity to SM selection. These results
confirm that, in isolation, WCET is primarily determined
by the number of assigned TPCs rather than their physical
placement.

IV. CASE STUDIES: WHEN SCHEDULING MATTERS

To highlight the practical implications of deadline-aware
scheduling on GPUs, we present two representative case
studies drawn from our experiments. These scenarios illustrate
how CUDA’s default policy and simple sequential execution
can both fail under real-time constraints, and how moldable
scheduling can mitigate deadline misses.

A. Study 1: Deadline Awareness vs. Parallelism

This scenario compares seq-edf with the baseline
all-out strategy. The taskset consists of five identical jobs.
Four of them are tasks with a period and deadline of 100 ms,
while one is an “urgent” task with a 10 ms deadline. All jobs
execute the same kernel and share the same WCET profile,
but the urgent task has significantly tighter timing constraints.

Under all-out, all five jobs are launched concurrently at
each release. CUDA’s default scheduling policy, as noted by
Bakita et al. [1], admits kernels in FIFO order with limited
prioritization. This means that once a kernel is submitted, all
of its blocks must complete before newer kernels can begin
execution—even if those newer kernels correspond to more
urgent tasks. As a result, the urgent job may be delayed by
earlier, less time-sensitive work, leading to deadline misses
despite ample compute resources.
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Fig. 3. Case study 1: Comparison between deadline-unaware (all-out)
and deadline-aware (seq-edf) scheduling. Each job uses all TPCs (12), and
the taskset contains one urgent task (Task 5) with a tighter deadline. Red
crosses mark job deadlines. Under all-out, Task 5 misses its deadline due
to lack of prioritization. In contrast, seq-edf prioritizes it correctly, and all
deadlines are met.

In contrast, seq-edf enforces a strict priority order based
on absolute deadlines, running one job at a time using all
TPCs. Although this strategy reduces concurrency, it ensures
that the most urgent job is executed first, preventing unneces-
sary deadline violations.

Figure 3 shows the resulting Gantt chart: while all-out
suffers from misprioritized execution, seq-edf guarantees
the timely completion of the urgent job.

B. Study 2: Resource-Aware Scheduling under Non-
Preemption

This scenario compares seq-edf and moldable-edf
on a two-task workload with non-preemptive execution. The
first task is a “greedy” long-running job with a WCET of
1250 ms when using all 12 TPCs, and 7500 ms when limited
to 2 TPCs. It has a period of 10 s and a relaxed deadline of
10 s. The second task releases short, urgent jobs with a WCET
of approximately 265 ms on 2 TPCs and 25 ms on 12 TPCs,
and with a period of 500 ms and a relative deadline of 300 ms.

Under seq-edf, jobs are executed sequentially using all
12 available TPCs. At the start of the hyperperiod, both tasks
release their first jobs. Since the urgent job has an earlier
deadline, it is correctly scheduled first. However, subsequent
jobs of the urgent task arrive while the greedy job is executing
and are blocked until it completes. Because execution is non-
preemptive, the urgent jobs cannot reclaim GPU resources
mid-execution and thus miss their deadlines. In contrast,
moldable-edf dynamically estimates the number of TPCs
required to meet each job’s deadline based on the precomputed
WCET table. It assigns only the necessary TPCs to the greedy
job, leaving enough TPCs free to schedule the urgent job
concurrently. As a result, moldable-edf avoids blocking
and ensures both tasks remain schedulable.

Figure 4 shows the Gantt chart highlighting this difference:
only moldable-edf successfully schedules both tasks with-
out deadline misses.
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enabling concurrent execution. All
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Fig. 4. Case study 2: Job execution timelines across TPCs. Each horizontal
bar represents a kernel execution on a specific TPC. Red crosses mark
job deadlines. Moldable scheduling avoids deadline misses by spatially
multiplexing tasks.

These results show that moldable scheduling, when com-
bined with SM partitioning, has the potential to enable higher
schedulability even in non-preemptive systems.

V. LIMITATIONS

Our evaluation is preliminary and subject to several limita-
tions that we plan to address in future work.

Resource isolation. While our framework allows fine-
grained TPC partitioning, kernel executions are calibrated
and evaluated in isolation, without concurrent memory traffic
or host-side interference. Real-world deployments may ex-
perience shared resource contention—e.g., across L2 cache
slices, DRAM channels, or copy engines—which could im-
pact both execution time and predictability, particularly for
memory-bound kernels. As future work, we plan to extend
our WCET analysis with interference-aware calibration, us-
ing co-scheduled background kernels to quantify slowdowns
under contention. This will complement the results shown in
Figure 2, where execution times were measured in isolation.

CUDA baseline behavior. We compare against CUDA’s
default kernel execution behavior, which typically launches
kernels in FIFO order across streams. We do not explore
alternative configurations enabled by the CUDA runtime, such
as per-stream priorities or CUDA Graphs, though these could
influence deadline satisfaction under certain workloads.

Application coverage. The current evaluation is limited
to synthetic kernels with predictable structure and compute-
dominated profiles. While useful to showcase scheduling be-
havior, real-world GPU workloads—such as DNN inference
or sensor fusion—will be explored in future studies.

Formal analysis. Finally, no formal schedulability analysis
is provided in this work. We focus on empirical evaluation;
integrating analytical models (e.g., response-time analysis) and
characterizing worst-case interference under shared resource
contention are important next steps.

VI. RELATED WORK

Gang scheduling has long been explored in real-time sys-
tems to coordinate parallel workloads under predictable exe-
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cution models. Nelissen et al. [4] introduced a response-time
analysis framework for non-preemptive, periodic moldable
gang tasks, establishing schedulability bounds under job-level
fixed-priority (JLFP) policies.

Bakita et al. [1] proposed libsmctrl, a user-space mech-
anism for SM-level partitioning on NVIDIA GPUs, enabling
spatial isolation via explicit control over the TPC mask.
Our framework builds on this mechanism to support real-
time schedulers that explicitly allocate GPU resources to
individual jobs at runtime. Follow-up work [5] showed that
SM partitioning alone does not ensure isolation, due to
shared resource interference from memory controllers, copy
engines, and internal arbitration mechanisms. These insights
informed our framework design, particularly the need for
static memory allocation. Ali et al. [6] recently introduced
the Streaming Multiprocessor Locking Protocol (SMLP),
which supports predictable intra-component GPU access by
dynamically resizing GPU workloads to fit available SMs.
SMLP is designed for component-based systems scheduled
with JLFP inside time-sliced partitions, and offers analytical
bounds on priority-inversion blocking. Their evaluation cou-
ples simulation-based blocking analysis with a brief hardware
sweep—using libsmctrl to measure how one kernel’s
WCET scales with the number of SMs—to motivate the
resizing model. Our work is complementary: we implement
a moldable EDF scheduler on real CUDA hardware, calibrate
WCETs for several kernels across TPC counts, and measure
deadline behaviour under multiple scheduling policies. This
empirical perspective lets us quantify the practical benefits of
moldable gang scheduling for task sets with heterogeneous
deadlines.

VII. CONCLUSION

We presented a preliminary evaluation of real-time schedul-
ing strategies for GPUs using SM partitioning enabled by
libsmctrl. Our framework models CUDA kernel execu-
tions as periodic tasks, performs WCET calibration across
TPC counts, and supports a variety of scheduling strategies,
including deadline-unaware (all-out), sequential EDF, and
a moldable EDF policy. Through controlled case studies, we
demonstrated that deadline-aware scheduling can outperform
CUDA’s default strategy, and that moldable EDF further
improves schedulability by minimizing blocking under non-
preemptive execution.

This work opens the path toward non-preemptive gang
scheduling on GPUs by leveraging SM partitioning. As future
work, we plan to develop a full-fledged moldable scheduler
tailored to GPU architectures, along with formal schedulability
analysis. This includes extending the moldable model to
sporadic workloads by tracking per-task cooldown intervals—
i.e., known idle phases after job completion that allow safe,
temporary reuse of reserved resources.

To further improve timing predictability, we will extend our
WCET analysis to evaluate the impact of inter-kernel interfer-
ence. Such analysis should also be conducted on real-world
GPU applications; For instance, Bakita et al. [1] reported
results for TPC partitioning on a YOLO workload.

A deeper investigation into memory-related effects—such
as copy engine contention and device memory allocation
overhead—is an important direction for future work.

Finally, we aim to explore the feasibility of true malleable
scheduling, where TPC allocations can be updated dynami-
cally during kernel execution—provided such capabilities are
supported on current or emerging GPU architectures.
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Abstract—Ensuring timely and safe operation in robotics
remains a challenge, especially in systems combining high-
throughput perception with real-time safety constraints.
SentryRT-1 is a minimal C++/CUDA runtime that integrates
multi-camera sensing, GPU-accelerated human detection, and a
safety module enforcing Speed and Separation Monitoring (SSM)
robot control. In this case study, we model the runtime as a
real-time task set and evaluate its behavior under various Linux
kernel configurations. Using synthetic interference and replayable
camera inputs, we benchmark the latency and determinism of the
safety module. Our results show that real-time scheduling policies
such as SCHED DEADLINE significantly reduce both average
and worst-case reaction times, and that a real-time kernel with
PREEMPT RT provides further—though less pronounced—
improvements. These findings demonstrate the capabilities of
Linux-based configurations for safety-critical robotic workloads.

Index Terms—Real-Time Systems, Collaborative Robotics,
Safety-Critical, Human-Robot Interaction, Real-Time Linux, Per-
ception Pipeline, Speed and Separation Monitoring

I. INTRODUCTION

Driven by global labor shortages and the accelerating au-
tomation trend, robotics is rapidly expanding across indus-
tries, particularly in manufacturing [1], [2]. Historically, most
robotic deployments occurred in greenfield installations—
factories built for automation, typically with fenced-off robotic
cells where robots operate at high speed and isolated from hu-
mans to ensure safety and throughput [3]. However, many pro-
duction tasks still rely on manual labor—so-called brownfield
environments—where automation is introduced incrementally
and workspace is often limited [4]. Examples include phar-
maceutical packaging, machine tending, and kitting. In these
cases, traditional caged robots are impractical due to spatial
constraints and the need for continuous human cooperation.

Collaborative robots (cobots) equipped with Power and
Force-Limiting (PFL) capabilities can safely operate alongside
humans without physical barriers [5]. However, PFL relies on
contact-based stopping, which may still cause injuries and im-
poses strict speed limitations. To overcome these constraints,
robots are increasingly equipped with on-robot perception sen-
sors to enable safety through Speed and Separation Monitoring
(SSM) [6], standardized by ISO10218 [5], allowing dynamic
speed adjustment based on human proximity.
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A. Physical setup

UR10e
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Ring with
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B. Monitoring windows C. URSim

Fig. 1. Overview of the SENTRYRT-1 platform. (A) The physical setup
including a UR10e robotic arm, a ring of five cameras, and a light signaling
module. (B) Monitoring windows displaying 5 replay data streams and the
virtual light module. (C) URSim, the robot simulation environment.

Achieving such responsiveness requires low-latency, pre-
dictable execution across sensing, inference, and actuation
pipelines. Linux-based systems—widely used in modern
robotic stacks—are attractive due to their ecosystem and
hardware support, but it remains unclear how well they
meet real-time constraints in these safety-critical scenarios.
In particular, there is limited understanding of how different
Linux configurations affect end-to-end timing in perception-
driven safety loops. This paper addresses this gap through
an application-driven analysis of real-time performance under
representative a robotic workload.

Our prototype system, illustrated in Figure 1A, consists of
a Universal Robots UR10e manipulator, five Intel RealSense
D435i depth cameras mounted around the end-effector, an
industrial x86 PC with a discrete NVIDIA GPU, and a light
signaling module [7] controlled via the robot’s digital I/O.
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The hardware is able to operate both in live mode – using the
setup of Figure 1A – and in simulation – using URSim [8]
(Figure 1C) and replayable camera streams. To drive this setup,
we develop SENTRYRT-1, a C++/CUDA software runtime
that integrates multi-camera perception with GPU-accelerated
human detection and a safety module enforcing proximity-
based speed control. The system avoids middleware such as
ROS, providing direct control over threading, memory, and
data flow. A screenshot of the live perception and safety
feedback is shown in Figure 1B.

In this paper, we model this runtime as a real-time task
set and evaluate it under different Linux configurations—
including PREEMPT_RT and SCHED_DEADLINE—to as-
sess their ability to meet real-time constraints under syn-
thetic interference that models high computational demand.
Our benchmarking framework supports replayable inputs
and repeatable stress conditions, allowing systematic evalu-
ation of safety responsiveness under load. Our results show
that SCHED_DEADLINE significantly improves reaction time
compared to baseline Linux, while the real-time kernel with
PREEMPT_RT provides further improvements.

II. RELATED WORK

Significant research has been conducted within the real-time
computing and robotics communities to design and evaluate
the performance of robotic software frameworks.

ROS. The most widely adopted framework is ROS2 [9],
which promotes modularity in robotic system design and
uses Data Distribution Service (DDS)-based inter-process
communication to transfer data between components. ROS2
adopts an event-driven callback mechanism, making timing
analysis based on processing chains of components a nat-
ural approach [10]–[12]. Tang et al. [10] analyze response
times across processing chains, modeling and improving the
behavior of ROS2 executors to optimize task scheduling and
system-level response time. Teper et al. [11] evaluate timing
performance using two metrics—maximum reaction time and
maximum data age—based on cause-effect chain analysis
in ROS2-based autonomous robotic systems. However, prior
work [13]–[16] has shown that the DDS-based IPC in ROS2
can introduce millisecond-level delays in data transmission
between nodes. In contrast, shared-memory communication
in pure C++ implementations incurs significantly lower trans-
mission delays. Moreover, bypassing the ROS2 framework
substantially reduces software footprint and debugging com-
plexity. Developers gain finer control over execution paths and
avoid the performance overheads and abstraction layers intro-
duced by middleware [17], [18]. Teper et al. [19] show that the
ROS2 multithreaded executor is prone to starvation, leading
to unbounded response times. These limitations motivate our
design independent of the ROS2 framework.

Benchmarking. Bakhshalipour et al. present RoWild [20],
a comprehensive cross-platform performance benchmark for
various mobile robotic systems. It reports end-to-end execution
times and identifies algorithmic bottlenecks. RobotPerf [21]
introduces a benchmarking framework tailored to robotic

workloads implemented as ROS2 computational graphs. It
supports both black-box and grey-box testing methodologies
to evaluate real-time performance across diverse hardware
platforms. However, the framework is tightly coupled with the
ROS2 ecosystem, limiting its use in non-ROS2 systems. Both
studies do not consider the impact of scheduling policies or
kernel configurations, nor do they provide a timing model.

Soft real-time scheduling. To address this gap, Sifat et
al. [12] propose a safety-performance metric that explicitly in-
corporates timing considerations in real-time robotic systems.
Their approach uses heterogeneous processing units (e.g., CPU
and GPU) modeled through a stochastic heterogeneous parallel
DAG (SHP-DAG). They evaluate their method using both
FIFO and CFS schedulers. However, these schedulers are not
designed to meet the hard real-time requirements of safety-
critical robotic systems. In contrast, our work explores the use
of the real-time scheduling policies and preemptive kernels,
which is more suitable for ensuring real-time guarantees.

