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Abstract—With the increasing complexity of multi/many-core
architectures, academy-industry research collaborations on this
topic are today intensifying. In this sense, the characterization of
industrial applications is still a big challenge, due to industry’s
reluctance to share application code details. Luckily, this trend
is partly changing, and today several industrial partners can
disclose high-level details of their software suites, e.g., the timing
constraints or even the memory footprint and access patterns,
to perform a better application characterization. However, it is
still extremely cumbersome to reproduce the behavior of real
applications in their actual environment, due to IPR on source
code.

In this paper, we introduce the HiPeRT Generator Tool that
helps researchers creating synthetic yet realistic test cases, using
a variety of techniques based on the model-driven development
approach. The result is an open-source framework, that generates
ready to use ANSI C code from high-level behavioral description
of an application represented with a Directed acyclic graph
(DAG).

I. INTRODUCTION

As of today, there is a clear trend towards the adoption
of multi/many core architectures for future real-time systems
to meet the stringent performance-per-energy requirements of
next-generation automotive and industrial applications. Cur-
rently, researchers from academia struggle to find a way for
effectively characterizing the behavior of real application code
when running on multi- and many-cores platforms. To do
so, they typically run benchmarks that stress and analyze
the distinct components of the computing platforms, such as
memory1, disk2 or CPU3, or they use benchmarking suites
to effectively validate their novel methodologies and tech-
niques on platforms that are as similar as possible to the
real ones. Significant examples from the real-time commu-
nity are the Malardalen benchmark [1] and TACLeBench
[2]. These benchmarks provide a collection of open-source
programs to effectively validate tools and methodologies, but,
unfortunately, they cannot capture the exact dynamics of real
industrial applications.

A typical problem towards a proper validation of academic
findings is that even industrial players that interested in such
findings cannot share much information about the system
environment, nor the source code of their applications, due to
NDA and IPR restrictions. This makes it extremely difficult to
replicate a realistic and representative scenario for validating
research activities in the real-time system domain.

1http://www.bitmover.com/lmbench/
2https://www.coker.com.au/bonnie++/
3https://www.spec.org/cpu2006/

It is widely acknowledged in the real-time community that
solving these issues is a key challenge for the future of
research. We believe that a good solution is to encourage a
“partial” collaboration between industry and academia, where
the exchanged information is a high-level description of the
applications behavior, that accurately captures a real scenario,
without details on application internals, nor forcing companies
to provide source code. These can be, for instance, the timing
constraints of a set of tasks, or their memory access pattern.

To support this kind of cooperation, we implemented a tool
that, starting from a behavioral description of a real-time ap-
plication, automatically generates ready-to-use synthetic code
that correctly mimics it. This tool, called HiPeRT Generation
Tool (HGT), is implemented using a Model Driven Develop-
ment (MDD) approach that, starting from text files providing
a high level behavioral description of applications, generates
code. HGT receives as input a set of task dependencies, timing
and memory constraints represented by a Directed Acyclic
Graph (DAG). Then, the constraints are parsed into an internal
model and then transformed into ANSI C code, that may be
executed in different target platforms.

We validate the correctness and accuracy of our tool by
emulating the behavior of a real-time application specified
using the UpScale DAG representation [3], produced in the
P-SOCRATES FP7 project [4], and running on a x86-based
system. We are currently adding support for Amalthea [5], a
model adopted in the automotive domain to capture relevant
task information.

The paper is organized as follows. The next section de-
scribes the Model driven development approach and the related
works. Section III characterizes the task model and notation.
The code generator is presented in Section IV, showing some
result of the validation benchmarking in (Section V), before a
concluding discussion.

