
Alexandre Mouradian
Isabelle Augé-Blum

ECRTS
9th July 2014
Wireless Sensor Networks

Constraints:
- Limited hardware capabilities
- No fixed infrastructure
- Unreliable Links

Goals:
- Energy efficiency
- Self-organization
- Reliability
- Scalability
- Constrained delays
Context

Wireless Sensor Networks

Constraints:
- Limited hardware capabilities
- No fixed infrastructure
- Unreliable Links

Goals:
- Energy efficiency
- Self-organization
- Reliability
- Scalability
- Constrained delays
Problematic

Critical WSN applications

How to guarantee end-to-end delays in WSNs?

Formal Methods

The goal of this work is to adapt timed formal verification to WSNs
Formal verification of real-time properties

Model Checking

Explores all the possible behaviors of a model of the system, BUT combinatorial explosion

Network Calculus

Abstraction of the behavior with composable functions

\[R(t) - R(s) \leq \alpha(t - s) \]

\[\alpha^* = \tilde{\alpha} \odot \beta \]

Allows to work on large scale systems, BUT abstraction not proven
Model Checking

Explores all the possible behaviors of a model of the system, BUT combinatorial explosion
Network Calculus

\[R(t) - R(s) \leq \alpha(t - s) \]

\[\beta \]

\[\alpha^* = \bar{\alpha} \text{ } \odot \beta \]

Abstraction of the behavior with composable functions

Allows to work on large scale systems, BUT abstraction not proven
Formal verification of real-time properties

Model Checking
Explores all the possible behaviors of a model of the system, BUT combinatorial explosion

Network Calculus
Abstraction of the behavior with composable functions
Allows to work on large scale systems, BUT abstraction not proven
Formal verification of real-time properties

Model Checking

Explores all the possible behaviors of a model of the system, BUT combinatorial explosion

Network Calculus

Abstraction of the behavior with composable functions

Allows to work on large scale systems, BUT abstraction not proven

Model Checking seems more convincing at first glance but less applicable to realistic WSNs
Timed Model Checking

The issue:
- A node is represented with a Timed Automaton (with clocks and variables representing its internal state)
- The network is a composition of such automata
- The tree of executions of the network is exponential in the number of clocks and variables
Timed Model Checking

The issue:
- A node is represented with a Timed Automaton (with clocks and variables representing its internal state)
- The network is a composition of such automata
- The tree of executions of the network is exponential in the number of clocks and variables
Timed Model Checking

The issue:
- A node is represented with a Timed Automaton (with clocks and variables representing its internal state)
- The network is a composition of such automata
- The tree of executions of the network is exponential in the number of clocks and variables
Timed Model Checking

The issue:

- A node is represented with a Timed Automaton (with clocks and variables representing its internal state)
- The network is a composition of such automata
- The tree of executions of the network is exponential in the number of clocks and variables
Overview of the scheme

For each node:
1- Express the interactions of each node with the rest of the network: Network Calculus
2- Verify that the node can actually deal with these interactions in bounded time: Model Checking
Sensor Network Calculus

\[
\bar{\alpha}_i = \alpha_i + \sum_{j \in Ch(i)} \alpha^*_j
\]

\[
\alpha^*_i = \bar{\alpha}_i \otimes \beta_i = (\alpha_i + \sum_{j \in Ch(i)} \alpha^*_j) \otimes \beta_i
\]

\(\beta_i\) is the service provided by the protocol.
Sensor Network Calculus

\[\bar{\alpha}_i = \alpha_i + \sum_{j \in Ch(i)} \alpha_j^* \]

\[\alpha_i^* = \bar{\alpha}_i \odot \beta_i = (\alpha_i + \sum_{j \in Ch(i)} \alpha_j^*) \odot \beta_i \]

\(\beta_i \) is the service provided by the protocol

Adding medium access competitors:

\[\alpha_i^c = \sum_{j \in Cp(i)} \alpha_j^* \]
From curves to automata

\[
\gamma_N(\Delta) = N + \left\lfloor \frac{\Delta}{\delta} \right\rfloor
\]

Global declarations:
- broadcast chan event;

Local declarations:
- clock x;
- const int BMAX=N;
- int[0,BMAX] b=0;
- const int delta=\delta;
Proposed verification algorithm

- Sensor Network Calculus + MAC Competitors
- Protocol
- Properties
- Hypothesis on β_i
- Input traffic
- MAC Competitors
- UPPAAL
- Yes
- No + traces
Application of the method

Application to RTXP, a distributed real-time protocol for WSNs

UPPAAL TA model for one node: ~ 30 states, ~ 40 transitions, 3 clocks

Random network graphs:
- 10 to 40 nodes topologies
- 500 nodes topologies
- Number of sources: 10 to 40

We observe that the real-time capacity of RTXP is exceeded with 40 sources.
Conclusions

- Novel approach useful for large scale distributed wireless networks
- Take advantage of both Network Calculus and Model Checking
- Scales up to hundreds of nodes

Future works

- Increase the tightness of the bound
- How to represent the network dynamic in Network Calculus?