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Abstract—In this panel proposal, we would like to discuss
the programming of adaptive real-time systems. Here, the term
adapative refers to a system capable of modifying its behaviour at
run-time, so as to cope with variations (execution time variation,
environment variation, ...) that are difficult, or even impossible,
to predict. We would like to discuss such systems, not only from a
timing analysis point-of-view, but also from a functional point-of-
view, that is to say, how are such systems actually programmed?

I. MOTIVATION

There are mainly three sources of variation that may require
to adapt the behaviour of a real-time system at run-time.
First, task execution times often exhibit large variability;
scheduling analysis has to be performed based on the worst-
case execution-time, which is usually significantly more than
the actual average execution time. Second, the complexity of
modern hardware platforms makes it difficult to predict their
behaviour. Third, the system physical environment is in many
respects unpredictable, even though the engineer expertise may
enable to make assumptions on the range of values that can
be expected for the system inputs.

Real-time systems are usually programmed according to
a rigid model: the system is implemented with a fixed set
of tasks, with fixed timing parameters. The result is guar-
anteed safe, but usually this involves making conservative
(pessimistic) hypotheses about software, hardware, and sys-
tem environment characteristics that cannot be determined
statically. Allowing system adaptation at run-time enables to
significantly reduce these over-estimations.

II. DEFINITIONS

A real-time system is usually modelled as a set of tasks
T , where each task τi ∈ T has a set of real-time attributes
(Ti, Ci, Di). Ti is the task period, or minimal inter-arrival
time, Ci is its worst-case execution time and Di ≤ Ti is its
relative deadline [1]. An adaptive real-time system is a real-
time system that can modify its task set T at run-time as
follows:

• Some tasks are added to or removed from T ;
• The periods of some tasks in T are modified;
• The deadlines of some tasks in T are modified.

Note that we do not consider execution time variations as
adaptations, since they do not correspond to modifications
decided by the system itself, but rather witnessed by it.

III. FUNCTIONAL SEMANTICS OF REAL-TIME ADAPTATION

From a software point-of-view, handling variation through
real-time adaptation is a complex problem [2]. First, monitor-
ing mechanisms must be provided, e.g. to monitor execution
time variations, either by the programming language or by the
operating system. Second, an adaptation procedure that will be
executed in case of variation must be provided. There are many
possible ways to implement this. In the simplest case, we may
afford to let the task continue as planned, if the variation has
no negative impact on the system. However, assessing when
to adapt the system at run-time can be a complex process. In
other cases we may have to stop the current task execution.
If the task is stopped, we may have to undo its side-effects
or start a recovery task. The adaptation procedure can also
require a more general reconfiguration of the system, creating
new tasks or altering existing ones. Finally, we must plan for
means to transition back to the system initial behaviour. This
complex process is mostly ignored by existing approaches
in the real-time research community, since system models
generally abstract from the system functional behaviour.

IV. FOCUS OF THE PANEL

We propose a panel discussion that will focus on the
software point-of-view of adaptive real-time systems program-
ming, instead of the timing analysis point-of-view. We believe
that this topic is currently not very well covered by the
literature, and yet is of prime importance to the community.
First, as mentioned in the previous section, because it is a
non-trivial problem and second, because assumptions made
at the real-time model level may be impracticable at the
functional level. For example, the popular Mixed Criticality
(MC) scheduling approach [3] assumes that low criticality
tasks can be dropped when a high criticality task exceeds its
initial execution time budget. However, a task that is dropped
before completion must not produce side-effects, otherwise the
functional correctness of the system may be compromised.

The choice of the design and programming tools is a
central question here. Adaptive real-time systems can be
programmed with existing low-level languages (like C for
instance), however it might be difficult to design and analyze
large programs with complex adaptive behaviours and still
guarantee correctness. In this panel we would like to discuss
higher level languages (synchronous languages, Simulink, etc),
their benefits and limitations for modeling adaptive real-time
systems.



V. RELATED WORKS

Several methods have been proposed to deal with large
variability between worst-case and average case execution
times. First, more precise task execution time models that
take variability into account have been proposed. For instance,
the probabilistic approach [4], [5] represents execution times
using probability distribution functions. The parametric WCET
approach [6], [7] represents execution times as formulas that
depend on various parameters.

Mixed Criticality (MC) Scheduling [8] has been proposed
as a way to deal with execution time variability, focusing on
the scheduling problem. The main idea behind this technique
is to change the criticality mode of the system upon detection
of an extreme value of the execution time, and then execute
only the high criticality tasks. The MC Scheduling Problem
has received much attention from the research community in
the last decade [3].

Scheduling analysis of systems with mode changes has also
been studied in the past [9]. In such a multi-mode system, each
mode is characterized by a different task set. This model shares
similarities with the MC model, though here mode changes are
driven by environment variations, rather than execution time
variations in the MC model.

In the context of real-time scheduling, sensitivity analysis
[10], [11] aims at determining acceptable deviations from
the specifications of a problem. It consists in studying the
consequences, in terms of deadline-misses, of deviations from
the specified task real-time characteristics (WCET, deadline,
period). This is an important topic since it can help determine
under which conditions run-time error-prevention measures
must be considered.

Since timing-faults may not only impact the task that caused
the fault but also other tasks, real-time programmers usually
rely on low-level asynchronous mechanisms to handle them.
This includes classic POSIX event handling mechanisms,
which can be used to plan a recovery procedure, should a
WCET overrun occur. More complex asynchronous transfer
of control mechanisms are available in Java [12], Ada [13]
or Real-time Euclid [14], which enable the programmer to
specify the behaviour of a function in case it gets interrupted
due to an overrun occurring in a different function.

Synchronous languages [15] have successfully been applied
to the implementation of real-time systems for many years now
and language constructs such as mode automata [16] enable
clear and clean specification of mode chances. However, these
languages mostly abstract from real-time, focus on mono-
periodic systems, and so provide little means to specify real-
time characteristics and even less means to modify these
characteristics dynamically. Some notable exceptions are the
introduction of Futures in Lustre [17], which enables to use
computations with unbounded execution durations in a syn-
chronous program, and the language Prelude, which focuses
on multi-periodic synchronous systems [18].
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