Evaluate real-time constraints and kernels. Tools such as
cyclictest [22] and Timerlat [23] have been developed
to measure execution latency and trace its root causes. The
recent tool LiME [24] automatically derives task models from
real Linux workloads. We previously evaluated the impact of
the PREEMPT_RT patch using a Raspberry Pi 5 [25], showing
its benefits in reducing latency and improving determinism,
which motivated further investigation in robotic settings.

III. SYSTEM DESIGN OVERVIEW

Our system is designed to enable cage-free human-robot
workspaces by combining GPU-accelerated perception with
reactive SSM safety control in a tightly integrated runtime.
The hardware includes the following components (Fig. 1A):

• A UR10e [26] industrial robotic arm with an OnRobot
VG10 suction gripper [27], connected via LAN to the
central computer;

• Five Intel RealSense D435 [28] depth cameras, mounted
around the robot Tool Center Point (TCP) on a custom
3D-printed fixture, connected via USB-C (3.2) to the
central computer;

• A central computer equipped with an Intel i9-14900KF
processor (32 CPUs), an NVIDIA GeForce RTX 4060 Ti
(8 GB VRAM), and 2 TB solid-state storage;

• An Atmel ATmega-based Antropo light signaling mod-
ule [7], [29], connected to the robot’s 24 V digital I/O,
providing status feedback: safety stop (red), slowed mo-
tion (orange), normal operation (green).

The software is implemented in C++ and CUDA, without
ROS or external middleware, in order to reduce latency and
maintain full control over scheduling, memory allocation,
and data exchange. This design also facilitates fine-grained
debugging, step-through inspection, and performance monitor-
ing, which are often obscured by middleware like ROS [17].
Figure 2 illustrates the structure of the system software and
its data flow, highlighting the timing-critical path from camera
acquisition to safety actuation. Below, we describe the key
software components of our runtime environment.
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Fig. 2. Task graph of the SENTRYRT-1 runtime. Perception threads process
camera input and write detection results to shared buffers, which are consumed
by the SSM thread. The SSM and Arm control threads issue commands to
the UR robot for motion and signaling. Visualization threads read images and
detections to render annotated views. The critical path is shown in red.

Camera acquisition module. Each RealSense camera is
polled at 30 FPS to retrieve aligned depth and RGB frames.

Perception module. A neural network detects and segments
humans in the RGB frames, then computes their 3D positions
by projecting the segmentation masks onto the corresponding
depth images. The positions of humans and distances to the
robot’s Tool Center Point (TCP) are produced and passed to
the SSM module for evaluation.

Trajectory control module. The robot executes predefined
missions (e.g., picking and placing boxes with the suction
gripper), following motion trajectories programmed via the
Real-Time Data Exchange (RTDE) protocol [30] provided by
Universal Robots, using the UR RTDE library [31].

SSM module. A continuously running safety loop monitors
the distance between detected humans and the robot’s Tool
Center Point (TCP). When a predefined safety threshold is
breached, the module dynamically reduces the robot’s speed or
halts its motion if the separation distance becomes too small.
To implement this behavior, SENTRYRT-1 currently uses the
RTDE speed slider interface [32]1. Once the minimum re-
quired distance is re-established, the robot resumes its normal
operating speed [5].

All components run as C++ std::threads, exchanging
data via shared memory buffers. Inter-thread communication
follows a double-buffering pattern, where one thread writes
to a back buffer while another reads from a front buffer.
This design enables non-blocking data exchange with minimal
locking, reducing synchronization overhead and jitter. Al-
though the SSM loop is the final enforcement point for safety
decisions, its effectiveness depends on timely and reliable data
flowing through the perception pipeline—including camera
acquisition and inference threads that lie on the critical path.
This motivates a real-time analysis of the system as a whole.

Why real-time matters. Under high system load, race
conditions or scheduling delays in the acquisition threads can
lead to stale or empty frames entering the pipeline. From the
perspective of the SSM logic, this is functionally equivalent to
real-world occlusion: in both cases, the robot loses visibility

1Future work will integrate certified safety interfaces, such as PROFIsafe.

TABLE I
SENTRYRT-1 TASK SET CHARACTERIZATION.

Task Function Period Deadline Criticality

τssm SSM 2 ms 2 ms High
τpi Perception (cam. i) 33 ms 33 ms High
τarm Arm mission control Seconds N/A Low
τvi Visualization (cam. i) Best-effort N/A Low

of its environment. To ensure safety, the system must detect
such degraded input and trigger a precautionary stop (i.e., red
light), but this requires that the SSM thread itself maintain
real-time guarantees. If it too is delayed or starved, these
safety violations may go undetected, resulting in unbounded
latency or unsafe robot behavior. These observations highlight
the need for real-time task modeling and motivate our experi-
ments, which quantify reaction times under stress conditions.

Implementation. The current prototype is structured around
a single main() function, which launches threads for per-
ception, visualization, arm motion, and safety monitoring.
Each perception thread handles both camera acquisition and
inference for one sensor (i.e., combining camera acquisition
and perception modules), writing its results to shared detection
buffers. The SSM thread runs periodically, reading the latest
detections from all detection buffers, and issues speed updates
to the robot, status signals to the LED module. Visualization
threads render annotated RGB-frames to the screen for debug-
ging and user feedback but are not latency-critical.

IV. REAL-TIME MODELING

To evaluate the real-time behavior of our robotic perception
and control system, we model the runtime as a set of interact-
ing real-time tasks, each corresponding to a core thread in the
implementation. Our goal is to understand how different Linux
configurations impact the end-to-end responsiveness of the
SSM module—the latency-critical component responsible for
enforcing safety constraints. This analysis must also consider
upstream dependencies on perception threads (camera acqui-
sition and GPU-accelerated inference), which share compute
resources with the SSM loop and may introduce contention
under load. Table I summarizes the system’s tasks and their
timing characteristics, which we detail below.

Perception Tasks (τpi
). For each camera i, a dedicated

thread performs image acquisition and human detection in-
ference. These tasks are periodic, with an intended execution
rate of 30 Hz (i.e., period of 33.3 ms). Each perception thread
writes to a shared double buffer consumed by the SSM and vi-
sualization threads. Inference execution time varies depending
on the GPU and frame content, but results must be produced
within one frame interval to maintain pipeline stability.

SSM Task (τssm). This task runs periodically with a period
and deadline of 2 ms (i.e., 500 Hz). It reads the latest detec-
tions from all perception buffers, computes human-to-robot
distances, and updates the robot’s speed and LED signals.
This task represents the final safety-critical decision point and
must complete execution within each period to ensure timely
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intervention in case of human proximity. The 2 ms budget
reflects the worst-case latency for effective speed modulation.
Since the task polls perception outputs every 2 ms, a new
detection may wait up to one period before being processed
by SSM thread; combined with a 2 ms execution deadline, this
results in a worst-case reaction time of 4 ms. Failure to trigger
a safety control input to stop the robot in the provided time
constraint significantly increases the risk of injury.

Arm Control Task (τarm). This task executes a pre-defined
pick-and-place routine via the robot’s controller interface. It
is not latency-sensitive and is scheduled as best-effort.

Visualization Tasks (τvi ). Each perception thread is paired
with a UI thread that overlays human detection results on
RGB frames and displays annotated output for monitoring and
debugging purposes (see Figure 1B). These threads are non-
critical and excluded from our real-time evaluation. However,
they share buffers with both perception and SSM threads, in-
troducing potential contention in a mixed-criticality setting—a
topic we leave for future work.

V. EVALUATION

A. Goals and Methodology

Our evaluation focuses on how Linux kernel configura-
tions and scheduler policies affect the real-time behavior of
SENTRYRT-1 under load. We aim to understand the respon-
siveness and determinism of the perception and SSM loops,
which are critical for enforcing human-robot distance con-
straints. We structure our investigation around the following
research questions:

• RQ1: How does the system’s reaction time degrade under
increasing CPU interference?

• RQ2: How do different scheduling policies (CFS, RR,
SCHED_DEADLINE) impact latency guarantees?

• RQ3: What influence does the choice of Linux kernel
(generic, lowlatency, realtime) have on worst-
case and average latency?

To answer these, we run a series of stress tests on the
system while varying scheduler policies and kernel builds.
Experiments are repeated across two modes: Virtual camera
mode, pre-recorded camera streams replayed from disk to
simulate identical sensor input, and Physical camera mode,
live streams from five Intel RealSense cameras attached via
USB-C. Each run lasts 30 seconds and is repeated 3 times per
configuration to capture variability. The experiments process
is automated using the benchkit open source tool [33].

B. Task Mapping and Scheduling Policies

Each functional module in SENTRYRT-1 (e.g., perception,
safety monitoring) is implemented as a dedicated C++ thread
using std::thread. We refer to these as main threads.
However, they rely on several external libraries—such as Intel
RealSense, TensorRT, OpenGL, and UR RTDE—which inter-
nally spawn additional subthreads to handle frame acquisition,
inference execution, LED control, and robot actuation.

This architecture introduces a challenge: assigning a
scheduling policy to the main thread alone does not guarantee

real-time behavior if its subthreads continue to run under the
default SCHED_OTHER policy, which lacks real-time guaran-
tees. In the presence of CPU interference, these subthreads
may be preempted, delaying or even blocking the main thread
and breaking end-to-end timing guarantees.

To address this, we implement a mechanism to dynamically
identify all threads spawned by each main thread and apply a
user-specified fallback scheduling policy to their subthreads.
While we cannot assign SCHED_DEADLINE to subthreads—
since doing so requires explicit knowledge of their execution
parameters (e.g., runtime, deadline, period)—we evaluate a
fallback option throughout the following combinations.

DL+CFS. Main threads use SCHED_DEADLINE; sub-
threads remain under the default SCHED_OTHER policy.

DL+RR. Main threads use SCHED_DEADLINE; subthreads
are assigned SCHED_RR with a fixed static priority of 50.

RR+RR. Both main and subthreads are assigned
SCHED_RR with fixed priority of 50.

CFS+CFS. Both main and subthreads use the default
SCHED_OTHER policy. This reflects the unmodified behavior
of standard Linux deployments.

This workaround—falling back on the SCHED_RR priority
class for opaque subthreads—highlights a key limitation of the
current Linux real-time scheduling API: assigning a schedul-
ing policy to a parent thread does not automatically propagate
to its child threads, necessitating manual intervention to ensure
consistent timing behavior across all execution contexts.

For all threads assigned SCHED_DEADLINE, the
runtime, deadline, and period parameters are
configured based on the expected execution rates and
constraints of each task, as summarized in Table I. Subthread
priorities are equal within each configuration, and thread
pinning is not enforced, allowing the Linux scheduler to
dynamically manage core assignment. The arm mission
control and visualization tasks are considered non-critical and
remain scheduled under the default SCHED_OTHER policy.

To simulate non-critical interfering workloads—such as OS
background tasks or network stack activity—we launch a
configurable number of noise threads (from 0 up to 128, to
test the limit of the system under high load) using the default
SCHED_OTHER policy. Each thread executes a tight loop
of relaxed atomic increments and decrements on a dummy
counter, designed to saturate CPU pipelines. On our system
with 32 logical CPUs, launching more than 32 such threads
guarantees oversubscription and exposes the impact of CPU
interference on real-time tasks.

C. Kernel Variants

In addition to scheduling policy, the kernel configuration
plays a role in determining the responsiveness and latency
behavior of real-time applications. We compare three Linux
kernel variants provided by Ubuntu 22.04 [34], all based on
version 5.15.0:

• generic (5.15.0-138-generic): The standard
Ubuntu kernel with voluntary preemption. It is optimized
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TABLE II
EXPERIMENTAL VARIABLES AND THEIR EXPLORED VALUES.

Variable Values

Camera mode Physical (D435i) / Virtual (dataset)
Linux kernel generic / lowlatency / realtime
Main threads policy SCHED_DEADLINE (DL) / SCHED_RR (RR) /

SCHED_OTHER (CFS)
Subthreads policy SCHED_RR (RR) / SCHED_OTHER (CFS)
Noise thread count 0 / 16 / 32 / 64 / 128

for throughput and general-purpose workloads, but lacks
guarantees on worst-case latency.

• lowlatency (5.15.0-138-lowlatency): A soft
real-time kernel variant enabling more aggressive pre-
emption to reduce interrupt handling latency and jitter.

• realtime (5.15.0-1082-realtime): A more pre-
emptible real-time kernel distributed via Ubuntu Pro. It
includes the PREEMPT_RT patchset, which converts most
interrupt handlers into schedulable threads and supports
bounded latencies.

D. Metric Collected

To ensure the robot does not collide with humans, the
primary metric evaluated is the reaction time of the system’s
timing-critical path. We define reaction time as the duration
between the arrival of a new input frame and the completion of
the first job of the SSM task τssm that processes this frame.
Since τssm runs at a significantly higher frequency than the
perception tasks τpi , the system’s reaction to an input frame is
effectively determined by this first polling instance of τssm that
corresponds to that frame; later instances for the same frame
only maintain the current safety status until a new frame is
available. This definition allows us to isolate the latency of the
system’s critical path—from sensor input to safety actuation—
and to measure how kernel and scheduling decisions affect
timely responsiveness under varying interference levels.

We evaluate both the worst-case and average-case reac-
tion times across all frames in each run. Each experimental
configuration is repeated 3 times, and we report the aggre-
gated statistics (max and mean across repetitions) to capture
variability and ensure repeatability. Table II summarizes the
experimental variables and their explored values.

E. Results and Discussion

RQ1: Reaction time under interference. We begin by ana-
lyzing how the system’s reaction time is affected by increasing
CPU load, using configurations that vary the number of noise
threads. Figure 3 shows that under the default CFS+CFS
policy, both average and worst-case reaction times degrade
rapidly once the number of noise threads exceeds the number
of logical CPUs (32 on our platform). This is expected: critical
tasks such as τpi and τssm receive no prioritization and must
contend equally for CPU time.

In contrast, policies that assign real-time priorities to these
threads (e.g., RR+RR, DL+RR, DL+CFS) remain resilient even

under high contention. This confirms that prioritization—
especially for perception and safety-critical threads—is essen-
tial to maintain bounded latency.

RQ2: Impact of scheduling policy. Across all interference
levels, both DL+RR and RR+RR configurations show signif-
icant improvements in worst-case and average-case reaction
time compared to CFS+CFS. These two policies are largely
on par in our experiments, maintaining stable latency under
load and shielding the critical path from CPU interference. The
lack of a clear performance gap between DL+RR and RR+RR
is explained by the system’s ample resources: with 32 logical
CPUs and relatively low per-task utilization, each real-time
thread can be effectively isolated. In more constrained systems,
where real-time tasks must share cores or operate closer to full
CPU utilization, we expect the benefits of EDF-based schedul-
ing (e.g., deadline enforcement and bandwidth guarantees in
SCHED_DEADLINE) to become more pronounced.

We observe outliers even under real-time configurations.
For example, under the DL+RR policy on the generic
kernel with 0 noise thread and virtual cameras, the worst-
case reaction time spikes to 81 ms. This is attributable to the
unpredictability of GPU inference workloads, which in this
case consumed up to 77 ms—far beyond the nominal 33 ms
perception period. This underscores a key limitation: while
the CPU scheduling is protected, tasks offloaded to the GPU
may still introduce non-determinism.

