
LSMC-TN #02: SchedMCore task file format

Wolfgang Puffitsch, Alessandra Melani

October 23, 2015

Revision history

Version Date Comments

Version 1.0 February 19, 2013 First version
Version 1.1 March 6, 2013 Add user function support
Version 1.3 October 23, 2015 More detailed examples and grammar comments

1 Introduction

This note presents the task file format used by the SchedMCore1 toolset and
its evolution. The objectives of such a file format are:

• to describe each task with its real-time properties (deadline, WCET, re-
lease date etc. . .)

• to describe the dependencies between the tasks

• to describe the way tasks exchange data (through real of virtual buffers)

•

The first version of the SchedMCore Task file format (a.k.a. TFF) lacks
support for the description of buffers between tasks and the mapping of tasks
to processor cores. Furthermore, its grammar contains a shift/reduce conflict.
Version 2.0 of this format seeks to overcome these limitations and to increase
the readability of the descriptions. The source code of the grammar as a couple
of lex and yacc specification is readily available in the schedmcore source code2.

1.1 Disambiguation

The new file format must start with the token TFF-2.0, which is invalid in the
old format. Therefore, parsers that understand only the old format will refuse
to parse the new format and vice versa. Parsers that support both formats can
use this token for disambiguation. Further evolution of the file format should
keep this way of maintaining disambiguation.

1http://sites.onera.fr/schedmcore/
2Lex file:https://svn.onera.fr/schedmcore/trunk/lib/lsmc_taskfile_tokens.ll, Yacc

file:https://svn.onera.fr/schedmcore/trunk/lib/lsmc_taskfile_syntax.yy

1

https://svn.onera.fr/schedmcore/trunk/lib/lsmc_taskfile_tokens.ll
https://svn.onera.fr/schedmcore/trunk/lib/lsmc_taskfile_syntax.yy

1.2 Changes

The new format adds support for the description of buffers and mappings of
tasks to processor cores. Furthermore, it allows the specification of more general
dependencies and deadline patterns.

A delicate change is that in the original format, the description of tasks
contained the task properties in the order <period, WCET, deadline, release
date>. The new format switches the order of the release date and the deadline
and places the description of the deadline at the end. This change was made to
retain readability even in case of long deadline patterns.

1.3 Restrictions

The new format allows the expression of precedences with a prefix and sequences
of deadlines with a prefix and a repeating pattern. Support for these features
is not mandatory, as expressed by the grammar in Section 4. This grammar is
a strict subset of the grammar described in Section 3, and the grammar to be
supported by SchedMCore and Interlude. Task descriptions generated by
Prelude or Interlude use the full grammar.

2

2 Taskfile Format v1.0 Grammar

tasks specs : spec list1

2

spec list : /* empty */3

| spec list spec line4

5

spec line : task spec line6

| depend spec line7

| user function spec line8

9

task spec line : ‘Task’ string int int int int10

| int int int int /* period WCET deadline release date */11

12

depend spec line : ‘Dependency’ string string dword spec13

14

dword spec : int int15

| dword spec int int16

17

user function spec line : ‘UserFunction’ string ‘in’ string ‘for’ string18

19

At the lines 10 and 11 of the grammar the integer quadruplet of this v1 (first
version) file format are: period, WCET deadline and release date in that order.

