ON THE COMPARISON OF DETERMINISTIC AND PROBABILISTIC WCET ESTIMATION TECHNIQUES

Jaume Abella1,4, Damien Hardy2, Isabelle Puaut2, Eduardo Quinones1,4, Francisco J. Cazorla1,3,4

1 2 3 4

26th Euromicro Conference on Real-Time Systems (ECRTS14)
8-11 July Madrid, Spain
I have an argument about this WCET approach.

I have a contra-argument.

I have another argument.

I argue on your argument.
Well guys, let’s investigate this and make a first comparison of these WCET techniques
Timing Validation

• Critical step in the design of a real-time system
 – WCET estimates derived per task (Unit of Scheduling)
 – Task WCET estimate given as an input to schedulability analysis

• Classification of existing WCET estimation techniques:
 – Deterministic Timing Analysis (DTA) vs Probabilistic Timing Analysis (PTA)
 – Static vs Measurement-Based
DTA and PTA

- **Deterministic Timing Analysis (DTA)**
 - Single WCET estimate
 - Designed primarily for deterministic HW/SW

- **Probabilistic Timing Analysis (PTA)**
 - Multiple WCETs with an associated probability (probabilistic WCET or pWCET)
 - HW/SW designs: deterministic and randomised

- DTA and PTA have their static and measurement-based variants

<table>
<thead>
<tr>
<th>Variant</th>
<th>DTA</th>
<th>PTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>SDTA</td>
<td>SPTA</td>
</tr>
<tr>
<td>Measurement based</td>
<td>MBDTA</td>
<td>MBPTA</td>
</tr>
</tbody>
</table>
Comparison

• Difficult so far:
 – PTA still in its infancy
 – Each approach (DTA and PTA) performs better on a different hardware design

• Our goal: Carry out the first comparison between DTA and PTA
 – No apocalyptic take-out message
 • ‘This will never work’
 – Qualitative
 • Strengths and limitations of each technique
 • Sensitivity to different parameters
 – Quantitative
 • Common setup in which all methods are applicable
Considered hardware

- Fixed execution latency but the instruct. cache
- Cache structured into sets and ways
 - Placement: Defines the possible set in cache
 - Replacement: Defines which block will be evicted
Considered hardware

- Cache structure: Fully-associ., Set-Associative
- Placement: Deterministic (modulo) vs randomized
- Replacement policy: Deterministic (LRU) vs randomized (Evict on Miss, EoM)

<table>
<thead>
<tr>
<th>Cache short names</th>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mod</td>
</tr>
<tr>
<td>Replacement</td>
<td>LRU</td>
</tr>
<tr>
<td></td>
<td>EoM</td>
</tr>
</tbody>
</table>
Deterministic Timing Analysis (DTA)
Static Deterministic Timing Analysis (SDTA)

- SDTA provides safe WCET estimates

- Needs: Information about the HW/SW

- **Approach**: Analysis divided into 2 steps
 - Low-level analysis: modeling of hardware timing
 - Caches, pipeline, predictors...
 - High-level analysis: longest execution path computation

![Graph showing the relationship between frequency and execution time, with an arrow indicating the actual WCET and a safe upper bound.](image-url)
Static Deterministic Timing Analysis (SDTA)

• High-level analysis Longest execution path computation
 – Implicit Path Enumeration Technique (IPET)
 • ILP formulation of the WCET calculation problem
 • Linear programming solver

• Low level analysis: Cache Analysis
 – Based on Abstract Interpretation
 – Determines guaranteed hit
 • Cache Hit Miss Classification: Always hit, First miss
 – Defined for different replacement policies
 • LRU, EoM...
Probabilistic Timing Analysis (PTA)
Probabilistic Timing Analysis (PTA)

- Different WCETs with associated probabilities

- **Approach**: introduce randomization in the time behavior of HW and SW and apply probabilistic and statistical techniques

- Most techniques presented here from:
Static PTA (SPTA)[6][2][9]

• Execution Time profile (ETP)
 – ETP = <(L_1, L_2, ..., L_n),(P_1, P_2, ...P_n)>

• Along each path instructions combined using convolution ⊗
 – Inherit ⋊ requirements

• Require probabilities in the ETP
 – To be computed or upper-bounded
 – Probability (or its bound) should be independent from history of execution
 – Example: ETP of instruction using probability of hit from [9]: if k>=N, 0, else ((N-1)/N)^k
Measurement-based PTA (MBPTA)

• Works with end-to-end runs
 – Uses Extreme Value theory (EVT)
 – Inherits EVT reqs (i.i.d) and also has its own [1]