RQ3: Kernel comparison and jitter. To examine the
impact of kernel variants on timing variability, we zoom in
on individual experimental runs. Figure 4 shows per-frame
reaction times for a single run of each kernel configuration
under fixed load (128 noise threads) and constant schedul-
ing policy (DL+RR). This fine-grained view shows that the
realtime kernel (with PREEMPT_RT) provides lower jitter
and tighter latency bounds than both the generic and
lowlatency kernels. However, its impact is smaller than
that of the scheduling policy itself. This suggests that most
benefits stem from correct prioritization and task isolation
rather than kernel-level preemption improvements alone.

Highlighted setting. Under a top-performing setup—real
camera input, high interference (128 noise threads), and
DL+RR scheduling on a realtime kernel—the system re-
acts within 44-70 ms worst-case and 15-17 ms average. The
default (CFS+CFS, generic kernel) shows 353 ms worst-
case and 117 ms average. This yields about 80% and 85%
reductions in worst-case and average times, respectively.

Summary of findings. These results support the conclu-
sion that real-time Linux configurations—with explicit pri-
oritization of safety-critical tasks and runtime visibility into
subthreads—can significantly improve latency determinism in
robotics workloads. Yet challenges remain: in particular, GPU
tasks such as human detection are opaque to the scheduler
and can lead to deadline violations even without CPU in-
terference. This motivates further work in designing GPU-
aware scheduling models, group-based deadline policies, or
extending Linux with budget inheritance mechanisms across
threads and heterogeneous resources.
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Fig. 4. Sample distribution of system reaction times on generic,
lowlatency, and realtime Linux kernels. Each distribution corresponds
to a single 30-second run using physical cameras, the DL+RR policy, and
128 noise threads. While the average reaction times on the generic and
lowlatency kernels are nearly identical, the realtime kernel reduces the
average by 3 ms. Moreover, the reaction time distribution under realtime
shifts leftward, with a higher concentration of samples below the critical path
deadline. Despite this improvement, all kernels experience deadline misses,
primarily due to the unpredictable execution time of GPU tasks.

These experiments support the design direction of
SENTRYRT-1, which aims to serve as a lightweight safety
perception layer for robotics. An runtime capable of supporting
real-time embedded systems with GPU acceleration and modu-
lar real-time scheduling is a key requirement for deployments.

VI. CONCLUSION

This paper presented SENTRYRT-1, a minimal C++/CUDA
runtime that integrates multi-camera sensing and GPU-
accelerated human detection for safety-critical robot control
without middleware. By modeling the system as a real-time
task set and evaluating its responsiveness under various Linux
kernel and scheduler configurations, we demonstrated that
proper use of SCHED_DEADLINE combined with a real-time
kernel (with PREEMPT_RT) can significantly improve both

average and worst-case reaction times. Compared to the default
setup (CFS scheduler, generic kernel), our configuration
reduced worst-case reaction time by 80% and average time
by 85%, even under high CPU interference. This underscores
the viability of Linux-based systems for enforcing Speed and
Separation Monitoring (SSM) constraints.

To further improve performance under high interference, we
plan to use the timerlat [23] tool to analyze deadline miss
conditions, and use the LiME [24] tool to further refine the
task model. Our results expose limitations in the current Linux
real-time scheduling API, especially its inability to manage
multi-threaded real-time tasks as unified entities. Ensuring
consistent scheduling across main threads and library-spawned
subthreads is a manual and error-prone process. This motivates
the need for future work on group-level scheduling, graceful
SCHED_DEADLINE inheritance, and deeper integration of
scheduling policies with real-world runtime dependencies.

Beyond scheduler design, several other factors warrant in-
vestigation: the impact of thread pinning, I/O and memory con-
tention, GPU sharing between critical and non-critical tasks,
and interference from network traffic or unpredictable thread
placement. Newer kernel features such as EEVDF scheduling,
or alternative platforms including embedded SoCs like Jetson
or heterogeneous CPU architectures with Performance- and
Efficient-cores (e.g., Intel Alder Lake), offer further opportu-
nities to test and refine our assumptions. Finally, extending
SENTRYRT-1 to support heterogeneous sensor fusion, both
rule-based and AI-driven scene interpretation, and modular
perception pipelines will help evaluate its applicability in
increasingly complex collaborative robotic scenarios.
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Abstract—By tailoring Real-Time Operating Systems (RTOSs)
to the specific real-time application using abstract interpreta-
tion, one can significantly improve nonfunctional properties,
such as dependability or slack time. To analyze the interactions
with OS objects and lift this optimization potential, the system
call semantics of the RTOS must be derived, either from a
specification or from the RTOS implementation, which in both
cases is a tedious process. Previous work has demonstrated
this for OSEK/AUTOSAR systems.

To allow the abstract interpretation of applications for
arbitrary RTOSs, we suggest analyzing system calls with a
concrete LLVM-based interpreter: IRx. Compared to previous
approaches, it is not necessary to reimplement the RTOS
interface as an abstract OS model which can be tedious and
error-prone for configurable and rapidly evolving RTOSs
like Zephyr. Instead, we extract the effect of the system
call from the resulting concrete kernel state of the actual
execution of system calls. We evaluate the applicability of IRx
using abstract interpretation of benchmark applications and
a complex embedded firmware application.

I. Introduction
Embedded real-time systems typically serve a dedicated and

highly specialized purpose. To meet the specific requirements
of such applications, many embedded operating systems with
different focuses have been designed in the past. For critical
applications in automotive or avionics industry, constraints
regarding deterministic behavior and timing predictabil-
ity with respect to deadlines demand using an Real-Time
Operating System (RTOS), usually with fixed-priority-based
scheduling and static allocation of system objects [1]. For
such real-time applications, a control-flow–sensitive abstract
interpretation can extract deep static knowledge about the
system interactions at runtime. Previous research on static
analysis and optimization of such statically configured systems
is often limited to OSEK/AUTOSAR applications [2], [3], [4]
as it requires an abstract OS model, which is difficult to derive
for less strictly specified RTOSs.
For example, the System State Enumeration (SSE) in

dOSEK [3] and the MultiSSE in Automatic Real-Time System
Analyzer (ARA) [4] use a SystemSemantics function that
interprets the system call against the abstract OS model.
The result of the analysis, the State Transition Graph (STG),
contains all possible system states, including the properties of
all system objects, such as resource allocation or event states.

This work was partly supported by the German Research Foundation
(DFG) under grant no. LO 1719/4-1

1 struct sensors s;
2 void thread_flight_stabi() { // PRIO_HIGH
3 while(true) {
4 set_actuators(s);
5 k_sleep(K_MSEC(5));
6 }
7 }
8 void thread_read_sensors() { // PRIO_MED
9 while (true) {
10 s = read_sensors();
11 if threshold(s)
12 k_wakeup(flight_stabi);
13 k_sleep(K_MSEC(1)); // low prio tasks
14 }
15 }

10

11

12

2

13

...

Fig. 1: Simplified GCFG of a Zephyr application: A thread
reads sensor values (#10) and wakes a high-priority task (#12)
ahead of schedule when a threshold is exceeded.

By transforming the state graph into a Global Control-Flow
Graph (GCFG), cross-kernel optimizations such as per-call
specialization of system interactions, assertions for improved
dependability, or inlining of complete tasks are possible [3].
Drawing from our experience in developing abstract OS

models within the static analysis framework ARA [5], the
process of adding support for control-flow–sensitive abstract
interpretation is tedious, especially for more complex and
evolving RTOS interfaces, such as Zephyr. Nevertheless,
also these more complex (and, compared to AUTOSAR, less
static) systems would profit from RTOS-aware analyses and
optimizations: The GCFG in Fig. 1 describes a small Zephyr
application. Next to local transitions (black), it contains
global cross-kernel transitions (red), which could be optimized
considering the RTOS semantic. The k_wakeup system call can
be replaced with a direct dispatch to the high-priority task.
If there is no further higher-priority thread in the system,
the whole-system optimizer could even inline the respective
parts of the thread at the callsite.
This Paper

We describe a new approach for bringing such analyses and
optimizations to a broader practicability by supporting (al-
most) arbitrary RTOS, for which besides the syscall interface
no formal specification or semantic model exists. The core idea
is to automatically derive the semantic model with respect
to the actual application from the syscall interface and the
RTOS implementation, by directly executing the RTOS system
calls using an LLVM IR interpreter. To show the viability of
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our approach, we have implemented it for the (comparatively
complex) Zephyr RTOS into the ARA analysis framework [5],1
and run the SSE on several benchmark applications and a
real-world example. In particular, we claim the following
contributions:
• We describe the abstract interpretation of cross-kernel
control flows using IRx, an LLVM-based interpreter.

• Using this approach, we implement the SSE for Zephyr.
• Finally, we apply the SSE to benchmark applications and a
real-world Zephyr application.

The remainder of this paper is structured as follows: We
describe the background of the control-flow–sensitive analysis
in Sec. II. Sec. III covers the fundamental approach compared
to previous work and Sec. IV explains the implementation
details. We evaluate IRx in Sec. V and discuss limitations and
future work in Sec. VI.

II. Background
To gain compile-time knowledge about the embedded real-

time system, as shown in Fig. 1, it is necessary to apply
static analyses such as the abstract interpretation [6] to the
application. By traversing the Control-Flow Graph (CFG) of
the application, the effects of the application and system call
logic on an abstract system state can be computed.
As an instance of this abstract interpretation, the SSE [3]

and the MultiSSE [4] require the SystemSemantics function
implemented by an abstract OS model, which computes the
subsequent Abstract System States (AbSSs) of the current sys-
tem state at the granularity of Atomic Basic Blocks (ABBs) [2].
These abstract OS models including all system calls must be
derived manually — either based on an explicit specification in
the case of OSEK/AUTOSAR or based on the implementation
of the RTOS. As a result, all possible AbSS are connected in
a STG, which enables the creation of a GCFG [3] as shown
in Fig. 1. Next to the optimizations described in the following
section, it is possible to use such graphs to compute tight
Worst-Case Execution Time (WCET) bounds [7].

A. Whole-System Optimization
Static analysis of embedded real-time control systems

does not, by itself, lead to improvements in non-functional
properties. One of the benefits is the ability to perform system-
wide optimizations based on the knowledge gained from the
interactions between scheduled units within the application.
Using control-flow–sensitive abstract interpretation, all possi-
ble subsequent states can be computed in advance for each
interaction between the application and the RTOS (i.e., system
call). This allows the synthesis of specialized system call
implementations, which may include assertions to improve
dependability [3], reduce system call overhead by replacing the
generic implementation with a fast path [4], or allow inlining
of complete tasks. By tailoring the RTOS to the application,
it is possible to trade unnecessary functionality and flexibility
of the RTOS for higher predictability and dependability, faster

1All code will be published at https://github.com/luhsra/parrot

execution with less kernel overhead, and less pessimism in
the timing calculation.

B. Interrupts and state explosion

In real-time control systems, tasks can be executed accord-
ing to a schedule (time-triggered) or based on interrupts
(event-triggered) [1], [2]. Without expert knowledge of
execution timing or interrupt inter-arrival times, an abstract
interpretation like the SSE must emit additional states for
each interrupt source at every possible system state, leading
to an explosion of possible states. For hard real-time systems,
inter-arrival times are required for schedulability analysis [8]
and are often known by application developers in practice [9].
This information can be taken into account during the
construction of the STG, which can drastically reduce the
number of possible states [4]. The example application in Fig. 1
requires timer interrupts, which leads to state explosion if not
considered during STG creation. The original implementation
of the SSE uses an additional notation of TaskGroups and
suggests incorporating explicit cause-effect knowledge to
further reduce the number of unwanted states [3].

C. The Zephyr RTOS

Zephyr is a thread-based open source RTOS that supports
many architectures and target platforms [10]. It is supported
by the Linux Foundation and shares some similarities with the
Linux kernel [11], such as the development process, monolithic
system design, configurability, and tooling. KConfig allows
application developers to configure the scheduling strategy,
supported device drivers, system interfaces, etc. In Zephyr,
system objects can be created statically or dynamically, but
static allocation and initialization is preferable for embedded
applications [12].
In recent years, the Zephyr RTOS has gained traction in

the open source world and with industrial stakeholders [10].
Zephyr is also an increasingly popular target for evaluation
in research [11], [13].

III. The IRx Approach
In Fig. 2 we show conceptually how IRx is integrated

into the control-flow–sensitive abstract interpretation of the
ARA framework for Zephyr. While traversing the ABBs in the
application’s local CFG, all system calls need to be interpreted.
The list of system calls is determined beforehand, but could be
extracted automatically from the parse_syscalls.py build step
in Zephyr. The entire RTOS kernel is precompiled to LLVM
IR code and therefore includes the compile-time application-
specific configuration. Next to the system call to be interpreted,
static analysis must consider the current abstract state in the
IRx context. By the nature of control-flow–sensitive analysis,
states are not ordered by their chronological order, but by
the order imposed by the search algorithm. Therefore, the
interpreter must be prepared for each system call. First, it
is reset to a predefined state (i.e., all global objects are
initialized, like a fresh boot), and then the correct state of the
abstract system objects is replicated in the concrete kernel
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State extraction

State preparationCFG Traversal
interpret(k_msgq_put, args)

System State
Enumeration

Application
k_mutex_lock(&guard, K_FOREVER);
k_msgq_put(&q, &msg, K_NO_WAIT);
k_mutex_unlock(&guard);

KConfig
CONFIG_SCHED_DUMB=y
CONFIG_TIMESLICING=n
CONFIG_PIPES=y

Zephyr RTOS IR
int z_impl_k_msgq_put() {
  ...
}

IRxSSTG
Add states

Fig. 2: Overview of the SSE with IRx: While traversing the
application’s CFG, IRx interprets the system calls using the
precompiled Zephyr IR.

state. In the example from Fig. 2, in particular the scheduler,
message queue (msgq) and mutex states need to be prepared.
To return after the system call is finished, IRx can stop on a
predefined function call. For Zephyr, this termination point
is the arch_swap function call, which dispatches to the next
thread at the end of the system call. After the system call
interpretation, the RTOS-specific adapter extracts for example
the message queue and scheduler ready-list from the concrete
kernel state and updates the abstract system state.

IV. Implementation
IRx is based on the upstream LLVM-14 Intermediate

Representation (IR) interpreter2. To support the most common
embedded realtime systems, we have extended it to allow
executing 32-bit IR code. This requires changes in memory
management, global variable initialization, and load/store
instruction callbacks. However, only a one-line modification
to one LLVM header file is sufficient to enable our custom
interpreter implementation, allowing the use of standard,
unmodified LLVM libraries and eliminating the need for a
custom LLVM build. The ARA framework is fundamentally
based on LLVM IR, so using the LLVM interpreter allows
seamless integration between analysis, optimization, and
synthesis, as the same IR code is used throughout the entire
framework.

A. Initialization and Memory Mapping

To enable 32-bit RTOS execution within the 64-bit inter-
preter, we modified global variable initialization and load/store
instructions to intercept memory accesses and use a memory
map to translate between the LLVM-allocated memory space
and the RTOS application’s memory space.
Initialization of global variables posed a challenge due

to circular dependencies where variable addresses were
referenced in the initialization of other variables. In the
upstream interpreter, these initializers are executed during
construction, but in IRx they required delaying execution
until the memory map is fully established to ensure correct
address references. After that, initialization can proceed with
the correct 32-bit address space setup, allowing referencing
the 32-bit addresses by the initializers of the global variables.
We expect that the addition of native 32-bit interpretation

2https://github.com/llvm/llvm-project/tree/llvmorg-14.0.6/llvm/lib/
ExecutionEngine/Interpreter

within LLVM would eventually eliminate the need for these
modifications. Since the LLVM IR does not contain definitions
for external symbols provided by the linker script, we generate
the missing and necessary symbols based on the linker script
specifications after IRx loads the IR code.