II. BACKGROUND

A. Model Driven Development

Model based design has been used always to create an ab-
stract representation of the concepts. Under the Model Driven
software Development (MDD) process, the model of a sys-
tem under analysis undergoes multiple refinement/optimization
stages to obtain a final implementation, that is behaviorally
identical, but with specific properties that are amenable to de-
signers. Such a process is typically automated through the so-
called Model-to-Model Transformation (MMT) and Model to
Text (M2T) transformation. In a nutshell, the code generation

http://www.bitmover.com/lmbench/
https://www.coker.com.au/bonnie++/
https://www.spec.org/cpu2006/


process receives the model as input, and then, if necessary,
it converts it in a different model with the MMT process.
This can be, for instance, the conversion of a UML model
into another model that better captures certain properties of
the target system. Finally, the model is transformed into a
lower level code representation (e.g., C/C++) through the M2T
procedure. Figure 1 shows this process.

Fig. 1. Code generation process

A modeling language is composed of syntax and semantic
rules [6], that define the set of language rules and the meaning
of different language tokens. In order to create a model, MDD
engineers must first define the language rules, that is, the
abstract syntax or metamodel. A metamodel [7] is the model
concept to be implemented, i.e., the textual model used for
the definition of language constraints that describe a system
using well-defined rules. In other words, in MDD design, the
system is an instance of the metamodel.

Such an approach is extremely beneficial to software devel-
opers. First, the activities carried on in model-based software
development can be easily automated, so that the software
creation process becomes faster and more efficient. MDD also
raises the level abstraction of the software design, allowing
developers to combine lower level functionalities (e.g., drivers)
as “building blocks” in a higher level of the design. Moreover,
engineers are able to automatically generate code in different
languages and for different platform, by only providing a solid
model definition. Finally, and most importantly, this approach
enables quick verification and certification of source code,
enabling its adoption also in specific industrial domains.

B. Related work
There are several frameworks and tools offering the possibil-

ity to generate code from a metamodel instance. A widely used
commercial tool is Simulink4, which allows the generation
of ANSI C and C++ code for real-time and non real-time
applications from Matlab and Simulink diagrams. Another
commercial tool is E4Coder [8]. E4Coder provides a set of
tools used to simulate control algorithms and to generate
code for embedded micro-controllers. The code generator tool
translates ScicosLab and XCos diagrams into C language. In
[9], the authors present edROOM, a graphical environment to
edit ROOM models that automatically generates real-time C++
code. edROOM uses the model to describe the structure, com-
munication topology and behavior of the system, automatically

4https://mathworks.com/products/simulink.html

generating the application code. In [10], a MDD framework
is proposed based on Java and XSLT called JComposer, for
the automatic generation of real-time C-code for safety-critical
embedded systems. JComposer runs on top of Linux-RTAI. In
[11], a code generation framework is proposed to generate
code for different target platforms modeled using AADL. In
[12], another framework is presented for generating real-time
code based on ADA. In this work, the functional behavior
is characterized using UML2 adding the real time constraints
using MARTE.

III. SYSTEM MODEL AND NOTATION

In this section, we introduce the task model and notation
used throughout the paper. We consider the task model defined
in [13], assuming a finite set of recurring preemptive tasks
τ1...τn. Each task is specified by a directed acyclic graph
(DAG), where nodes represent task parts, and edges represent
precedence constraints. Each node τi,j has an associated worst-
case computation time Ci,j , corresponding to the amount of
time spent for pure computation, and a worst-case memory
access size Mi,j , corresponding to the dataset accessed during
the node execution. Also, each task τi is characterized by a
period Ti and a relative deadline Di ≤ Ti.

We also consider a hardware platform with m identical
processors. Jobs may be scheduled using two different ap-
proaches, namely partitioned and global scheduling. Under
partitioned scheduling, a task is statically allocated to a
processor and task migration is not allowed, while under global
scheduling, tasks can execute on any processor and migrate to
a different one.

Since we plan to use our tool to test task systems complying
with different memory access models, we decided to support
the following execution models:

• Sparse. The “traditional” execution model, where com-
putation and memory accesses are interleaved.