• Probabilities must exist, not to be computed
 – Approximation expression to show probabilistic behavior of cache hit/misses [16][17]
Qualitative comparison
Suitability: cache designs for SDTA and SPTA

• **Time Deterministic caches:** Works for SDTA

• **Time Randomized caches:** Pessimistic for SDTA. OK for MBPTA. SPTA not shown to work yet

• **pTR caches** (partially Time Randomised)
 – Dependence among addresses and cache lines
 – **SPTA:**
 • Requires addresses (or alignments) of accesses
 • As much information as SDTA → **defies PTA goal** [JR]

<table>
<thead>
<tr>
<th>Placement</th>
<th>Policy</th>
<th>Replacement</th>
<th>SDTA</th>
<th>SPTA</th>
<th>MBPTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD</td>
<td>TD</td>
<td>TD</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>TD</td>
<td>TR</td>
<td>pessimistic</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>TR</td>
<td>TR</td>
<td>very pessimistic</td>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

Other elements of comparison

• Multipath programs: affect analysis
 – SDTA: safely supported
 – MBPTA: path coverage issue → PUB (next talk 😊)
 – SPTA: Some first methods already [9]

• Sensitivity to the lack of information
 – Get addresses (alignments) of accesses is complex
 – Impact of lack of addresses/alignments
 • SDTA (TD cache): sensitive
 • MBPTA (TR caches): insensitive
 • SPTA (pTR caches): sensitive
Other challenges

• SPTA for random placement
 – Random placement not modelled yet [JR]
 – Mod. placement: assume accesses go to the same set

• SPTA tighter hit/miss
 – Baseline upperbound formula [9]
 • Approximation formulas in [16][17] not meant for SPTA

• Trustworthiness of MBPTA for random placement [JR] \rightarrow HoG technique (last talk)
Quantitative comparison
Experimental setup

• Common denominator supported by all methods
 – Programs: Single path code & addresses are known
 • Mälardalen WCET benchmarks
 • Autobench benchmarks
 – Common ISA (MIPS) + compiler toolchain (gnu)

• Instruction cache design
 – 1KB cache – 32B lines
 – Structure
 • 4-way Set-Associative (SA-4), latency: 1/70 cycles
 • Fully Associative (FA), latency 2/70 cycles
 – Placement: deterministic (modulo)
 – Replacement
 • Deterministic (LRU)
 • Random (EoM)
WCET estimation techniques

• SDTA
 – Heptane WCET estimation tool
 • Al-based analysis of cache + IPET

• SPTA
 – Formula from [9] to derive ETPs on traces
 – Convolutions of ETPs

• MBPTA
 – End-to-end measurements + EVT
 – Statistical test to check i.i.d property
pWCET distributions (SA-4, minver)

Cache configuration SA-4, 1KB cache, 32B lines, latency of 1

Execution time vs. Probability
pWCET distributions (SA-4, minver)

Cache configuration SA-4, 1KB cache, 32B lines, latency of 1

Execution time

Probability

1
0.01
0.0001
1e-06
1e-08
1e-10
1e-12
1e-14
14000 15000 16000 17000 18000 19000 20000 21000 22000

simu-LRU: 1 run (single path)
simu-EoM: 100K runs
pWCET distributions (SA-4, minver)

Cache configuration SA-4, 1KB cache, 32B lines, latency of 1

SDTA-LRU: close to simu-LRU
SDTA-EoM: pessimistic estimation (1/4 of the cache)
SPTA-EoM and MBPTA-EoM: strictly higher than simu-EoM & pWCET estimates between SDTA-LRU and SDTA-EoM
Comparison at fixed probability \((10^{-15}, SA-4)\)
Comparison at fixed probability (10^{-15}, SA-4)

- Working set smaller than cache size
- LRU: only cold misses
- EoM: non zero probability of replacements to occur
Comparison at fixed probability (10^{-15}, SA-4)

- Working set larger than cache size
- LRU: conflict misses
- EoM: non-null probability of survivability
Conclusions
Conclusions & Future work

• We proposed a first comparison between deterministic and probabilistic methods
 – Qualitative & Quantitative studies to identify the HW & SW for which each method perform best

• Next step
 – Multi-path programs
 – Data caches
 – Sensitivity to the lack of address information

• Challenges
 – SPTA tighter hit/miss probability estimation
 – SPTA for random placement
 – ...

31
ON THE COMPARISON OF DETERMINISTIC AND PROBABILISTIC WCET ESTIMATION TECHNIQUES

Jaume Abella¹,⁴, Damien Hardy², Isabelle Puaut², Eduardo Quinones¹,⁴, Francisco J. Cazorla¹,³,⁴

26th Euromicro Conference on Real-Time Systems (ECRTS14)
8-11 July Madrid, Spain