B. Hardware specifics

Compiled for a specific target system (e.g., Intel ECFW
in Sec. V-B targeting ARM), the RTOS contains hardware-
specific assembly code that the LLVM IR interpreter cannot
execute directly. However, further execution is not necessary,
as we can already extract sufficient information regarding its
scheduling decision and provide the information to the static
analysis. The hardware implementation of the context switch
is never reached within the interpreter, as we automatically
stop the interpreter at predefined function calls, specifically
arch_swap for Zephyr. Instead, the RTOS adapter uses the
extracted scheduling decision to update the running thread
of the abstract system state, effectively executing the context
switch within our RTOS adapter and recording the decision for
later analysis. To enable precise interpreter flow control and
isolation of hardware-specific parts at predefined locations, the
RTOS’s IR code is compiled without optimization to prevent
instruction reordering and inlining. Importantly, this does
not prevent enabling compiler optimization flags for the final
generated binary after the static analysis.
The ARA framework triggers interrupts within its SSE

implementation. The corresponding Interrupt-Service-Routines
(ISRs) are then executed in the same way as system calls are
executed by IRx. User-defined callback routines can be called
by the ISR, which are stored as function pointer addresses
within the kernel objects. The RTOS adapter translates these
function pointers into LLVM IR function names to allow
extraction of the subsequent AbSS.

C. Kernel state preparation and extraction

Using a separate tool, we automatically extract relevant
data structures from the compiled LLVM IR RTOS code to
be accessible for the RTOS adapter. Combined with struct
(SType) and debug information (DIType), the data structures
ensure accurate type detection, querying of the struct member
names, and calculating the address offsets for conversion to
and from Python.
We manage concrete kernel objects through a proxy

that tracks their address. Each object’s Python object ID
is mapped to its 32-bit interpreter address, and the Python
representation of that object holds the corresponding 32-bit
memory address. Additionally, we maintain a map to cache
the Python objects for subsequent requests, and to ensure
that the corresponding concrete kernel data has a unique
Python object representation.

For each system call, the IRx interpreter prepares a context
as described in Sec. III and shown in Fig. 2. For RTOS-
specific initialization of concrete kernel state, the Zephyr
adapter uses the existing RTOS initialization functions to
properly prepare the statically and dynamically allocated
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Fig. 3: Simplified STG for the Thread Metric Cooperative
Scheduling benchmark: Five threads with same priority yield
the CPU, resulting in round-robin scheduling. All other system
calls before thread 0 are omitted.

specific concrete kernel structures such as the scheduler ready-
list. The remaining data is then restored from the abstract
system state into the interpreter’s memory to reassemble
the concrete native kernel state. Finally, after execution, this
mapping allows the retrieval of all corresponding and possibly
modified data to update the abstract system state.

V. Evaluation
To evaluate the IRx implementation and the state extraction

in ARA, we run the SSE on several benchmark applications
as well as on a large real-world example. In addition to some
small hand-crafted examples, we have ported the Thread
Metric RTOS benchmark suite [14] to the current Zephyr LTS
(3.7.0)3.

A. Thread Metric Benchmark Suite

This benchmark suite was originally designed for the
ThreadX RTOS to compare the performance of core RTOS
functionality such as scheduling and interrupt handling [13].
Since we are only interested in RTOS semantics in the
benchmark, we disable the result collection thread that wakes
up every 30 seconds to summarize the results at specified
intervals. For example, the Cooperative Scheduling benchmark
consists of five threads with the same priority. After the
System Setup Point (SSP) is reached (i.e., all threads are
initialized), they are scheduled in a round-robin fashion. Using
IRx to interpret system calls in ARA, we perform the SSE
on these benchmark applications. We manually confirmed
that the resulting STGs reflect the expected system behavior,
as exemplified in Fig. 3 for the Cooperative Scheduling
benchmark.
Tab. I collects the STG statistics for each test application.

The algorithm runtimes for the Thread Metric benchmarks
are in the range of seconds. Since the scheduling tests have
the highest number of threads, more system calls occur and
the number of states increases. The Thread Metric interrupt
processing benchmarks use Software-Generated Interrupts

3The latest non-LTS (4.1) now includes an official port as well.

Benchmark/Application #AbSSs #Transitions Runtime [min]

Basic processing 18 27
Memory allocation 23 34
Synchronization 23 34
Message passing 26 39
Preemptive interrupts 49 72
Interrupt processing 52 77
Preemptive scheduling 73 113
Cooperative scheduling 98 148

ECFW, ISR A 82 127 0.5
ECFW, ISR A — B 276 428 1.5
ECFW, ISR A — C 1 995 3 088 8.2
ECFW, ISR A — D 19 833 30 634 72.9
ECFW, ISR A — E 234 506 361 634 824.8

TABLE I: Statistics of SSE analysis on the Thread Metric
benchmark suite and Intel Embedded Controller Firmware

(SGIs) to trigger the interrupt callback function. In our Zephyr
adapter implementation, we map the SGIs to normal external
interrupts, which are only enabled for a single ABB when they
are triggered. As external interrupts are non-deterministic by
nature, the SSE emits two states — either the interrupt was
triggered or not. For the Thread Metric benchmarks, where
we can ensure that SGIs is always triggered immediately, this
handling leads to an overestimation of possible system states.
On the other hand, real systems could disable such interrupts,
so we cannot model these SGIs as dispatch to the interrupt
handling thread.

B. Intel Embedded Controller Firmware

To evaluate the scalability of our implementation, we took
the largest open source Zephyr application we could find,
the Intel Embedded Controller Firmware (ECFW) [12]. The
firmware can control low-level functionality of Intel notebooks
and is targeted at Zephyr 3.4. After porting the ECFW to
Zephyr 3.7 LTS, we disable the driver logic to limit the amount
of control-flow traversal. In particular, some drivers, such as
I2C devices, use system mutexes and sleep system calls. Since
these system calls in a deep call stack hierarchy lead to state
explosion [3], we ignore them and assume those low-level
interactions to be atomic related to the system state and the
rest of the application logic. For real-time scenarios, Zephyr
provides the application with the RTIO peripheral API, which
can be used instead of blocking calls.
The application contains up to eight configurable threads

for power sequencing, peripheral, system, keyboard, and POST
management. These threads interact with six ISRs via message
queues and semaphores as shown in Fig. 4.

Since the application has no hard real-time constraints [12]
and no timing information is available, we need to reduce the
number of possible interrupts in the application, otherwise
the SSE will not terminate due to the state explosion described
in Sec. II-B. Therefore, we disable interrupts until the SSP
is reached, which in this case means that all threads are
initialized and block until the corresponding interrupt is
triggered. Next, as this event-triggered system does not have
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Fig. 4: System objects in Intel ECFW: 6 Threads and ISRs are
analyzed with IRx. Two time-triggered threads are deactivated.
Semaphores and message queues are used for communication.

a defined hyperperiod and interrupt inter-arrival times, we
introduce an artificial ISR activation limit, otherwise the SSE
cannot terminate because a new interrupt can occur at any
time. For a system with 𝑁 threads and𝑀 interrupt sources, we
define the hyperperiod as the time from the SSP to just before
any interrupt is triggered a second time. The resulting system
states in the hyperperiod then include all possible activation
pattern permutations of 0 ≤𝑚 ≤ 𝑀 interrupt sources. We run
the SSE analysis using IRx with 𝑁 = 6 threads and 1 ≤ 𝑀 ≤ 5
ISRs enabled in the ECFW, named from A to E in Fig. 4. The
two time-triggered threads (i.e., repeatedly sleeping in a loop)
are disabled because they lead to the same state explosion as
external interrupts when no timing information is considered.
The Tab. I shows the STG results for the Intel ECFW with
increasing number of ISRs. With each additional interrupt,
the number of states and transitions — which directly affect
the runtime — increases exponentially. With interrupt F ,
the SSE analysis would take about an order of magnitude
longer and was not performed because it does not provide
any knowledge gain.

VI. Discussion
In the evaluation, we have shown that an LLVM-based

interpreter can replace an abstract OS model for static
control-flow–sensitive RTOS interaction analysis. Compared
to previous work, we do not need to create an RTOS
model with system semantics for each system call from the
specification or implementation of the RTOS interface. With
IRx, we execute the RTOS implementation and use an adapter
to prepare the concrete kernel state and extract only the state
needed for the flow-sensitive abstract interpretation.

A. Scalability and Performance

Although there is some overhead in preparing the inter-
preter and extracting the kernel state, the scalability issues
discussed above arise from the SSE analysis, not from the IRx
approach. In addition, the ARA framework for CFG traversal
uses Python, making the entire analysis single-threaded.
Currently, we are already automatically analyzing smaller
applications using IRx in our CI/CD environment [5]. For
more complex applications, we plan to use timing information
to reduce the state graph, and also to remove the Python
GIL to parallelize the CFG traversal and RTOS state analysis.
Furthermore, we could partially and iteratively implement a

specialized and faster abstract OS model from the results of the
initial analysis with IRx, continuously monitoring potential
differences between model and interpreter results.
B. Limitations

To address the scalability issues of the SSE mentioned above,
we impose several restrictions on the SSE analysis for Zephyr.
First and foremost, we ignore time-triggered tasks and alarms
in our evaluation, since otherwise the state explosion cannot
be handled without additional timing analysis of the rest
of the ECFW application. We also introduce an artificially
shortened hyperperiod. Although the analysis is complete
for this period, we ignore states that may occur later, such
as a message queue buffer that might run full after several
consecutive interrupts. For some kernel abstractions, such as
message queues, semaphores, and mutexes, we have analyzed
additional hand-crafted examples and can correctly detect such
cases. However, there are some unsupported configuration
features. For example, the Zephyr adapter currently only
implements reading the simple linked-list ready queue. We do
not yet support multicore analysis, but it is possible to extend
the Zephyr adapter for this case, and IRx can be invoked
once per core. In general, if the system call implementation
branches depending on any concrete kernel state that has not
been properly prepared, the system call analysis may return
an incorrect abstract state. We avoid this by preparing and
extracting the entire kernel state that might be modified, not
just the obviously affected system objects, for each system
call.
C. Future Work

With IRx, we are able to statically analyze interactions for
arbitrary embedded operating systems. We have performed
the SSE analysis for the Zephyr RTOS, which allows the
automatic static optimization of non-functional properties
such as dependability or predictable timing behavior. Adapters
for other specialized real-time or safety-critical operating
systems such as 𝜇C/OS-III, ThreadX or ARINC 653 systems are
left for future work. Next to interaction-specific optimizations
in the application, it is also possible to compare and verify
the system call behavior of different implementations of
the AUTOSAR specification. For example, the STGs of the
existing ARA AUTOSAR model can be compared to (open
source) AUTOSAR-compliant RTOSs like ERIKA [15] or
Trampoline [16]. This way we could statically verify the
implementations against the abstract system model or find
specific differences related to the analyzed application.

VII. Related Work
Years ago, static analysis and WCET calculation for RTOSs

was already performed on the RTEMS kernel without taking
interactions into account [17]. Newer analysis frameworks
such as the RTSC [2], dOSEK [3], and ARA [5] have analyzed
the application together with the RTOS semantics to compute
WCET or optimize interactions. However, they use an abstract
RTOS model to determine system call semantics and are
limited to the OSEK/AUTOSAR specification.
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For reachability or vulnerability analysis, symbolic exe-
cution engines such as Klee [18] work on an intermediate
representation of the application such as LLVM IR. Going a
step further, approaches like SymCC [19] have moved from
interpreting an intermediate representation to instrumenting
and compiling that IR to execute the resulting binary. Such
tools can be used to improve the security and safety of the
code under test, but do not incorporate knowledge of the
RTOS semantics.
The analysis tool Astrée applies abstract interpretation

to check for runtime errors in concurrent C applications
and understands the RTOS semantics of ARINC 653 and
AUTOSAR [20]. Similarly, the Goblint framework can be
used to analyze data races in concurrent programs [21] and is
continuously extended with new features. These and similar
tools use abstract interpretation to analyze critical embedded
software and prove the absence of run-time errors, but are not
designed for static optimization of the RTOS to the application.
With Trampoline, application-specialized embedded sys-

tems can be generated based on an OS model that the authors
have created for their OSEK libraries [22]. They use formal
methods to verify that the specialized generated system
exhibits the expected behavior. The specialization focuses
on system-wide dead code elimination and does not consider
specialization of RTOS interactions.

VIII. Conclusions
Static analysis of embedded real-time applications enables

whole-system optimization, including the interactions between
RTOS and application. By applying this static knowledge and
tailoring the RTOS exactly to the needs of the application,
non-functional properties such as dependability, predictability,
and timing behavior of the overall system can be improved.
To enable control-flow–sensitive abstract interpretation of
arbitrary RTOSs, we propose to interpret the interactions
between application and RTOS at the IR level. This way, we
make use of the inherent specialized use case of the application
and do not need to derive a generic and abstract system
model for each RTOS interface. With IRx, we exemplarily
execute Zephyr system calls using the Zephyr LLVM IR code
to enable static analysis such as the SSE. An RTOS-specific
adapter prepares the concrete kernel state and extracts the
abstract state of relevant OS objects such as the scheduler
ready-list or semaphores after interpreting the system calls.
We demonstrate the applicability of this approach by analyzing
the Thread Metric benchmarks and a real-world Zephyr-based
embedded controller firmware.
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Abstract—Resource allocation is well-studied in operating
systems, but resource reclamation remains largely underexplored.
This paper investigates the impact of unpredictable resource
reclamation latency on system behavior, particularly in resource-
and time-constrained environments like Open-RAN and serverless
functions. We study scenarios of high reclamation times across
various systems. Under adverse conditions, reclaiming resources
can delay process termination by multiple seconds on both
Linux and the L4Re microkernel. We propose a design for
accounting and bounding resource reclamation latency to
enable predictable system operation and mitigate potential
denial-of-service scenarios. We also advocate for optimizing for
the case of bulk reclamation — reducing worst-case reclamation
latency by multiple orders of magnitude.

Index Terms—Operating Systems, Real-time systems and
embedded systems, Reliability, Allocation/deallocation strategies

I. INTRODUCTION

Resource management is a key concern when seeking
predictable system behavior. Processes frequently allocate and
release resources during their lifetime. Thus, the performance
and timeliness of resource allocations through the OS is
critical for stable application performance. This includes
the consideration of tail latencies and worst-case execution
times. Consequently, existing work focuses on improving the
performance of allocation operations.

In contrast, the behavior of resource reclamation is understud-
ied. The operating system has to manage a variety of limited
resources like user memory (e.g., for heaps), kernel memory
(e.g., for page tables), or more specific resources like available
TCP port numbers. Because these resources are limited, the OS
has to reclaim them to make them available to new allocations.
These reclamation operations are especially prevalent during
the termination of processes. Reclamations occur in bulk as re-
sources held by the terminated processes are released. This can
lead to unpredictable system behavior mainly due to two effects:
First, the reclamation operations themselves need to be executed
and thus they occupy the CPU. This is often reflected by termi-
nations of processes taking longer than usual. Meanwhile, the
operating system collects the released resources. Second, if the
whole system is running resource constrained, consecutive allo-
cations (e.g., during startup of a new process) have to wait for
resources to be released. Thus, new processes have to wait on
the termination of previous processes to fully release resources.
In conclusion, the latency of release operations affects the
subsequent system behavior causing a threat to predictability.