• Predictable execution model (PREM) [14], [15]. Under
this model, the execution is decoupled into two different
phases: a memory phase (M-Phase), during which the
task pre-fetches the required data into local memory, and
an execution phase (C-Phase), where the task computes
the local data without accessing global memory. This
technique allows improving both average and worst-case
execution times, ensuring a more predictable behavior
in a shared memory multi-core system, avoiding cache
misses and memory interference. However, it requires full
or partial code refactoring.

IV. HGT TOOL

In this section, we describe the design of our HiPeRT Gen-
erator Tool. Figure 2 describes the overall system architecture
and the three main components.

HGT is structured in three layers, namely the frontend, the
core and the backend layer.

• The frontend layer parses input files containing the task
semantics to be translated into code. These files can be
of different formats.

• The core layer translates the model semantic into the
HGT task model described in Section III.

https://mathworks.com/products/simulink.html


Fig. 2. HGR Hierarchy

• The backend layer generates the output (C) code. We
currently support PTask/Posix threads [16], while we are
developing OpenMP [17] and CUDA [18] support.

A. Front-end

The goal of the front-end layer is to read the task/system
representation that expresses the task constraints, e.g, period,
deadline, worst-case execution time, etc. Intuitively, the more
behavioral information is provided, the more accurate is the
HGT system representation. As shown in Figure 2, the front-
end layer supports two languages:

• An enhanced DOT representation5. DOT is a graph
description language used for graph representation. A
DOT file is composed basically of the definition of nodes
and edges, where nodes are the basic element of a graph
and edges represent the precedence relationship between
nodes.

• Amalthea [5], an open source format for the modeling
of embedded applications, adopted by different automo-
tive companies. Amalthea models hardware description,
constraints and software requirements, with support to
multi/many-core architectures.

For the sake of simplicity, we will use the semantic defined
by DOT along the rest of the paper. However, both semantics
are very similar as summarized in the Table I.

Unfortunately, the original specification of the DOT format
does not capture real-time semantics, such as task periods
or deadlines. We therefore used a specialization of the DOT
format, inspired by the P-SOCRATES FP7 project [4]. We call
it RT-DOT. The RT-DOT file can be either written by-hand,
or generated by a compiler. In the P-SOCRATES project, this
was done by the Mercurium source-to-source compiler6.

In RT-DOT, a real time task (RT-task) is represented by
a directed acyclic graph (DAG), equivalent to the model
described in sectionIII. An example of a RT-DOT file is shown

5https://en.wikipedia.org/wiki/DOT (graph description language)
6https://pm.bsc.es/mcxx

in Figure 3, where node N4 will be released if and only if N1,
N2, N3 and N5 have finished.

To be compliant with the P-SOCRATES model as well as
with existing tools for the graphical representation of DOT
graphs (such as GraphViz7), we allow the definition of multiple
nodes with id ’0’, and we force graphical tools to ignore them
(style=invis attribute), so they act as placeholders for task
and job constraints such as period, deadline, priority. The next
section explains how the task model is modified and managed
by the tool.

Fig. 3. Example of RT-DOT file

B. Core

The HGT core layer receives the parsed DAG representation
(e.g., from RT-DOT) and does the following:

1) it determines a task grammar, in which we will precisely
define the task constraints;

2) it maps the input constraints into the defined previously
task grammar; and

3) it defines the rules adopted to translate the model con-
straints into code.

An overview of the core layer process is shown in the Figure
4.

The first step consists in creating a metamodel compliant
with the constraints specified in the input file (See section
II and III). Several metamodeling languages exist to support
this activity, like Ecore or MOF [19]. Eclipse Modeling
Framework (EMF) [20] provides a modeling framework and
runtime support for the model language elaboration. EMF
provides a metamodel language called Ecore used for the
model description. It also allows the specification of attributes
contained in the language and their relation through class
diagrams very similar to UML diagrams.

