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MAST
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• To model, analyze and optimize hard real-time systems
• Open Source (Ada). Available at www.mast.unican.es

System 
Description Results

✓ PD
✓ NPD
✓ HOSPA
✓ FP + EDF

Optimization Tools

✓ Slack calculation
✓ System, processing resource, e2e flow, etc.

✓ Shared resources
✓ Multi-path e2e flows
✓ Sporadic and Polling servers
✓ Networks (AFDX), Partitioned systems

✓ Modelling (graphical editor, UML)
✓ Simulator
✓ Results viewer

MAST

Response-Time Analysis Tools

✓ Holistic
✓ Offset-Based

✓ Slanted
✓ Brute Force
✓ Precedence opt.

✓ FP + EDF

http://www.mast.unican.es


MAST Model
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MAST Model for analysis
• End-to-end flows, aligned with OMG MARTE
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• Steps: Worst-case execution time (Cij), Best-case execution time (Cbij)

• Threads: Priority (Prioij), Processor (Procij), Preemptive/Non-preemptive

• Results from response time analysis:
‣ Global response time:  worst-case (Ri), best-case (Rb

i)
‣ Local response time: worst-case (rij), best-case (rb

ij)
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Amalthea to MAST transformation

Amalthea Task

InstructionsInstructionsInstructions

Labels 
written

Labels 
read

Runnable 1 Runnable 2 Runnable 3

Priority = P

• 21 Tasks
• Statically assigned to a core
• Fixed Priority: preemptive/

cooperative
• Released by stimuli: periodic/

sporadic (arbitrary phasing)
• D=T
• Series of Runnables

Amalthea Tasks

• 1250 Runnables
• Read labels (memory)
• Instructions: constant/deviation
• Write labels (memory)

Amalthea Runnables

• 10000 Labels
• Mapped to GRAM/LRAM
• Local RAM = 1 cycle
• Non-Local RAM = 9 cycles

Labels

Stimulus

Period: T
Sporadic: [Tmin, Tmax]

WCET of steps = instructions + worst-case memory accesses

Amalthea 
Task

MAST Thread

Step !i1 Step !i2 Step !i3 MAST 
End-to-end Flow

Priority = P

ei
Period: Tmin

C12



Memory Accesses
• Modeled as execution time added to the steps

• Worst-case cost of accessing the labels
‣ Assumes all cores accessing the same memory at the same time

• Best-case cost of accessing the labels
‣ Assumes no other core is accessing the same memory

• Example with all labels in GRAM (Challenge 2):
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CORE0 GRAM
9 cycles

CORE0 access a label
located in GRAM CORE1

CORE2

CORE3

9 cycles

9 cycles

9 cycles

Worst-case cost of accessing a label = 9 cycles + 3*9 cycles = 36 cycles
Best-case cost of accessing a label = 9 cycles 



Cooperative Scheduling
• Cooperative tasks can be preempted by higher priority…
‣ Preemptive tasks at any moment
‣ Cooperative tasks at runnable borders

• Cooperative tasks suffer a blocking equal to the longest runnable of lower priority

• We can model the blocking in MAST with a dummy shared resource
‣ Accessed by the longest cooperative runnables
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MAST 
automatically finds 

the longest 
possible blocking

From a cooperative Amalthea Task

From a cooperative Amalthea Task
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Mutual exclusion resource



Event-chain analysis (1/3)
• Latency model of data traversing non-consecutive runnables

1. Runnables from different Amalthea tasks: EffectChain_2 and EffectChain_3
2. Runnables from the same Amalthea task: EffectChain_1

• Runnables from different Amalthea tasks:

8

Stimulus

Stimulus

Stimulus

Period: T1

Period: T2

Period: T3

data 
is read1 data 

is processed
2

data 
is written

3

that data is read 
by another runnable

4



Event-chain analysis (2/3)
• Latency model of data traversing non-consecutive runnables

1. Runnables from different Amalthea tasks: EffectChain_2 and EffectChain_3
2. Runnables from the same Amalthea task: EffectChain_1

• Runnables from different Amalthea tasks:
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L=r11+T2+r22+T3+r33

Worst-case latency 
assumes labels are written 
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be read

Lb=rb11+rb22+rb33
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Stimulus
Period: T1

Amalthea Task

Event-chain analysis (3/3)
• Runnables from the same Amalthea task:
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Worst-case latency

L=(T1-Rb12)+R11
Best-case latency

Lb=(T1-R12)+Rb11

MAST equivalent model
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Challenges
• Challenge 1: ignoring memory accesses
‣ Execution time of MAST steps comprised of only Runnable 

instructions

• Challenge 2: all labels to GRAM
‣ Execution time of MAST steps comprised of Runnable 

instructions + worst-case memory access costs

• Challenge 3: find optimized allocation of labels to 
GRAM and LRAM
‣ Label optimization not supported in MAST, but….
‣ 83% of labels are accessed by only one core
‣ Proposal: Shared labels to GRAM, non-shared labels to their 

core LRAM
- LRAM is accessed without contention (1 cycle access) 
- GRAM is accessed as before (4*9=36 cycles access)
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Evaluation

• Amalthea to MAST transformation (M2T)
‣ 10 minutes approx.

• Response-time analysis technique applied
‣ Offset-based Analysis with Precedence Relationships 

Optimizations
‣ Better suited for end-to-end flows that stay in the same 

processor
‣ 1-5 minutes to analyze each system

• Amalthea model has utilizations above 100%
‣ SCN-ACET: Mean value of instructions used as steps WCET
‣ SCN-WCET: Maximum value of instructions used as steps WCET
‣ Different clock speeds tested: [200, 233, 266, 300, 333, 350] Mhz
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Results (Event-chains)
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• Latencies for the optimized 
label allocation are closer to 
the case ignoring memory 
accesses

• Latencies for SCN-WCET can 
only be obtained for 300Mhz 
and above



Results (System Slacks)
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Positive slack: Percentage 
by which the execution 
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Conclusions

• Demonstration of how MAST can be applied to this 
kind of systems

• System is analyzed as a whole

• Results for the three challenges

• Workspace and results are available:
‣  www.istr.unican.es/members/rivasjm/workspace_fmtv16_public.zip

• Drawbacks
‣ Pessimistic modeling of memory accesses
‣ Pessimistic event-chain analysis
‣ Cannot calculate latencies when overloaded

- But sensitivity analysis can be performed
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http://www.istr.unican.es/members/rivasjm/workspace_fmtv16_public.zip
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Thank you for your attention!
Any questions?