There are prominent use cases that could benefit from a
predictable resource reclamation behavior. Predictability can be
ensured by enabling the operating system to proactively enforce

Process

Process Resource

Process

Too Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many Mappings

Benign Function Rogue Function

Fast Reclamation
< 100 ms

Unexpectedly Long Reclamation
> 1 s

FaaS Controller

Fig. 1. While most benign functions in a FaaS environment terminate
quickly, some other functions might behave unexpectedly and allocate many
system resources in rather complicated ways. Reclaiming these resources
takes unexpectedly long.

a time bound on reclamation operations. We call this concept
bounded resource reclamation (BRR). A first possible use case
of BRR is a resource-constrained multi-user system as found
in software-defined radio solutions like Open-RAN. Such Open-
RAN units are numerously deployed in the field with limited
system resources due to, e.g., power and cost constraints. Thus,
applications of different stakeholders need to share resources.
These systems also need to be dynamic, allowing termination
and recreation of applications. Resource reclamations of termi-
nating processes could interfere with newly created processes
thus delaying application startup. This shows the necessity of
BRR in resource-constrained systems. Second, also cloud set-
tings, like function-as-a-service environments, can benefit from
bounded resource reclamation. Cloud functions are typically
assigned a fixed main memory allocation and a hard time limit.
This allows the cloud provider to cost-effectively maximize sys-
tem utilization. However, this utilization management is in vain
if resource reclamation is not considered. As shown in Fig. 1,
a rogue function of an untrusted customer could deliberately
prolong resource reclamation and thus delay system operation.
Again, the concept of BRR is needed to solve this issue.

To tackle the issue of unpredictable reclamation behavior, we
propose to plan ahead for resource reclamation. We especially
focus on the bulk reclamation of resources during application
termination. This seems to be the most prevalent scenario, at
least in the described use cases. A predictable system should
implement accounting of the time needed to reclaim resources
and thus allow setting strict time bounds. This enables controller
services or orchestrators to guarantee timely reclamation
of resources even when untrusted applications exceed their
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time budget and have to be forcefully terminated. We also
propose to optimize for bulk reclamations by employing arena
allocation for management data structures, which drastically
reduces the cost of reclaiming whole process trees.

This paper starts with an analysis of the worst-case reclama-
tion time of process resources on various systems (Section II).
We present a design of a system that accounts for the latency of
resource reclamations (Section III). Additionally, we advertise
for grouping resources in prospect of reclamation to accelerate
system operation. The implementation of a prototype of this de-
sign is then presented in Section IV and evaluated in Section V.

II. STUDY OF RECLAMATION LATENCY

To show the necessity for bounded resource reclamation, we
examine whether unbounded resource reclamation can lead to
unexpected delays in system operation. This section first demon-
strates that resource reclamation can actually delay process
termination by noticeable amounts. In the examined scenario,
a process allocates an unusually large amount of resources
in a rather complex way, e.g., by allocating a lot of memory
as singular pages. These allocations are correctly accounted
towards the CPU time quota of the process. However, when the
process gets terminated, e.g., due to exceeding its FaaS time
limit, resource reclamation will take unusually long. This recla-
mation time is not accounted for and might lead to unexpected
system behavior by delaying further application startups.

This study of reclamation latency looks at the resource
reclamation of kernel memory under three different operating
systems: Linux, L4Re [1], and M3 [2]. On all these platforms,
a single process is spawned. It requests the allocation of many
page mappings to the same physical page. So no additional
user memory is needed to back the page mappings. However,
the management structures for these mappings require lots
of kernel memory. Later, the process is forcefully terminated.
The termination latency is measured to see how resource
reclamation prolongs termination latency.

Another, similar benchmark is conducted to assess the poten-
tial of the reclamation process to slow down the progress of the
whole system. During the termination of the process with the
mappings, another workload is started. This workload consists
of spawning processes in a tight loop, stressing the kernel
subsystems. By measuring how much this workload is slowed
down, one can asses how much the operation of a, e.g., FaaS
system would be slowed down by long reclamation operations.

Linux is a very common platform for running FaaS
workloads, which could experience unbounded resource
reclamation. The Linux benchmarks of Fig. 2 are run using
kernel version 6.7.4 on an Intel Xeon Platinum 8358 CPU.
The governor is set to performance, SMT is disabled, and
benchmark programs are pinned to a single CPU core. As the
plot on the top left shows, the termination of a small Linux
process normally takes only around 72.7 µs. However, when the
process has one thousand memory mappings, the termination
latency already increases to 334 µs. In its extreme, the latency
can reach up 13.8 seconds for cleaning up 32 million mappings.
Of course, having these many mappings also requires to a lot

of kernel slab memory — around 8.9 GiB more. The bottom
left plot in Fig. 2 highlights how a workload running during the
termination is affected. For this, the plot depicts the runtime of
the concurrently-running workload relative to its base runtime
in a quiescent system. Thus a relative runtime of one would
imply that termination and reclamation have no effect on the
workload runtime. When the terminating process only has a
single mapping, the concurrent workload is only about 12.2 %
slower than its baseline. If the termination latency is high, we
see a slow down of up to 115 %. So the workload execution
time is roughly doubled. The Linux scheduler seems to equally
distribute CPU time between the reclamation operation and
the workload. This behavior is, of course, not applicable to
all workloads and scheduling strategies but gives one concrete
example of termination latency affecting system performance.

The second column of plots in Fig. 2 depicts the results
under the L4Re system. The system hardware is the same as
previously under Linux. L4Re is a small, microkernel-based
operating system with real-time capabilities. Discussing
resource reclamation latency on L4Re is not only interesting
when discussing real-time but also in the light of recent work
that is exploring function-as-a-service workloads on L4Re [3].
In the top L4Re plot, we again see a correlation between
mapping count and termination latency. The latency varies
from 9.7 ms up to 3.0 s depending on the number of mappings.
There is again a big increase in kernel memory consumption
of 724 MiB. Concurrent workloads on the L4Re platform are
slowed down by the reclamation operations as shown by the
lower plot. At 100 000 mappings, the concurrent workload
runs 29 % slower. When reclaiming 32 million mappings, the
execution time of the workload even becomes 106 times longer.
The likely cause of this large slowdown is the helping strategy
of the L4Re kernel locks. The reclamation code path in the
kernel often has to acquire locks. Other kernel threads that try
to acquire the already-taken locks will lend the CPU to the
lock-holding thread so that it can make progress and release
the lock eventually. This leads to the termination operation
receiving more CPU time than the concurrent workload.

The third system examined in Fig. 2 is M3, which is a
hardware-software co-design that focuses on security-critical
use cases, such as telecommunication infrastructure [4].
M3 has unique hardware resources, like hardware-based
communication channels, that make it interesting for a study on
resource reclamation. The results under M3 are obtained using
the gem5 [5] system simulator.1 Due to the comparatively slow
speed of simulation, we limited our M3 scenario to thousands
of kernel structures. The M3 system not only supports large
numbers of memory mappings but also of semaphore kernel
objects. Thus, we additionally examined semaphores under
M3. The plots show a similar overall trend for M3 as already
for L4Re. For example, termination latency increases from
313 µs to 16.2 ms when reclaiming 10 000 semaphore objects.
Because the count of kernel objects is lower in the M3

1A simulator is necessary because of the custom hardware components
in an M3 system.

50



10−4

10−2

100

L
at

en
cy

(s
)

Linux

10−2

10−1

100

L4Re

10−3

M3

10−3

10−2

M3

109

1010

M
em

or
y

(B
yt

e)

105

107

109

106.2

106.4

106.6

106.2

106.4

106.6

100 104 108

1

1.5

2

Mappings

Pa
ra

lle
l

W
or

kl
oa

d

100 104 108
0

50

100

Mappings
100 102 104

2

4

6

Mappings
100 102 104

5

10

Semaphores

Fig. 2. These plots evaluate our study on reclamation latency. The columns represent different OSes and types of kernel objects. The first row shows
the latency of process termination depending on the number of kernel objects allocated. The kernel memory footprint before termination is shown in the
second row. The third row shows the relative execution time slowdown of a workload running concurrent with the termination. All depicted values are
medians with error bars showing the fifth and 95th percentile. Most axes have a logarithmic scale to better show correlations across orders of magnitude.

benchmarks, the increase in kernel memory consumption
is only about 2.88 MiB. Similar to the L4Re scenario, a
concurrent workload is heavily slowed down by concurrent
reclamations. The likely cause is that the scheduling of system
calls in the M3 kernel does not make fairness considerations.

Overall, this study on termination latency reveals that reclaim-
ing resources — at least in the kernel — can take a considerable
amount of time. Of course, allocating high numbers of kernel
objects also entails consuming larger amounts of kernel memory.
Thus, one could try to limit the latency of memory reclamations
by using existing mechanisms for kernel memory accounting,
e.g., via Linux cgroups [6]. However, limiting the kernel mem-
ory usage of specific processes is only a proxy metric for recla-
mation time. There is currently no holistic approach for enforc-
ing a time bound on resource reclamation. Thus, the next sec-
tion will discuss how a system for explicitly accounting recla-
mation time can be designed. This holistic approach also gives
the opportunity to optimize resource management for the case
of bulk reclamation, e.g., on process termination. This might be
particularly interesting for short-lived function is FaaS settings.

III. DESIGN FOR BOUNDED RESOURCE RECLAMATION

The analysis in the previous section has shown that
reclamation latency can be a threat to predictable system
behavior. Hence, there arises the need for a design ensuring
bounded resource reclamation. As motivated by the use cases,
we assume that there is always some controller in the system
that creates and terminates (groups of) child processes. This
controller is also the entity that should enforce a time bound
on the reclamation of resources. For example, a FaaS provider
might want to limit the latency of processes termination to at
most 100 ms. This allows for predictable high-level scheduling
of customer functions. Hence, a controller should be able to
set a bound of 100 ms on the reclamation latency of each child
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Fig. 3. The abstract design of BRR assigns each reclamation group a
reclamation time budget. Whenever a kernel object is allocated, the expected
time needed to reclaim this object is subtracted from the group’s quota. If
the quota reaches zero, no further allocations can be performed.

group of processes. Reclamation latency thus has to become
a virtual resource on its own with budgets and accounting.

For the simplest form of BRR, the controller would assign
every (group of) processes with a specific reclamation time
budget. Then, whenever a resource is allocated the OS checks
if this resource will be reclaimed when the group is terminated.
For such allocations, the OS subtracts the anticipated reclama-
tion time from the group’s quota. The combined reclamation
latency of all allocations made by the group must thus not
exceed its budget. We call a group of processes and resources
sharing the same reclamation quota a reclamation group. An
example of this approach is shown in Fig. 3. In summary, the
OS accounts for the reclamation time of processes in advance.

Of course, there are some complications in real-world operat-
ing systems. Most prominently, processes can nest by forking of
child processes. These should also be subject to the same budget
constraints. Thus, reclamation budgets have to be inherited.
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Fig. 4. Whenever a process group or a process hierarchy is terminated,
many kernel resources get freed. This includes child processes and derived
capabilities. All these released kernel objects form the reclamation tree. There
are also connections from the outside to objects inside the reclamation tree,
e.g., IPC channels to system services.

Furthermore, the reclamation of a process might trigger the
deletion of other OS objects like network sockets or capabilities.
Capabilities on microkernels, like L4Re and M3, are especially
interesting as they can be delegated and derived. This essentially
creates inheritance trees inside the kernel that also need to be
honored for BRR. Overall, these interdependencies in the differ-
ent OS objects mean that upon termination of a process, a whole
subtree of objects will be reclaimed. We call this subtree the
reclamation tree starting from some root process. An example
is given in Fig. 4. The reclamation latency of all the objects in
the reclamation tree of a reclamation group has to be accounted
in the associated reclamation quota for accurate accounting.

The observation of the reclamation tree leads to a possible
optimization. For the use cases of FaaS and Open-RAN,
one can assume that there are few interconnections between
the reclamation tree of a customer process and the rest of
the system. These interconnections are likely limited to user
memory and networking. Presumably, the bulk of reclamation
operations for these customer processes are internal to the
reclamation tree. Examples for such reclamation operations
are deleting user memory mappings, terminating inter-process-
communication channels, or deallocating process objects in the
kernel. These cleaned-up objects are only linked internally with
respect to the reclamation tree. So all objects in the reclamation
tree will be reclaimed during a bulk reclamation. Henceforth,
there is actually no need to unlink individual objects. Both
sides of these object-to-object links will be freed and reclaimed.
Thus, only interconnections to the rest of the system that link
outside of the reclamation tree need to be unlinked.

Going a step further, one can optimize the deallocation of
all these objects inside the reclamation tree by using some
form of arena allocator for all objects inside the reclamation
tree. The reclamation group would get a single, large chunk of
memory (the arena) in advance. Afterwards, all objects in the
reclamation tree of the group are allocated in memory inside
of the arena. This grouping of objects allows the reclamation
of a whole tree by simply reclaiming one large chunk of
memory and unlinking a couple of outside interconnections
— opposed to deallocating each object individually. This

optimization should greatly reduce reclamation time and thus
help to keep bounds on reclamation time low.

IV. PROTOTYPICAL IMPLEMENTATION

To test the effectiveness of our approach, we have
implemented a prototype of bounded resource reclamation. We
chose the M3 operating system as our implementation platform.
M3’s microkernel design fits well to the idea of a reclamation
tree. Kernel objects and capability inheritance already
span a graph inside kernel memory. Furthermore, M3 is a
hardware/operating-system co-design with interesting hardware
resources that need to be considered during reclamation. The
fundamental design idea of M3 is to isolate individual CPU
cores using custom hardware-based isolation units. This tiled
architecture already sketches boundaries for process groups
that can be leveraged for BRR. In this first prototype, we
limit our implementation to the grouping mechanism in the
kernel itself including arena allocation. The actual accounting
of the reclamation time, especially for connections leading
outside of the reclamation tree, will be added in future work.

First, one has to consider how a reclamation tree looks
like in the M3 kernel. The M3 microkernel is capability-
based and thus the kernel manages a list of capabilities for
each process. This means that processes can only access
the kernel functionalities/abstractions they have a capability
to. In the kernel, these capabilities point to kernel objects
like semaphores, process structures, or page mapping entries.
Processes on M3 can collaborate by exchanging capabilities
pointing to these objects. Thus, an inheritance graph of
capabilities and kernel objects is created. When a process
is terminated and the process structure is reclaimed in the
kernel, all capabilities held by the process will be freed as well.
Consequently, all inherited capabilities (even when exchanged
with other processes) are reclaimed. Kernel objects that are
no longer referenced by any capability are reclaimed. Because
kernel objects can be process structures themselves, reclamation
can recurse into child processes. This can lead to the cleanup of
whole process trees in a single system call under M3.2 All this
recursion has to be reflected in the reclamation tree of processes
and thus has to be respected by our implementation of BRR.

In this implementation of bounded resource reclamation, the
kernel enables controllers to assign processes to reclamation
groups. Whenever then such a process creates or inherits
capabilities/kernel objects, the group affiliation is inherited too.
This ensures that all objects in the reclamation tree are assigned
to the same reclamation group and can thus be accounted for.
Additionally, the kernel allocates each object belonging to a
group in a group-local memory arena as shown in Fig. 5.