In the second step, we map our input task model (for
instance, in the RT-DOT task grammar) into our HGT Task
Model as shown in Table I. In order to do so, we developed
an application that parses the input model into XMI (XML
Metadata Interchange). XMI is a subset of XML used for the
UML model representation. We designed the HGT model to
be compliant with XMI. We added parameters to the HGT
task model to accurately capture the semantics of RT-tasks.
These additional parameters are:

7http://www.graphviz.org/
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TABLE I
TASK MODEL EQUIVALENCES (* = WORK-IN-PROGRESS)

Front-end Core Back-end
RT-DOT AMALTHEA HGT model PTask OpenMP 4.5
Graph Task RT-Task Real-time PTask Target region
Node Runnable * Job/Thread PThread Task(-part) *
Edge – Dependency PThread mutex Task dependency

1) Job execution model. It represents the memory access
model, either PREM or Sparse (See section III). If in
Sparse mode, it is possible to define whether the memory
accesses are sequential or random, as well as the access
granularity, i.e., the minimum memory-computation unit
defined in bytes. Note that the use of PREM implies that
memory accesses are pre-fetched “in block” into the last
level cache or in a local scratchpad memory [14].

2) Task scheduling policy. Inspired by Posix Threads stan-
dard, it can be FIFO, Round Robin and CFS.

3) Partitioning policy. It may be global or partitioned. If
global, jobs may migrate across cores. If partitioned,
jobs are statically allocated to specific cores.

Lastly, we defined rules for parsing the HGT task model into
code. With this rules, task of the HGT model are translated,
e.g., into a PTask [16], and edges are translated into POSIX
mutex for the ANSI C code (see Table I). We developed
the front-end and core layers using the Epsilon framework
[21]. Epsilon is a family of languages that provide an in-
frastructure for code generation, model-to-model and model-
to-text transformation. It is distributed through the Eclipse
platform. Specifically, the language used for translating the
model into code is Epsilon Generation Language (EGL). EGL
is defined by [22] as a template-based model-to-text language
for generating code, documentation and other textual artifacts
from models. EGL provides a template-based system in which
we can define rules for the different attributes defined in the
model.

Fig. 4. Example of code generation process

C. Back-end
As we would like our HG Tool to be easily applicable

to different platforms, we wanted to provide the necessary
software abstraction to transparently support execution of the
same code across different architectures.This can be difficult
because, e.g., not all platforms support the PThread [23]
or the OpenMP API [17]. A corner case is represented by
heterogeneous platforms (e.g., based on discrete GPUs, or on
many-core accelerators), that do not provide a shared memory
abstraction [24], [25].

For this reason, our tool generate code that runs on top
of a layer, called HG-Runtime (HGR), that can be ported on
different platforms. HGR exposes a very simple APIs that
allows:

• generating RT-tasks with their own period, deadline,
priority, etc;

• spawning RT-threads/jobs within a single task, and man-
aging their dependencies;

• simulating the execution of ’C’ clock cycles on a plat-
form core, with or without performing memory accesses
(simulating cache misses);

• accessing ’M’ bytes in the main platform memory.
For space reasons, we do not provide all details of the HGR
API in this paper.

We currently implemented a first version of HGR that
is based on the PTask library [16], a research API that
enhances PThreads with real-time characteristics, like task
periods, deadlines, priorities, and OS scheduling policy. Our
runtime has been validated on a laptop running Linux with
real-time extensions (see Section V). We also plan to target
more realistic many-core accelerators such as the Kalray
MPPA[26], [4], by implementing HGR on top of the OpenMP
runtime developed specifically for that platform during the P-
SOCRATES project. We will also support automotive-grade
heterogeneous SoCs based on tightly-coupled NVIDIA GPUs
[24], [25], porting the HGR API on top of CUDA [18].

V. IMPLEMENTATION

In this section, we show how we implemented the synthetic
tasks generated by the HGT tool. The main problem was to
accurately model memory and execution phases. We ran dif-
ferent experiments, measuring the error between the expected
(M — C) emulated time and the actual one. Measures are
taken on an i7-4770T CPU @ 2.50GHz, with 32GB of RAM,
running on an standard Ubuntu 4.4.0-53.