3

3 Taskfile Format v2.0 Grammar

tasks specs : ‘TFF-2.0’ spec list1

2

spec list : /* empty */3

| spec list spec line4

5

spec line : task spec line6

| depend spec line7

| combuffer spec line8

| map spec line9

| user function spec line10

11

/* Task Name [:= Userfunction] Period WCET Offset Deadlines */12

task spec line : ‘Task’ string int int int deadline spec13

| ‘Task’ string ‘:=’ string int int int deadline spec14

15

deadline spec : deadline prefix ‘(’ deadline pattern ‘)’16

17

deadline prefix : /* empty */18

| deadline prefix int ‘,’19

20

deadline pattern : int21

| deadline pattern ‘,’ int22

23

/* Dependency From To Pattern */24

depend spec line : ‘Dependency’ string string dword spec25

26

dword spec : dword prefix ‘(’ dword pattern ‘)’27

28

dword prefix : /* empty */29

| dword prefix dword ‘,’30

31

dword pattern : dword32

| dword pattern ‘,’ dword33

34

dword : int ‘:’ int35

36

/* ComBuffer From To ElementSize NbElements [:= InitFunction] */37

combuffer spec line : ‘ComBuffer’ string string intvalue intvalue38

| ‘ComBuffer’ string string intvalue intvalue ‘:=’ string39

40

/* Map Task Core */41

map spec line : ‘Map’ string intvalue42

43

/* UserFunction Function in File */44

user function spec line : ‘UserFunction’ string ‘in’ string45

46

4

4 Taskfile Format v2.0 Restricted Grammar

tasks specs : ‘TFF-2.0’ spec list1

2

spec list : /* empty */3

| spec list spec line4

5

spec line : task spec line6

| depend spec line7

| combuffer spec line8

| map spec line9

| user function spec line10

11

/* Task Name [:= Userfunction] Period WCET Offset (Deadline) */12

task spec line : ‘Task’ string int int int deadline spec13

| ‘Task’ string ‘:=’ string int int int deadline spec14

15

deadline spec : ‘(’ int ‘)’16

17

/* Dependency From To Pattern */18

depend spec line : ‘Dependency’ string string dword spec19

20

dword spec : ‘(’ dword pattern ‘)’21

22

dword pattern : dword23

| dword pattern ‘,’ dword24

25

dword : int ‘:’ int26

27

/* ComBuffer From To ElementSize NbElements [:= InitFunction] */28

combuffer spec line : ‘ComBuffer’ string string intvalue intvalue29

| ‘ComBuffer’ string string intvalue intvalue ‘:=’ string30

31

/* Map Task Core */32

map spec line : ‘Map’ string intvalue33

34

/* UserFunction Function in File */35

user function spec line : ‘UserFunction’ string ‘in’ string36

37

5

5 Examples

5.1 Example v1.0

1 Task "task 1" 6 1 6 0

2 Task "task 2" 4 1 4 3

3 Dependency "task 2" "task 1" 0 0

5.2 Example v2.0

1 TFF -2.0

2 Task "task 1" 6 1 0 (6)

3 Task "task 2" 4 1 3 (4)

4 Dependency "task 2" "task 1" (0:0)

5.3 Example v2.0 Full Grammar

1 Task "i0" 10 1 0 7,(7,7)

2 Task "o0" 5 1 0 (5)

3 Task "n8" 10 2 0 9,(4,4)

4 Dependency "i0" "n8" (0:0)

5 Dependency "n8" "o0" 0:1 ,(0:1 ,1:2)

6 ComBuffer "n8.o" "o0.o" 4 2 := "init_n8_o0"

7 ComBuffer "i0.i" "n8.i" 4 1 := "init_i0_n8"

8 Map "i0" 0

9 Map "o0" 1

5.4 Example v2.0 Restricted Grammar

1 Task "i0" 10 1 0 (7)

2 Task "o0" 5 1 0 (5)

3 Task "n8" 10 2 0 (4)

4 Dependency "i0" "n8" (0:0)

5 Dependency "n8" "o0" (0:1 ,1:2)

6 ComBuffer "n8.o" "o0.o" 4 2 := "init_n8_o0"

7 ComBuffer "i0.i" "n8.i" 4 1 := "init_i0_n8"

8 Map "i0" 0

9 Map "o0" 1

6

6 User functions

The current task file format (both versions 1.0 and 2.0) supports the inclu-
sion of user defined functions, specified as C functions, which can dynamically
be linked to tasks and executed at every job instance. C functions must be
contained inside a dynamic library (under most Unix, extension .so), whose
location is retrieved through the path specified by the environment variable
LD_LIBRARY_PATH.

For the time being, parameters cannot be specified inside the text file, since
the grammar requires only to specify the name of the function, the library
which contains it and the task which is in charge of executing the function.
Nevertheless, since most of the functions we may need do have input arguments,
it is necessary to build wrapper functions with no arguments which invoke the
real functions, specifying the inputs and possibly making them vary.

A C file (together with its header file) is included in the library we may want
to use, for example:

#include <stdio.h>

#include "usr.h"

int

userFunTest(void)

{

//do something

printf("UserFunction terminated...\n");

}

6.1 Examples

In the following, we specify how this function could be invoked exploiting text
files v1.0 and v2.0.

6.1.1 Example v1.0

1 Task "Lg" 40 4 40 0

2 Task "Gg" 40 4 40 0

3 Task "Lp" 20 3 20 0

4 Task "Fp" 20 3 20 0

5 Task "As" 10 1 10 0

6 Task "Fa" 10 1 10 0

7 Task "Ap" 10 1 10 0

8 Dependency "Fp" "Gg" 0 0

9 Dependency "Ap" "As" 0 0

10 Dependency "Fp" "Lp" 0 0

11 UserFunction "userFunTest" in "libUserFun.so" for "As"

6.1.2 Example v2.0

1 TFF -2.0

2 Task "Lg" 40 4 0 (40)

3 Task "Gg" 40 4 0 (40)

7

4 Task "Lp" 20 3 20 (20)

5 Task "Fp" 20 3 20 (20)

6 Task "As" 10 1 10 (10)

7 Task "Fa" 10 1 10 (10)

8 Task "Ap" 10 1 10 (10)

9 Dependency "Fp" "Gg" (0:0)

10 Dependency "Ap" "As" (0:0)

11 Dependency "Fp" "Lp" (0:0)

12 UserFunction "userFunTest" in "libUserFun.so" for "As"

In this example, the function userFunTest.c, belonging to the dynamic
library libUserFun.so, is associated to task As. Hence, as soon as each job of
task As is invoked, the function gets executed.

8

	Introduction
	Disambiguation
	Changes
	Restrictions

	Taskfile Format v1.0 Grammar
	Taskfile Format v2.0 Grammar
	Taskfile Format v2.0 Restricted Grammar
	Examples
	Example v1.0
	Example v2.0
	Example v2.0 Full Grammar
	Example v2.0 Restricted Grammar

	User functions
	Examples
	Example v1.0
	Example v2.0