Some objects in the reclamation tree might also point outside
of the reclamation group. These could be, e.g., semaphore
objects that are shared with an outside, system-wide network
service. The BRR implementation addresses these outside
connections by referencing the offending objects in a group-
local scrub list. When reclaiming a group, the objects in the

2This is similar to what can be achieved with PID namespaces under Linux.
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Fig. 5. Kernel objects of the same reclamation group are allocated together
inside the same memory arena to optimize for the case of bulk reclamation.
Connections leading out of the reclamation group need to be handled
individually and are thus noted in a scrub list.

scrub list are unlinked first before the whole arena allocation
of the group is deallocated at once. The individual objects
inside of the group do not need to be individually unlinked
or deallocated, which greatly reduces reclamation latency.

In the future, the arena allocation and each element in
the scrub list need to be accounted for in a reclamation time
quota. Furthermore, the implementation is currently only fully
realized for semaphore kernel objects — just to serve as a
proof-of-concept. Nevertheless, we think this implementation
can serve for an initial evaluation of the feasibility and
effectiveness of the approach as shown in the next section.

V. EVALUATION

For the evaluation, we perform measurements on M3 using
the gem5 simulator for RISC-V. We compare three different
system configurations. First, we measure on a baseline M3

system that does not contain any custom modifications for BRR.
Second, we use a modified kernel that implements the changes
outlined in the previous section. However, the processes under
test are not added to any reclamation group. The results of
this configuration show the overhead of the performed code
changes to the overall system. For the third configuration,
the created processes are actually put inside of a reclamation
group to take advantage of the reclamation optimizations.

Figure 6 shows the influence of the modifications on the
latency of application startup. The median startup latency
increased by only 4.69 µs or 0.81 % from a baseline of 581 µs
due to the modifications to the M3 kernel. The increase in
latency is higher when starting up the process inside of a
group. It increases by 15.3 µs or 2.6 %. This shows that the
overhead for the additional bookkeeping of kernel objects
inside of reclamation groups and additional branch instructions
in system call handlers is small but noticeable.

The overhead of the M3 modifications are also noticeable
when creating new kernel objects via system calls. Figure 7
shows that the overhead of grouping is 377 ns or 3.8 % from
a baseline of 9.9 µs for creating a single memory mapping.
The overhead is more pronounced when creating a semaphore
object in the kernel. With the baseline being 3.10 µs, the
increase in latency is 1.20 µs or 39 %. This shows that the
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Fig. 6. This plots shows the latency of application startup under an
unmodified version of M3, the modified one, and the modified one when
starting the process inside of a reclamation group.
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Fig. 7. This shows the latency of allocating a single kernel object under
the three tested system settings.

modification to the kernel, which are needed for bounded
resource reclamation, can have an effect on short, simple
system calls. However, this effect disappears for more involved
operations like application startup in Fig. 6.

The preliminary implementation of BRR is already able
to drastically speed up termination as shown in Fig. 8. The
left most data points show the termination latency of a
process with only a single semaphore object allocated inside
the kernel. The measured latency is very similar between
not using reclamation groups (398 µs) and using the feature
(370 µs). Without the group feature and with 10 000 allocated
semaphores, the reclamation latency reaches 17 ms. However,
with the group feature, the latency increases by only 12 %
to 414 µs. This is achieved by allocating kernel objects of a
single reclamation group inside a memory arena and freeing
them in bulk. The semaphore objects allocated for Fig. 8
do not have any outside connections and can therefore be
freed without unlinking individual outside connections. In
contrast, the figure clearly shows that without using groups,
the reclamation latency increases as all semaphore objects
need to be cleaned up individually. Overall, our preliminary
implementation already highlights the potential time savings
that are possible when optimizing for the case of bulk resource
reclamation as often seen in time-constrained FaaS settings.

VI. DISCUSSION

The proposed grouping technique — as a sideeffect —
makes memory accounting in the kernel easier and more
precise. Normally, kernel memory budgeting can only be an
estimate because of fragmentation between different-sized
slab allocators and general kernel allocators. Because of this
fragmentation, a kernel, like the L4Re microkernel, could
run out of memory even though no processes exceeds its
kernel memory budget. This imprecise accounting could be
avoided by using the proposed grouping approach using an

53



100 101 102 103 104

10−3

10−2

Number of Semaphores

L
at

en
cy

(s
) Without Groups

Using Groups

Fig. 8. This plots depicts the time needed to terminate a process depending
on the number of semaphore objects it allocated via the kernel. The usage of
reclamation groups keeps the termination latency low even for high numbers
of objects.

arena allocator. All memory is accounted for in advance and
fragmentation issues are contained to the individual groups.
Although this comes at the cost of flexibly and dynamically
using kernel memory, one could argue that this flexibility
is not needed in settings like FaaS. Resources are typically
assigned in advance to the various customer’s processes to
allow partitioning the multi-tenant cloud machines.

Though, there are challenges when elevating BRR to the
whole operating system. System services also need to reclaim
resources once client processes terminate. This includes
network services closing sockets and memory services freeing
user memory. One possible solution could include some
interplay between OS services and the kernel to manage
reclamation time quotas. Alternatively, the controller could
allocate separate reclamation budgets at every service. To
keep the first prototype simple, this paper focuses on the
kernel-internal reclamations of kernel memory.

VII. RELATED WORK

To the best of our knowledge, there is no previous work about
a holistic approach to account for reclamation time and optimize
for it. Nevertheless, there are related works that partially
overlap with the goals of bounded resource reclamation.

Blackham et al. [7] analyze the worst-case execution time
of operations in the seL4 kernel. They make sure that non-
interruptible sections in the kernel are bounded — thus making
it feasible to swiftly react to interrupts. A similar timing analysis
would also aid BRR as it is important to estimate the latency
of individual reclamation operations. The analysis of Blackham
et al. does not put a bound on the latency of reclamations as a
whole, only on the individual non-interruptible sub-operations
of which there can be unboundedly many. This gap can be filled
with by the described design of bounded resource reclamation.

There are quite a few works that are concerned with real-time
memory management using dynamic garbage collection [8],
[9], [10]. This also entails reclaiming memory with predictable
latency to make it available for future allocations. For example,
Baker [8] designs a real-time garbage collector that reclaims
memory during subsequent allocations. Thus, system progress
is not stalled when releasing memory or during periodic scans.
Every operation is rather bounded by constant time. However,
it is unclear how this concept could be practically transferred

to operating systems. First, resources need to be handled by
a global garbage collection algorithm. This does not fit the
common design of manual resource management typically
found in OS kernels. Second, application performance would
depend on the amount of resource reclamations that have to
happen during allocation operations. Thus, the performance of,
e.g., FaaS functions would still depend on the behavior of the
previous tenant of the system — just with better predictable
time bounds. In contrast, bounded resource reclamation
eliminates this correlation by reclaiming all resources directly
on termination in bounded time.

The Thundering Herd attack by Mergendahl et al. [11] is
an example of why predictable system behavior is important.
Mergendahl et al. are concerned with attacks that use the
kernel in unusual ways to introduce unexpected timing
behavior in victim threads. The described attacks make use
of the inner workings of the seL4 scheduler implementation
to break temporal isolation. This allows many low-priority
threads to arbitrarily delay scheduling of a high-priority thead.

Furthermore, there are existing OS mechanisms to enforce
restrictions on resource consumptions. Both Linux’ cgroups and
L4Re’s factories allow processes to restrict (kernel) memory
consumption of children. However, simply restricting the
maximum allocation of memory does not serve as an adequate
proxy for limiting reclamation latency on termination. For
example, the cgroup owning shared memory is in-deterministic
when multiple cgroups are involved [6]. The factory abstraction
in the L4Re microkernel is only concerned with accounting
kernel memory. Thus, memory consumption in services on
behalf of applications needs to be handled separately. In
general, using existing memory accounting to enforce a bound
on reclamation latency is imprecise as the latency to reclaim
different objects varies. For example, reclaiming a single, large
allocation for a task stack might be a lot faster than reclaiming
individual, small semaphore objects. BRR offers a holistic
solution by accounting for reclamation latency in advance.

VIII. CONCLUSION AND FUTURE WORK

This paper has demonstrated the critical impact of resource
reclamation latency on system predictability. Our study
showed that uncontrolled reclamation can significantly prolong
process termination. The observed delays under Linux, L4Re,
and M3 underscore the need for proactive management
of reclamation behavior. Our proposed design, focused
on accounting and bounding reclamation latency, allows
for more reliable systems. Additionally, the possibility of
optimizing for bulk reclamations emerges with the potential
for orders-of-magnitude latency reductions.

The current implementation is only in a prototypical state
with lots of improvements for future work. We would like
our implementation to support the actual, precise accounting
of reclamation time and to work with more kinds of kernel
objects (especially memory mappings). In the end, BRR needs
to be expanded to the whole operating system, including
services, to fully bring predictable reclamation behavior to
real-world scenarios.
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Abstract—RT-Bench is a framework and community project
that aims to establish a unified set of benchmarks with a
homogeneous launch and result reporting interface, and with
a simple build system. RT-Bench targets academic researchers
and industry practitioners interested in understanding the per-
formance characteristics of embedded/real-time systems when
tested over realistic use-case applications. To facilitate real-time
systems research, RT-Bench is designed from the ground up to
include a set of fundamental capabilities such as periodic execu-
tion, selectable OS scheduler, and native and multi-architecture
performance counters support, to name a few.

RT-Bench has undergone continuous improvements and exten-
sions. This paper reviews the most recent additions and features
of the framework. Most prominently, these include heap migra-
tion, synchronized benchmark release, and experimental support
for multi-threaded applications. This contribution includes a
tutorial session with template benchmarks to showcase the new
features and illustrate the process of integrating new benchmark
suites.

Index Terms—Benchmarking, Real-time, Profiling, Periodic
benchmarks

I. INTRODUCTION

For practitioners and academics, benchmarking constitutes
an essential step in testing and validating their systems re-
gardless of the application domain. Naturally, many domain-
specific benchmark suites have emerged over time as a result
of independent efforts. On the one hand, this organic growth
has offered a broad and diversified portfolio of benchmarks.
On the other hand, however, it has caused an inherent fragmen-
tation w.r.t. the set of features, launch/command interfaces, and
supported metrics. This lack of a de facto standard primarily
hinders reproducibility, as well as productivity and adoption,
since practitioners must manually adapt each suite of interest
to their needs via a repetitive and time-consuming process.

Since its release [1], RT-Bench [2] has aimed to reduce these
frictions through a rich standardized interface that enables
compatible benchmarks to tap into its feature set seamlessly.
For instance, the framework allows users to swiftly leverage
common timing features, such as periodic execution and
reporting of elapsed time, in all the included benchmarks. Not
only does RT-Bench focus on features relevant to real-time
system benchmarking, but it also provides native support for
resource profiling, which has proven helpful in understanding
run-time resource requirements and pinpointing performance
bottlenecks in more general settings.

The framework also strives to combine user-friendliness,
requiring minimal effort when adapting to new benchmarks.

To that end, RT-Bench’s contributors have maintained an
extensive documentation [3] of the framework, ranging from
the supported benchmark suites to the framework’s APIs.

This article and its associated tutorial session aim to reiter-
ate RT-Bench’s core concepts, mechanisms, and goals while
formally introducing the newly ratified features.

II. WHAT’S NEW?

Since its first release in 2022 [1], RT-Bench has known
a relative success within the real-time community [4]–[10]1;
calling for many improvements, feature additions, feature revi-
sion, bug fixes and code consolidation. This section describes
the most prominent changes brought to RT-Bench.

A. Continuous Back-to-back Executions.

One of the first features introduced in RT-Bench in an
effort to more realistically reflect the behavior of real-time
applications was the enforcement of periodic execution. As
RT-Bench increased in adoption, however, it was brought to
our attention that many scenarios and use cases exist where
this mode of operation is not ideal and, in fact, undesirable.

Typically, these correspond to cases where the role of the
benchmark is to create pressure on the system’s resources (i.e.,
bandwidth from IsolBench [11]). As such, the intermittent
activity of interfering workloads that comes from periodic
releases and missed deadlines (and consequent job skipping,
showed in Fig. 1, top part) creates “pressure gaps” that can
make empirical worst-cases harder to observe and reliably
reproduce. Such gaps are also inconvenient when attempting
to collect stable readings of the performance counters.

Hence, a “continuous back-to-back execution” mode has
been introduced (Fig. 1, bottom part). It can be enabled simply
by omitting a period (-p), ensuring retro-compatibility with
existing RT-Bench command options. Note that nothing else
changes as the benchmark execution routine is still executed
in a loop until a SIGINT is received or until the specified
number of tasks instances (-t) has been completed.

B. Heap Migration

The push toward heterogeneous System-on-Chips is not just
confined to processing elements. Modern embedded platforms,
in particular, also tend to feature a diversified array of on-
and off-chip memories with different sizes and temporal

1For sake of transparency, cited papers exclude research items involving
the authors of the original paper [1] and their close collaborators.
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Fig. 1: RT-Bench execution modes: Periodic execution (top)
and continuous back-to-back (bottom).

characteristics. On Linux-based systems, these memories are
often treated as reserved memory nodes. Thus, unless system
designers add ad-hoc support, these nodes remain natively
inaccessible to standard user-space applications.

To enable the study of benchmarks’ memory affinity, RT-
Bench integrates a user-friendly heap migration mechanism.
When heap migration is enabled, RT-Bench switches to a cus-
tom heap allocator over an internally allocated memory region.
The user can control the type of allocation via command-
line parameters. Specifically, when enabling heap migration
(-H), users can indicate the target memory in two ways: (1)
by providing a physical memory address; or (2) by providing
a file pathname.

In the former case, RT-Bench will perform a non-cacheable
memory mapping using /dev/mem and will use said mapping
as the applications’ heap memory region. In the latter case, RT-
Bench will memory-map the provided file. If this is a normal
file (e.g., in a tempfs filesystem), the resulting memory
region will be cacheable. This option is handy as reserved
heterogeneous memory nodes can be exposed to user space by
exporting them as block devices that can be memory-mapped.
Kernel-level support for the creation of said interface, however,
is out of the scope of RT-Bench. When using the (-H) option
in either mode, the end-users are responsible for providing
adequate access to the underlying memory (e.g., by ensuring
it is a usable physical address/file) to avoid bus errors.

Note that a heap size limit parameter (-m) is required
because RT-Bench must terminate the target benchmark if the
working set size exceeds the size of target memory region.

C. External Synchronized Release

As RT-Bench runs atop of a rich full-fledged operating
system (i.e., Linux), running several benchmarks concurrently
to observe and study their interactions is already possible.
However, no control over the release time of the workloads
is usually possible. This makes the simulation of specific
conditions, such as the worst-case job release pattern, hard
to perform.

Thus, an initial release (offset) synchronization mechanism
has been added to RT-Bench. This mechanism, shown in
Fig. 2, allows different benchmarks or different instances of
the same benchmark to be released together via the newly
introduced (-s[=TASKSET_NAME]) parameter. When the
parameter is used, the released benchmarks behave as if they
belong to the same task set with synchronized release offset.

Process start

SIGUSR1

Process start

Process start

Benchmark 1

Benchmark 2

Benchmark 3

Time

Job 2 Job 3

Fig. 2: RT-Bench synchronized release example with three
benchmarks.