A. Memory Phase
We first compared the memory transfer delay of different

memcopy implementations, namely:



Fig. 5. Memory test

• the standard version of memcpy;
• a byte-to-byte copy;
• AFmemcpy8, an optimization of the memcpy written in

assembly; and
• ASM memcpy, our implementation of the memcpy writ-

ten in assembly.
As shown in Figure 5, the standard implementation of the
AF memcpy performs slightly better than the “standard”
memcpy. Still, to avoid compatibility issues, we used the
former implementation. For the very same reason, it is not
worth implementing (non-portable) ASM code for the M
phase, even if in some cases it might be the best performing
one.

B. Execution Phase
As explained in section IV, the front-end provides a DAG

where each node is characterized by a worst-case execution
time, specified in time-units, and a memory access size,
specified in bytes. Depending on the execution model adopted,
PREM or sparse, the HGT implementation of memory ac-
cesses at node level varies. Under the PREM model, memory
phases are implemented using a single memcpy of corre-
sponding size, followed by an execution phase lasting for the
specified WCET. Under the sparse model, instead, we decided
to evenly divide the memory accesses into multiple sequential
blocks, each accessing memory with a given granularity
(specified in the front-end). The number of blocks for a node
τi,j can therefore be computed as

φi,j =Mi,j/granularity. (1)

Similarly, the worst-case execution time of the considered
node is accordingly distributed among the blocks, so that each
block has an execution time of βi,j , where

βi,j = Ci,j/φi,j . (2)

An example of both approaches is illustrated in the Figure 6.
We experimented two different ways to reproduce a given

execution time: ASM and CLOCK. The ASM implementation

8url: http://www.agner.org/optimize

Fig. 6. Task execution model

executes βi,j ∗ F NOP ALU operations, coded in assembly,
where F is the CPU frequency. The CLOCK implementation
employs a spinning approach where the task continuously
reads a timer to check when βi,j time units have elapsed.
To compare the effectiveness of both approaches, we charac-
terized the difference between the expected and the measured
execution times under different configurations, i.e., for differ-
ent Ci,j-φi,j combinations. Each configuration was ran 10K
times, measuring the largest divergence w.r.t. the desired value.
Results are summarized in Figure 7, showing the percentage
of the accuracy error.

Fig. 7. Computation test

The most accurate approach is the ASM. Still, there are
problems when reproducing tasks with a small execution time
and a large data size (thus, a small C/φ ratio). A reasonable
accuracy can be reached for block sizes above 1us. We are
working on more enhanced ASM methods that may obtain a
higher accuracy also for smaller block sizes. The drawback
of these alternative approaches is that they are not platform-
independent, but they require a re-engineering when changing
architecture.

VI. CONCLUSION

We presented an open-source tool for generating synthetic
real-time tasks complying with different memory and execu-
tion models: parallel or sequential, DAG-based or Autosar,



PREM or sparse. The tool has been designed following a
model-driven development approach, to allow for an easier
extensibility and customization to different hardware and soft-
ware architectures. The generated code can be adopted to test
the effectiveness of scheduling algorithms, operating systems
and runtimes under a variety of configurable workloads, al-
lowing one to test the impact of different execution models
over a considered architecture.

In the future, we plan to use this tool to generate syn-
thetic benchmarks to test the effectiveness of PREM-based
execution models with respect to standard approaches under
different multi/many-core architectures and operating systems.
The front-end will be extended to be compatible with the
Amalthea model, while the back-end will be ported on top of
the OpenMP/CUDA runtimes supported by Kalray MPPA and
NVIDIA GPUs. Finally, the tool will be enhanced to include a
configurable number of shared resources and critical sections
for more realistically modeling real industrial applications.

The source code and the tool may be downloaded from our
website9.
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