Specifying a task set name is optional. If an explicit name is
not provided, RT-Bench will default to an implicit name.

Practically speaking, RT-Bench’s synchronization unrolls
in three phases. Initially, all workloads initialize themselves
until they are ready to execute for a first iteration. There,
they wait to receive a synchronization signal (i.e., SIGUSR1).
This behavior allows users to add an arbitrary number of
benchmarks to the set by simply starting them with the same
(-s) parameter value. Once all the desired benchmarks have
been launched, the user can start the full experiment by
sending the SIGUSR1 signal to any one of the benchmarks
in the set. Once any of the benchmarks receives the signal,
said benchmark becomes the synchronization manager. The
manager is endowed with the responsibility to (1) determine
a synchronized release time in the near future and (2) send
a signal to wake up all the other benchmarks (subordinates).
Upon reception of the signal, each subordinate benchmark, as
well as the manager, will configure an absolute release timer
with the exact coordinate time determined earlier.

Note that the mechanism still involves the end-users as they
must manually start the required benchmarks and choose a
unique task set name (TASKSET_NAME). They also must send
the first SIGUSR1 signal once all the desired benchmarks have
been launched. Alternatively, a synch-helper tool is also
provided which allows users to specify how many benchmarks
to wait for before the start SIGUSR1 signal is sent.

D. Extended Reporting of Benchmark-specific Metrics

For some benchmarks, the default performance metrics
reported by RT-Bench are only a subset of the information
useful for the experiment at hand. Since its initial release,
RT-Bench offers the possibility to report one benchmark-
specific metric for each benchmark. This feature is used, by
the applications in the IsolBench suite [11], which also report
measured memory latencies and bandwidths. However, in a
number of cases, limiting benchmark-specific metric reporting
to a single value was deemed too restrictive. For instance,
a benchmark performing neural network inference for object
identification might want to simultaneously report the number
of detected objects and the corresponding confidence scores.

For this reason, the benchmark-specific reporting mech-
anism has been revamped. In this revision, benchmark-
specific metrics and metadata are stored in a struct named
extra_measurement aggregating pairs of headers and
metrics. At run-time, the struct is populated by the user-
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defined benchmark_log_data() routine with the desired
metrics and their human-readable name. Accordingly, the
EXTENDED_REPORT compilation flag has been deprecated.

E. Performance Monitoring Thread Improvements

Recall that RT-Bench included the option to spawn a per-
formance monitoring thread PMThread. The PMThread runs
in parallel with a given benchmark, and its goal is to perform
high-frequency sampling of architectural performance counters
to more accurately profile the benchmark under analysis.

An interesting challenge in the design of the PMThread is
how to store the trace of performance samples efficiently. In
the initial version, sample measurements2 were stored in one
contiguous container (i.e., a buffer) where each entry corre-
sponded to a timestamp in the execution. For a time bucket ∆t,
the ith entry contains the performance measurements sampled
at instant i×∆t of the benchmark run-time. Such pre-allocated
container would limit the execution time of the benchmark and
eventually lead to a buffer overflow.

The reworked implementation, instead, features support for
a list of buffers that can hold these measurements. This is
achieved dynamically during the execution phase as follows.
Whenever a buffer is filled, a new buffer is allocated and added
to the list, with a size that is twice as large as the previous
buffer in the list. The approach limits the number of memory
allocations during execution while not copying/moving any
previously acquired data samples. Finally, any memory used
to hold performance counters is not tracked by the memory
watchdog, and thus, it does not count against the benchmark’s
memory limit (-m).

F. Experimental Multi-thread Support

The feedback following the previous release of RT-Bench
lamented the lack of support for multithreading. The absence
was justified by several—feasible but tricky—implementation
hurdles such as synchronization and core affinity assignment.

Since then, steady progress has led to the introduction of
an experimental support for multithreading. It is now possible
to easily use the framework with a multithreaded benchmark
since new APIs to (1) spawn new threads and (2) define a
parallel computation section with these threads are available.
With these APIs the main execution thread can operate before,
during and after the parallel section; with minimal changes to
RT-Bench’s execution logic as shown in Fig. 3.

Note that, at the time of writing, multi-threading cannot
be used in conjunction with other options. For instance, as
the subsystem used for heap migration and Working Set Size
(WSS) reports are not thread-safe, multi-threading can only be
used provided no dynamic memory allocations are performed
during the execution phases. Likewise, performance counter
reports generated by the PMThread only cover the main thread.

III. DEMONSTRATION SESSION OUTLINE

This section provides a step-by-step overview of the tu-
torial session accompanying this paper. The objective is to

2i.e., a struct aggregating a selected set of PMCs such as L2_refills.

Job 1 Job 2

Main thread

Sync start Sync completion Sync start Sync completion

Deadline miss

Worker thread 1

Worker thread 2

Fig. 3: Execution model for multithreaded benchmarks.

demonstrate the user-friendliness of RT-Bench and provide the
audience with key pointers to get started with their projects.
1. Building and Launching a Benchmark. Using a project
template [12] specifically made for this occasion, we will
showcase how RT-Bench-adapted benchmarks can be com-
piled and executed. In particular, we will focus on the required
command line parameters, scenario configuration via .json
files, and where to find built binaries. This part will cover
how to release a taskset, a heap migration example, and how
to retrieve performance measurements, including an example
using the PMThread.
2. Adding a Benchmark. This part will showcase how to
extend RT-Bench with additional benchmarks [13], whether
single- or multi-threaded. The inspection of the single-threaded
benchmark from the template will serve as a stepping stone to
revise RT-Bench’s basics. Specifically, it will include how to
split a main function into the three required harness functions
(i.e., init, execute, and teardown) and tips on how
to manage any inputs modified in place during execution.
This part of the demo will also cover how to add custom
logged metrics. Finally, the steps that must be undertaken to
tap into the experimental multi-thread support will be shown
by adapting the benchmark at hand.

IV. CONCLUSION & FUTURE WORK

RT-Bench benefits from a continued effort in maintaining
the project and adding new features. Future work is directed
towards (1) adding multithreaded benchmarks and improving
the support for multithread execution, (2) supporting C++
benchmarks, and (3) the ability to define and release a taskset
from a single .json specification. Other future work includes
the construction of a RT-Bench database, which contains
metrics of different benchmarks categorized by platform.

The authors are certainly committed to providing commu-
nity support, maintaining, and extending the RT-Bench project.
Nonetheless, they also welcome inputs and contributions by
the community, such as new benchmarks, features, and support
for additional platforms: these are fundamental to keep the
project relevant, up to date, and ultimately useful.
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Modern Cyber-Physical Systems (CPS)—such as those in automotive, avionics, and railway do-
mains—increasingly rely on complex, heterogeneous MultiProcessor Systems-on-Chip (MPSoCs)
to consolidate workloads with diverse real-time and safety requirements. Combining general-
purpose applications and critical control tasks within a single platform presents significant chal-
lenges in maintaining isolation and predictability. Static partitioning hypervisors provide a robust
solution to address these challenges. However, traditional hypervisors are typically designed for ho-
mogeneous multi-core platforms and lack native support for managing heterogeneous cores—such
as microcontroller-class CPUs and soft cores on FPGAs—which are becoming increasingly common
in commercial MPSoCs.

This tutorial introduces real-time static partitioning virtualization using Jailhouse, a minimal-
ist hypervisor, and its extension Omnivisor, which generalizes static partitioning to heterogeneous
ISA cores. Building on recent work presented at ECRTS 20241 , the tutorial offers a hands-on ex-
ploration of how these tools support the deployment and management of isolated real-time virtual
machines (VMs) across different processor types within a single platform.

The session begins with a technical overview and live demonstration of the Jailhouse archi-
tecture. We will explore Jailhouse’s minimalist design, which leverages the existing Linux system
to bootstrap the hypervisor and create isolated ”cells” (VMs) with statically assigned resources,
using shell commands and configuration files.

Next, we will dive into the Omnivisor extension. As an open-source enhancement, Omnivisor
extends Jailhouse to support remote cores with different ISAs (e.g., ARM Cortex-R, RISC-V) on
the same SoC, implemented in hardware and on programmable logic (e.g., soft-core on FPGA). It
enables unified VMmanagement across these cores, providing mechanisms for spatial and temporal
isolation that abstract away the complexity of the underlying heterogeneity. Participants will learn
how Jailhouse, with the Omnivisor extension, automates the use of platform-specific isolation
features—including MMU, SMMU, and SMPU—and integrate them into the VM lifecycle.

We will then experiment with Omnivisor’s dynamic FPGA fabric management. This includes
loading the corresponding FPGA bitstream, setting up the necessary device-tree overlays, and
injecting the required drivers into the Linux root-cell. This functionality enables the flexible
instantiation of isolated VMs on newly deployed soft-cores, fully integrated into the static par-
titioning framework. Finally, we will focus on interference mitigation and memory bandwidth
regulation. We will examine how mechanisms like MemGuard, QoS, and MemPol are integrated
into the hypervisor to provide temporal isolation guarantees across VMs, even under high system
contention.

Participants will learn how to deploy and manage real-time workloads on heterogeneous MP-
SoCs using Jailhouse and Omnivisor. They will gain insights into the design challenges and
solutions for virtualization on platforms with asymmetric cores and will be provided with access
to open-source code, tooling, and documentation to reproduce the setup and experiments on their
own.

1D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque, “The Omnivisor: A Real-Time
Static Partitioning Hypervisor Extension for Heterogeneous Core Virtualization over MP-
SoCs,” in Proceedings of the 36th Euromicro Conference on Real-Time Systems (ECRTS
2024), vol. 298. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024, pp. 7:1–7:27.

61





Call for Collaboration: Contributing to
Multi-Messenger Astrophysics

Marion Sudvarg∗†, Ye Htet∗, Roger D. Chamberlain∗, Jeremy D. Buhler∗, James H. Buckley†
∗Department of Computer Science and Engineering, †Department of Physics

Washington University in St. Louis
{msudvarg, htet.ye, roger, jbuhler, buckley}@wustl.edu

Abstract—In multi-messenger astrophysics, signals of multiple
types (e.g., gravitational waves, neutrinos, electromagnetic waves)
are combined in an effort to learn more about the observed phe-
nomena of interest. The Advanced Particle-astrophyics Telescope
(APT) is a mission concept for a space-borne instrument that
detects gamma-ray bursts (GRBs) omnidirectionally, facilitating
multi-messenger observations by identifying and localizing ce-
lestial events of interest. In this presentation, we describe the
current status of on-instrument computations for the Antarctic
Demonstrator for APT (ADAPT) pursuant to guiding prompt
follow-up observations of transient events. We also describe open
problems and the challenges of extending ADAPT’s computation
to the future APT instrument. We encourage contributions and
collaboration from members of the real-time systems community.

I. INTRODUCTION

Background and Motivation. The astrophysics community has
a strong interest in observing transient astrophysical phenom-
ena using multiple modalities. This multi-messenger approach
may include, e.g., gravitational waves, electromagnetic waves,
neutrinos, and cosmic rays [1], [2]. Because these transients
can be short-lived [3], fast detection and localization is key to
supporting cooperative multi-modal observation.

The Advanced Particle-astrophysics Telescope (APT) [4]
mission concept is a proposed gamma-ray and cosmic-ray
observatory that will orbit the Sun-Earth L2 Lagrange Point,
which avoids obstruction by the earth and ensures a nearly
omnidirectional, 4π-steradian field of view (FoV). Its goals
include prompt detection and localization of gamma-ray bursts
(GRBs), which are early indicators of, e.g., neutron star and
black hole mergers, blazar and magnetar flares, and super-
novae. APT’s localizations will permit follow-up observation
of such events by optical telescopes, which typically have quite
narrow FoVs. It is predicted to localize GRBs with better than
1° accuracy and computational latency under 1 second [5].

Nonetheless, APT may supplement point localization with
more detailed likelihood maps that provide a spatial proba-
bility distribution over possible locations. This is especially
important for its Antarctic Demonstrator (ADAPT), which has
greater localization uncertainty. The most likely regions of the
map can then be searched by fast-slewing optical telescopes
to localize a source for subsequent observations.

Factors contributing to delays between detection and sec-
ondary observations include time to localize/map the transient,
communication latency to follow-up telescopes (which is par-
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Fig. 1. ADAPT’s computational pipeline for GRB localization.

ticularly challenging for space-based instruments like APT),
and the time for these telescopes to physically search the sky
as directed by a likelihood map. The computational pipeline
that transforms raw sensor data into localizations (see Fig. 1)
must therefore execute on the instrument (in space) [4] and
meet significant size, weight, and power (SWaP) constraints.

Current Status. This presentation describes several important
computational elements associated with APT and their on-
going development for ADAPT. §II outlines our progress on
improved trajectory reconstruction for individual gamma rays,
a process which uses FPGAs to read out and process signals
from digitizer ASICs. From resulting estimates of the positions
and energies of interactions in the detector, each gamma-ray
photon’s initial trajectory is constrained to a ring in the sky.
§III details our method for point-source localization using the
resulting collection of rings. While our original method based
on least-squares refinement is effective in simulation for APT,
ADAPT’s smaller size and exposure to atmospheric back-
ground radiation give rise to greater uncertainty. To address
this, we augment our iterative approach with machine learning.
Furthermore, in §IV, we also plan to generate likelihood maps
of the GRB’s location; these will then be transmitted to optical
telescopes for subsequent physical search.

Open Problems. Challenges persist in developing our compu-
tational pipeline for ADAPT, and there remain open problems
related to deployment on the future APT instrument, which is
larger, has more sensors, and demands higher readout rates.
In §II, we motivate the need for efficient, FPGA-based noise-
suppression and photon-counting algorithms. The future APT
mission will need improved capabilities to transmit result data
from several dozen FPGAs for aggregation on a CPU. In §III,
we describe ADAPT’s iterative ML-based reconstruction and
localization loop, and connect it to existing work on concur-
rent, real-time execution of neural network models and recent
work on IDK cascades [6]. In §IV, we discuss opportunities for
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tradeoffs between computational workload and precision of the
probability maps that ADAPT will generate and consider the
implications when portions of the spectral fitting and mapping
algorithms are offloaded to GPU or FPGA accelerators, which
may need to be shared with mission- or safety-critical recurrent
tasks. For all of these problems, we welcome contributions
and collaboration with other research groups in the real-time
systems and operating systems communities.

Attribution. Many of the details of ADAPT’s current status
closely follow an invited paper at this year’s CompSpace
special session at the Computing Frontiers conference [7].

II. TRAJECTORY RECONSTRUCTION

The upcoming ADAPT and proposed APT telescopes infer
a GRB’s direction by combining the trajectories of individual
gamma-ray photons that interact with them. Here we give an
overview of the instrument designs and methods to reconstruct
gamma-ray trajectories from their raw sensor data.

The APT and ADAPT Detectors are constructed with layers
of scintillating tiles that emit visible light when incoming
gamma-ray photons scatter within them. This light is first cap-
tured by perpendicular arrays of wavelength-shifting (WLS)
optical fibers that line the top and bottom surfaces of the tiles,
then measured by silicon photomultipliers (SiPMs) placed at
their ends [8], [9]. This overlay of 1-dimensional fiber arrays
into a 2-dimensional mesh, with the relative position of the tile,
allows us to resolve the 3-dimensional position r = (x, y, z) of
each interaction. Additional SiPMs, placed around the edges of
the tile layers, improve light collection and provide an estimate
of the energy E deposited with each interaction.

Both will fly with onboard computational hardware, includ-
ing waveform digitizer ASICs to sample and digitize analog
signals from the SiPMs [10]. FPGAs process the ASIC data,
reducing it to spatial coordinates and energy measurements. A
processor builds the final set of interactions (ri, Ei) associated
with each gamma ray, then uses these to perform Compton
reconstruction, constraining the gamma-ray photon’s initial
trajectory to a ring of the form illustrated in Fig. 2.

FPGA Pipeline Prototype. ADAPT’s digitizer ASICs continu-
ously sample the output voltages from the SiPM preamplifiers
and store the values in a ring buffer with an analog memory
depth of ≥256 entries. When a gamma ray is detected, all
ASICs are triggered simultaneously to digitize and read out
these values. Given the speed at which the gamma-ray photon
moves within the detector, all of its interactions are captured
in a single readout and cannot be temporally disambiguated.
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Fig. 3. ADAPT’s FPGA pipeline.

We refer to the collection of data from a single gamma ray’s
interactions as an “event.” To handle streaming event arrivals,
a finite state machine (FSM) packet handler reads out the
serial interface from the digitizer ASICs, providing flexibility
to handle multiple types of waveform digitizers. ADAPT is
expected to demonstrate the capabilities of two ASICs: the
ALPHA [12], developed by collaborators at the University of
Hawai‘i at Mānoa, and the HDSoC from Nalu Scientific, both
based on the TARGET ASIC [13].

Our pipeline first performs pedestal subtraction, removing
the unique capacitive charge pedestal inherent to each of the
ASIC’s analog memory cells from the digitized readouts to
yield the true sampled signal values. To infer the number of
photons captured by each fiber or edge detector’s SiPMs, a
signal integration stage sums over digitized output values.
To estimate the number of photons captured, a gain correc-
tion stage multiplies the integrated value by a per-channel
fractional gain, then subtracts the expected dark count (spon-
taneous SiPM impulses due to thermally-generated electrons)
for the duration of the integration window. Zero-suppression
then sets sufficiently low photon counts to zero, under the
assumption that these values may be caused by noise effects
in the circuit or variation in dark counts.

Zero-suppressed photon counts from multiple ASICs are
merged into a single array for each WLS fiber plane. To then
derive interaction coordinates from each array, island detec-
tion and centroiding take the mean of WLS fiber positions,
weighted by photon intensity, over islands of adjacent non-
zero channels. The complete pipeline is illustrated in Fig. 3.

In [14], we described several HLS-based optimization tech-
niques for an earlier version of this pipeline, achieving a
throughput of >2× 105 events per second in simulation, even
with a conservative 100 MHz system clock. New (or modified,
in the case of island detection and centroiding) components
since that work are marked in dark blue in Fig. 3.

Compton Reconstruction. Using a CPU, we next build a set
of interactions, or hits, (ri, Ei) for each individual event.
From these, we reconstruct the gamma-ray photon’s trajectory
to constrain the burst’s direction in a process referred to as
Compton reconstruction [15]. For a gamma-ray photon that
scatters following an interaction with an electron, the Compton
law gives the relationship between the cosine η of its scattering
angle and its energy before and after the interaction. Given
the vector c between its two interactions and this η value,
we can constrain the gamma ray’s source direction s to a
circle projected on the unit sphere, as illustrated in Fig. 2.
Spatial and energy measurement errors spread the circle into
a ring, or annulus; by propagation of error, we can estimate
the uncertainty dη in its radius [16], [17].

Reconstruction is challenging because the set of hits is tem-
porally unordered due to the gamma ray’s speed-of-light travel
within the instrument. We therefore use the methods described
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Fig. 4. 2 µs digitized waveform from an optical fiber that captured 5 photons.

in [15] to infer the most likely ordering of hits. We developed
an accelerated branch-and-bound tree search algorithm [10],
[16] that achieves a throughput of around 3× 105 events per
second when utilizing all 4 cores of ADAPT’s 1.92 GHz Intel
Atom 3845 CPU-based flight computer [18].

Open Challenge: Photon Counting. The energy deposited by
a scattering gamma ray is low enough that only a handful
of optical photons (typically <20) are transmitted by each
optical fiber. For example, Fig. 4 shows a simulated waveform
read out from a fiber; of the six peaks, five correspond to
captured photons, while one is a dark count. Photon counts
inferred from signal integration are thus inaccurate given
the low SNR. Alternative FPGA-based techniques for noise
suppression and photon counting — e.g., combinations of
threshold-based methods [19], filters, and deep-learning based
approaches — remain an open challenge. In particular, we
would like to explore combinations of such methods, including
synthesis of multiple kernels with different combinations of
filters to be dynamically swapped out depending on resource
availability and latency/throughput requirements.

Open Challenge: Data Rates. ADAPT will produce around
200 KB–1 MB of raw data for a single event; during a
burst, several thousand events trigger every second. To sustain
these high data rates, a hierarchy of FPGAs implements
the preprocessing pipeline to handle thousands of readout
channels. Ultimately, 13 FPGAs transmit reduced data to
a CPU via Gigabit Ethernet. The larger APT instrument
will produce ∼100× more data per event while triggering
∼10–100× faster. We anticipate that at least 60 FPGAs will
send data, though perhaps not all of them for every event.
Addressing this challenge within the constraints imposed by
the space-based computational environment may require Time-
Sensitive Networking (TSN). We will alternatively consider a
dedicated FPGA with access to unified CPU memory or cache
fabric that performs event building and dispatches Compton
reconstruction workloads to CPU cores directly, building upon
the principles of CAESAR [20].

III. POINT-SOURCE LOCALIZATION

Localization aims to determine the most likely source direc-
tion for a GRB using the Compton rings from reconstruction.

Approach. Localization fixes a GRB’s source direction s by
“intersecting” multiple Compton rings. In principle, three rings
suffice to fix s; however, we must contend with both the uncer-
tainties dη of each ring and the fact that many observed rings
(≥50% for ADAPT) arise from unrelated, diffuse background
radiation. As described in [5], ADAPT’s localization operates
in two stages. The first stage, approximation, selects the most
likely direction s0 from a set of candidates. The second stage,
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Fig. 5. ADAPT GRB localization pipeline (from [11]).
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refinement, uses an iterative least-squares approach to adjust
s0 until it converges to a maximum-likelihood estimate s.

Use of Machine Learning. Our recent work [11] supplements
ADAPT’s localization pipeline with machine learning infer-
ence designed to address background noise and uncertainty
estimation. We introduce two multilayer perceptron models,
the background network and the dEta network. The first clas-
sifies a Compton ring as originating from either the GRB or
the background, allowing background suppression; the second
more accurately estimates dη for the surviving Compton rings.
Each model takes as input the energy and position estimates of
interactions that gave rise to the ring, along with an estimate
of the GRB’s polar angle with respect to the detector z-axis.

Using the polar angle as an input has proved essential to
model accuracy, but it is not known a priori. We therefore
iterate between the basic localization computation — which
produces an estimated source direction ŝ — and then discard-
ing any input rings classified as background given ŝ. Once the
estimate ŝ converges, we re-estimate dη for all surviving rings
and obtain s with a final run of the core algorithm.

Validation. Fig. 6 summarizes experiments from [11] that
measure the impact of machine learning. These results measure
the accuracy with which ADAPT can localize simulated GRBs.
Using ML consistently improved localization accuracy, both
in the common case (68%ile error) and especially for outliers
(95%ile error). We also measured the computational cost on
ADAPT’s flight computer. Reconstruction and localization for
a representative bright, short burst required ∼220 ms.

Open Problem Area: ML in RT As evidenced by the re-
cent ML-RT Agenda (ECRTS’24 and ’25) and WMC (RTSS
’24) workshops, there is growing interest in using machine
learning safely and predictably in real-time systems. Our
iterative approach to ML-based GRB localization allows us to
trade off between accuracy and efficiency, but exploring this

65



Fig. 7. Partial likelihood map for GRB 140329295 from Fermi GBM catalog,
showing 99% containment region (from [7]). Lighter-colored pixels are more
likely to contain the GRB source. The red cross denotes the actual source.

tradeoff space is an open problem, especially when the neural
network models (which can exploit intra-task parallelism and
vectorization) must run concurrently with each other and with
safety-critical instrument- or satellite-control tasks. Several
of these concerns have been outlined in a recent paper by
Buttazzo [21]; we encourage members of the community with
expertise in these areas to collaborate. Moreover, there may be
opportunity to use IDK classifiers [6] for background rejection.
Effective scheduling for sequences of multiple IDK classifiers
(cascades) has garnered recent attention [22]–[25].

IV. LIKELIHOOD MAPPING

The techniques of §III identify one likely direction for a
GRB. To allow telescopes to search for an optical counterpart,
we will also communicate a likelihood map over its possible
location in the sky, as illustrated in Fig. 7.

Approach. Our mapping computation follows that of the
cosipy library [26] released for the planned Compton Spec-
trometer and Imager (COSI) mission. Mapping, like point-
source localization, begins with a set D of Compton rings,
each with a center vector, radius, and measured energy Em.
These parameters define the Compton data space (CDS) of
possible rings, which arise either from a source that appears
for time ∆t at location s or from background radiation.

The source and background are respectively characterized
by an instrument response R(s, Ei) and a background model
B. R and B each describe the expected number of rings in a
given volume within the CDS observed during time interval
∆t. R assumes that rings arise from photons of energy Ei

arriving from a GRB of unit intensity in source direction s,
while B assumes that they arise from the background. R and
B are derived empirically from extensive simulations.

To generate a likelihood map, we compare for each source
direction s the hypothesis Hs

1 that some portion of D arose
from a GRB point source at s, versus the null hypothesis H0

that D arose from background alone. For Hs
1 , the expected

number of rings produced in a given volume of CDS is
determined by R(s, Ei)·ρ+B, where ρ, the actual intensity of
the GRB, is unknown a priori and so must be fit to maximize
the likelihood. For both Hs

1 and H0, the observed number of
rings within a given volume of CDS is assumed to be Poisson
with that volume’s expectation. The map score for direction s
is the log-likelihood ratio of Hs

1 versus H0 given D.

Computational Cost. A key question is whether likelihood
map generation can be done in real time for short-duration

GRBs so that ADAPT and APT can coordinate with follow-
up telescopes seeking optical counterparts that could fade
within seconds. The computation is straightforward to paral-
lelize across events, and the response R and background B
are kept as arrays in DRAM for speed of access. We also
implemented multiresolution mapping [27], [28], in which
a map is produced at low resolution for the whole sky
and then refined only in areas with likelihood scores high
enough to plausibly contain the GRB. Selecting an appropriate
granularity of subdivision to provide sufficient map precision
to optical telescopes, while not introducing undue delays in
the transmission of the map, remains an open problem.

We tested our implementation on 17 simulated GRBs from
the 3rd COSI Data Challenge [29], using COSI’s instrument
response R and inferring the background B from three months
of simulated observations in low-earth orbit. We generated
likelihood maps with 12,288 HEALPix pixels (∼2° resolu-
tion), limiting output to the 90% containment region for the
source. On an 8-core Arm Cortex-A78AE (Nvidia Jetson
Orin NX), map generation consistently completed in under
200 ms. On 4 performance cores on ADAPT’s Intel Core
i7-13700TE CPU, it completes in under 100 ms. Further
improvements may arise from porting our implementation to
C++ and exploiting GPU or FPGA acceleration.
Challenges. Robust likelihood mapping for ADAPT and APT
requires two further advances: real-time inference of GRB
spectra, and efficient representation and inference of the
response R. Cosipy’s spectral estimation fits a model to
maximize the likelihood of the observed Compton rings, which
requires nonlinear optimization. It also assumes the GRB’s
source location is known, resulting in a circular dependence
with map generation. We will investigate simplified real-time
fitting approaches that do not assume a known source location.

The size of the instrument response R — several gigabytes
for even a low-resolution model — places large demands
on memory and data bandwidth. Ongoing research includes
compact machine-learning models that can approximate R.
We will also investigate efficient active-learning approaches
to infer R from fewer simulated photons.

V. OPEN PROBLEMS AND CALL FOR COLLABORATION

As we continue to develop the upcoming ADAPT instru-
ment, work toward the proposed APT mission, and coordinate
with ground-based optical telescopes for real-time follow-up
observations of astrophysical transients, several open problems
remain. These include (but are not limited to) development
of efficient FPGA-based signal processing algorithms; real-
time transmission of data from dozens of FPGAs to a CPU;
computational offloading of ML models and likelihood map-
ping to GPU or FPGA accelerators; efficient representation
and inference of the instrument response R; and runtime
platforms to coordinate, schedule, and execute these with
timing guarantees. The real-time systems community, with ex-
pertise in running latency-constrained applications atop SWaP-
constrained hardware, is particularly suited to addressing these
problems. We invite interested researchers to collaborate!
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OSPERT 2025 Program

Tuesday, July 8, 2025
8:00 – 9:00 Registration

9:00 – 10:00 Session 1: Opening Remarks and Keynote
Keynote: Challenges and Experiences Building a Software-Defined Vehicle Management
System

Professor Rich West

10:00 – 10:30 Coffee Break

10:30 – 12:00 Session 2: Technical Papers I. Chair: Kuan-Hsun Chen

UltraScale+ SpinalHDL Wrapper: Streamlining Ideas to Bitstream on UltraScale+
platforms

Denis Hoornaert, Giulio Corradi, Renato Mancuso, Marco Caccamo

Tintin: PMU Scheduling to Minimize Uncertainty
Marion Sudvarg, Ao Li, Sanjoy Baruah, Chris Gill, Ning Zhang

Towards a Linux-based Unikernel for Resource-Constrained Embedded Systems
Yoshifumi Shu, Yutaka Matsubara, Yixiao Li, Hiroaki Takada

12:00 – 13:30 Lunch

13:30 – 14:30 Session 3: Case Studies. Chair: Renato Mancuso

Compute Kernels as Moldable Tasks: Towards Real-Time Gang Scheduling in GPUs
Attilio Discepoli, Mathias Louis Huygen, Antonio Paolillo

SentryRT-1: A Case Study in Evaluating Real-Time Linux for Safety-Critical Robotic
Perception

Yuwen Shen, Jorrit Vander Mynsbrugge, Nima Roshandel, Robin Bouchez, Hamed FirouziPouyaei,
Constantin Scholz, Hoang-Long Cao, Bram Vanderborght, Wouter Joosen, Antonio Paolillo

14:30 – 15:30 Session 4: Technical Papers II. Chair: Marion Sudvarg

IRx: RTOS-Aware Abstract Interpretation using an LLVM-based Interpreter
Andreas Kässens, Vitali Fendel, Daniel Lohmann

Bounded Resource Reclamation
Viktor Reusch

15:30 – 16:00 Coffee Break

16:00 – 17:20 Session 5: Demos, Tutorials, and Calls. Chair: Björn Brandenburg

Real-Time Virtualization on Heterogeneous MPSoCs: A Hands-On Tutorial with
Jailhouse and Omnivisor

Daniele Ottaviano

Call for Collaboration: Contributing to Multi-Messenger Astrophysics
Marion Sudvarg, Ye Htet, Roger Chamberlain, Jeremy Buhler, James Buckley

17:20 – 17:30 Closing Remarks and Best Paper Award
17:30 – 19:00 ECRTS First-timer Reception

Wednesday, July 9th – Friday, July 11th, 2025
ECRTS main conference.
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